摘要
赖氨酸残基上的乙酰化被认为是最有效的蛋白质翻译后修饰之一,因为它在细胞代谢和调节过程中起着至关重要的作用。实验技术的最新进展已经解开了几种赖氨酸乙酰化底物和位点。然而,由于其成本低下,过程繁琐,耗时和劳动密集,因此已经为开发计算工具做出了一些努力。特别是,基于机器学习(ML)的方法在快速发现赖氨酸乙酰化修饰位点方面具有很大的希望,越来越多的预测工具可以见证这一点。最近,已经开发了几种ML方法用于预测赖氨酸乙酰化位点,因为它们具有时间和成本效益。在本综述中,我们提出了赖氨酸乙酰化最先进的ML预测因子的完整调查。我们将讨论开发成功预测器的各种关键方面,包括操作 ML 算法、特征选择方法、验证技术和软件实用程序。最初,我们回顾赖氨酸乙酰化位点数据库, 当前的 ML 方法, 工作原理, 及其性能.最后,我们讨论了ML方法在预测赖氨酸乙酰化位点方面的缺点和未来方向。这篇综述可以作为实验者为他们的研究选择合适的ML工具的有用指南。此外,它可能有助于生物信息学家在蛋白质研究中开发更准确和更先进的MLbased预测因子。
关键词: 蛋白质,翻译后修饰,赖氨酸,乙酰化,机器学习,特征编码,预测 模型。
[http://dx.doi.org/10.1016/j.chembiol.2020.07.002] [PMID: 32698016]
[http://dx.doi.org/10.1016/j.csbj.2017.03.004] [PMID: 28458782]
[http://dx.doi.org/10.1186/s12859-019-2632-9] [PMID: 30674277]
[http://dx.doi.org/10.1038/srep00090] [PMID: 22034591]
[http://dx.doi.org/10.1093/nar/gkr1122] [PMID: 22135298]
[http://dx.doi.org/10.1016/j.gene.2005.09.010] [PMID: 16289629]
[http://dx.doi.org/10.1074/jbc.R000023200] [PMID: 11013267]
[http://dx.doi.org/10.1093/nar/gkh252] [PMID: 14960713]
[http://dx.doi.org/10.1016/S1097-2765(04)00094-2] [PMID: 15023334]
[http://dx.doi.org/10.1038/ncb1343] [PMID: 16341205]
[http://dx.doi.org/10.1016/S0960-9822(00)00445-0] [PMID: 10801418]
[http://dx.doi.org/10.1126/science.1094637] [PMID: 14976264]
[http://dx.doi.org/10.1186/s12859-019-2938-7] [PMID: 31208321]
[http://dx.doi.org/10.1016/j.cell.2009.03.018] [PMID: 19345187]
[http://dx.doi.org/10.1074/jbc.M111.257055] [PMID: 21917920]
[http://dx.doi.org/10.1038/icb.2011.99] [PMID: 22083525]
[http://dx.doi.org/10.1385/1-59259-828-5:099] [PMID: 15273407]
[http://dx.doi.org/10.1038/nbt0502-512] [PMID: 11981568]
[http://dx.doi.org/10.1021/bi00413a052] [PMID: 3167022]
[http://dx.doi.org/10.1093/nar/28.1.10] [PMID: 10592169]
[http://dx.doi.org/10.1093/nar/gkn892] [PMID: 18988627]
[http://dx.doi.org/10.1101/gr.1680803] [PMID: 14525934]
[http://dx.doi.org/10.1093/nar/gkq1159] [PMID: 21081558]
[http://dx.doi.org/10.1007/978-1-4939-3167-5_2] [PMID: 26519399]
[http://dx.doi.org/10.1074/mcp.M900030-MCP200] [PMID: 19366988]
[http://dx.doi.org/10.1002/jcc.21569] [PMID: 20839302]
[http://dx.doi.org/10.1093/nar/gkq939] [PMID: 21059677]
[http://dx.doi.org/10.1093/nar/gks437]
[http://dx.doi.org/10.1093/nar/gkt1093] [PMID: 24214993]
[http://dx.doi.org/10.1093/nar/gky1074] [PMID: 30418626]
[http://dx.doi.org/10.1093/nar/gkv1240] [PMID: 26578568]
[http://dx.doi.org/10.1016/j.jgg.2017.03.007] [PMID: 28529077]
[http://dx.doi.org/10.1016/j.bbrc.2006.08.199] [PMID: 17045240]
[http://dx.doi.org/10.3389/fimmu.2018.01695] [PMID: 30100904]
[http://dx.doi.org/10.3389/fimmu.2018.01783] [PMID: 30108593]
[http://dx.doi.org/10.2174/092986609788923338] [PMID: 19689425]
