General Review Article

用于预测赖氨酸乙酰化位点的机器学习方法发展的最新趋势

卷 29, 期 2, 2022

发表于: 02 September, 2021

页: [235 - 250] 页: 16

弟呕挨: 10.2174/0929867328999210902125308

价格: $65

摘要

赖氨酸残基上的乙酰化被认为是最有效的蛋白质翻译后修饰之一,因为它在细胞代谢和调节过程中起着至关重要的作用。实验技术的最新进展已经解开了几种赖氨酸乙酰化底物和位点。然而,由于其成本低下,过程繁琐,耗时和劳动密集,因此已经为开发计算工具做出了一些努力。特别是,基于机器学习(ML)的方法在快速发现赖氨酸乙酰化修饰位点方面具有很大的希望,越来越多的预测工具可以见证这一点。最近,已经开发了几种ML方法用于预测赖氨酸乙酰化位点,因为它们具有时间和成本效益。在本综述中,我们提出了赖氨酸乙酰化最先进的ML预测因子的完整调查。我们将讨论开发成功预测器的各种关键方面,包括操作 ML 算法、特征选择方法、验证技术和软件实用程序。最初,我们回顾赖氨酸乙酰化位点数据库, 当前的 ML 方法, 工作原理, 及其性能.最后,我们讨论了ML方法在预测赖氨酸乙酰化位点方面的缺点和未来方向。这篇综述可以作为实验者为他们的研究选择合适的ML工具的有用指南。此外,它可能有助于生物信息学家在蛋白质研究中开发更准确和更先进的MLbased预测因子。