[http://dx.doi.org/10.1016/j.jtbi.2010.01.013] [PMID: 20085770]
[http://dx.doi.org/10.1039/c2mb25251a] [PMID: 22936054]
[http://dx.doi.org/10.1039/c2mb05502c] [PMID: 22402705]
[http://dx.doi.org/10.1371/journal.pone.0049108] [PMID: 23173045]
[http://dx.doi.org/10.1021/pr301007j] [PMID: 23298314]
[http://dx.doi.org/10.1371/journal.pone.0089575] [PMID: 24586884]
[http://dx.doi.org/10.1155/2014/528650] [PMID: 25147802]
[http://dx.doi.org/10.1093/bioinformatics/btw380] [PMID: 27334473]
[http://dx.doi.org/10.1038/srep05765] [PMID: 25042424]
[http://dx.doi.org/10.1371/journal.pone.0155370] [PMID: 27183223]
[http://dx.doi.org/10.1093/bioinformatics/bty444] [PMID: 29868863]
[http://dx.doi.org/10.1016/j.jtbi.2018.10.047] [PMID: 30365945]
[http://dx.doi.org/10.1093/nar/30.1.245] [PMID: 11752306]
[http://dx.doi.org/10.1016/j.chemolab.2020.103999]
[http://dx.doi.org/10.1093/bib/bbaa275] [PMID: 33152766]
[http://dx.doi.org/10.1016/j.ymthe.2021.04.004] [PMID: 33823302]
[http://dx.doi.org/10.1093/bfgp/elaa028] [PMID: 33491072]
[http://dx.doi.org/10.1093/bib/bbab167] [PMID: 33975333]
[http://dx.doi.org/10.1093/bioinformatics/btab133] [PMID: 33638635]
[http://dx.doi.org/10.1093/bib/bbab172] [PMID: 33963832]
[http://dx.doi.org/10.1093/bioinformatics/btaa914] [PMID: 33119044]
[http://dx.doi.org/10.1093/bib/bby124] [PMID: 30649170]
[http://dx.doi.org/10.1093/bioinformatics/btaa160] [PMID: 32145017]
[PMID: 32910169]
[http://dx.doi.org/10.2174/1389202921666200219125625] [PMID: 32655295]
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[http://dx.doi.org/10.1016/j.ygeno.2020.09.065] [PMID: 33017626]
[http://dx.doi.org/10.1007/s10822-020-00323-z] [PMID: 32557165]
[http://dx.doi.org/10.1021/acs.jcim.0c00707] [PMID: 33094610]
[http://dx.doi.org/10.1093/bib/bbab047] [PMID: 33751027]
[http://dx.doi.org/10.1093/bib/bbaa356] [PMID: 33279983]
[http://dx.doi.org/10.1093/bib/bbaa255] [PMID: 33099604]
[PMID: 34184738]
[http://dx.doi.org/10.1002/jcc.26223] [PMID: 32449536]
[http://dx.doi.org/10.1016/j.jmb.2021.166860] [PMID: 33539888]
[http://dx.doi.org/10.1093/bib/bbz123] [PMID: 31633777]
[http://dx.doi.org/10.1093/bioinformatics/btaa702] [PMID: 32766811]
[http://dx.doi.org/10.1093/bioinformatics/bty977] [PMID: 30520972]
[http://dx.doi.org/10.1038/nrg3920] [PMID: 25948244]
[http://dx.doi.org/10.3389/fpls.2020.583323] [PMID: 33193532]
[http://dx.doi.org/10.1016/j.jplph.2020.153354] [PMID: 33385619]
[http://dx.doi.org/10.1016/j.tplants.2014.08.004] [PMID: 25223304]
[http://dx.doi.org/10.1186/s12870-017-1059-6] [PMID: 28662679]
[http://dx.doi.org/10.3389/fpls.2020.555071] [PMID: 33424874]