关键词: 蛋白质,翻译后修饰,赖氨酸,乙酰化,机器学习,特征编码,预测 模型。

[1]
Wang, Z.A.; Cole, P.A. The chemical biology of reversible lysine post-translational modifications. Cell Chem. Biol., 2020, 27(8), 953-969.
[http://dx.doi.org/10.1016/j.chembiol.2020.07.002] [PMID: 32698016]
[2]
Audagnotto, M.; Dal Peraro, M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput. Struct. Biotechnol. J., 2017, 15, 307-319.
[http://dx.doi.org/10.1016/j.csbj.2017.03.004] [PMID: 28458782]
[3]
Wu, M.; Yang, Y.; Wang, H.; Xu, Y. A deep learning method to more accurately recall known lysine acetylation sites. BMC Bioinformatics, 2019, 20(1), 49.
[http://dx.doi.org/10.1186/s12859-019-2632-9] [PMID: 30674277]
[4]
Khoury, G.A.; Baliban, R.C.; Floudas, C.A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep., 2011, 1, 1.
[http://dx.doi.org/10.1038/srep00090] [PMID: 22034591]
[5]
Hornbeck, P.V.; Kornhauser, J.M.; Tkachev, S.; Zhang, B.; Skrzypek, E.; Murray, B.; Latham, V.; Sullivan, M. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res., 2012, 40(Database issue), D261-D270.
[http://dx.doi.org/10.1093/nar/gkr1122] [PMID: 22135298]
[6]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15-23.
[http://dx.doi.org/10.1016/j.gene.2005.09.010] [PMID: 16289629]
[7]
Polevoda, B.; Sherman, F. Nalpha -terminal acetylation of eukaryotic proteins. J. Biol. Chem., 2000, 275(47), 36479-36482.
[http://dx.doi.org/10.1074/jbc.R000023200] [PMID: 11013267]
[8]
Yang, X.J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res., 2004, 32(3), 959-976.
[http://dx.doi.org/10.1093/nar/gkh252] [PMID: 14960713]
[9]
Polevoda, B.; Sherman, F. The diversity of acetylated proteins.Genome Biol, , 2002, 3(5)reviews0006..
[10]
Cohen, H.Y.; Lavu, S.; Bitterman, K.J.; Hekking, B.; Imahiyerobo, T.A.; Miller, C.; Frye, R.; Ploegh, H.; Kessler, B.M.; Sinclair, D.A. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell, 2004, 13(5), 627-638.
[http://dx.doi.org/10.1016/S1097-2765(04)00094-2] [PMID: 15023334]
[11]
Murr, R.; Loizou, J.I.; Yang, Y.G.; Cuenin, C.; Li, H.; Wang, Z.Q.; Herceg, Z. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol., 2006, 8(1), 91-99.
[http://dx.doi.org/10.1038/ncb1343] [PMID: 16341205]
[12]
Bannister, A.J.; Miska, E.A.; Görlich, D.; Kouzarides, T. Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr. Biol., 2000, 10(8), 467-470.
[http://dx.doi.org/10.1016/S0960-9822(00)00445-0] [PMID: 10801418]
[13]
Brunet, A.; Sweeney, L.B.; Sturgill, J.F.; Chua, K.F.; Greer, P.L.; Lin, Y.; Tran, H.; Ross, S.E.; Mostoslavsky, R.; Cohen, H.Y.; Hu, L.S.; Cheng, H.L.; Jedrychowski, M.P.; Gygi, S.P.; Sinclair, D.A.; Alt, F.W.; Greenberg, M.E. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004, 303(5666), 2011-2015.
[http://dx.doi.org/10.1126/science.1094637] [PMID: 14976264]
[14]
Ning, Q.; Yu, M.; Ji, J.; Ma, Z.; Zhao, X. Analysis and prediction of human acetylation using a cascade classifier based on support vector machine. BMC Bioinformatics, 2019, 20(1), 346.
[http://dx.doi.org/10.1186/s12859-019-2938-7] [PMID: 31208321]
[15]
Jeong, H.; Then, F.; Melia, T.J., Jr; Mazzulli, J.R.; Cui, L.; Savas, J.N.; Voisine, C.; Paganetti, P.; Tanese, N.; Hart, A.C.; Yamamoto, A.; Krainc, D. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 2009, 137(1), 60-72.
[http://dx.doi.org/10.1016/j.cell.2009.03.018] [PMID: 19345187]
[16]
Geng, H.; Harvey, C.T.; Pittsenbarger, J.; Liu, Q.; Beer, T.M.; Xue, C.; Qian, D.Z. HDAC4 protein regulates HIF1α protein lysine acetylation and cancer cell response to hypoxia. J. Biol. Chem., 2011, 286(44), 38095-38102.
[http://dx.doi.org/10.1074/jbc.M111.257055] [PMID: 21917920]
[17]
Iyer, A.; Fairlie, D.P.; Brown, L. Lysine acetylation in obesity, diabetes and metabolic disease. Immunol. Cell Biol., 2012, 90(1), 39-46.
[http://dx.doi.org/10.1038/icb.2011.99] [PMID: 22083525]
[18]
Umlauf, D.; Goto, Y.; Feil, R. Site-specific analysis of histone methylation and acetylation. Methods Mol. Biol., 2004, 287, 99-120.
[http://dx.doi.org/10.1385/1-59259-828-5:099] [PMID: 15273407]
[19]
Zhou, H.; Ranish, J.A.; Watts, J.D.; Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol., 2002, 20(5), 512-515.
[http://dx.doi.org/10.1038/nbt0502-512] [PMID: 11981568]
[20]
Welsch, D.J.; Nelsestuen, G.L. Amino-terminal alanine functions in a calcium-specific process essential for membrane binding by prothrombin fragment 1. Biochemistry, 1988, 27(13), 4939-4945.
[http://dx.doi.org/10.1021/bi00413a052] [PMID: 3167022]
[21]
Wheeler, D.L.; Chappey, C.; Lash, A.E.; Leipe, D.D.; Madden, T.L.; Schuler, G.D.; Tatusova, T.A.; Rapp, B.A. Database resources of the national center for biotechnology information. Nucleic Acids Res., 2000, 28(1), 10-14.
[http://dx.doi.org/10.1093/nar/28.1.10] [PMID: 10592169]
[22]
Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.; Venugopal, A.; Balakrishnan, L.; Marimuthu, A.; Banerjee, S.; Somanathan, D.S.; Sebastian, A.; Rani, S.; Ray, S.; Harrys Kishore, C.J.; Kanth, S.; Ahmed, M.; Kashyap, M.K.; Mohmood, R.; Ramachandra, Y.L.; Krishna, V.; Rahiman, B.A.; Mohan, S.; Ranganathan, P.; Ramabadran, S.; Chaerkady, R.; Pandey, A. Human protein reference database-2009 update. Nucleic Acids Res., 2009, 37(Database issue), D767-D772.
[http://dx.doi.org/10.1093/nar/gkn892] [PMID: 18988627]
[23]
Peri, S.; Navarro, J.D.; Amanchy, R.; Kristiansen, T.Z.; Jonnalagadda, C.K.; Surendranath, V.; Niranjan, V.; Muthusamy, B.; Gandhi, T.K.; Gronborg, M.; Ibarrola, N.; Deshpande, N.; Shanker, K.; Shivashankar, H.N.; Rashmi, B.P.; Ramya, M.A.; Zhao, Z.; Chandrika, K.N.; Padma, N.; Harsha, H.C.; Yatish, A.J.; Kavitha, M.P.; Menezes, M.; Choudhury, D.R.; Suresh, S.; Ghosh, N.; Saravana, R.; Chandran, S.; Krishna, S.; Joy, M.; Anand, S.K.; Madavan, V.; Joseph, A.; Wong, G.W.; Schiemann, W.P.; Constantinescu, S.N.; Huang, L.; Khosravi-Far, R.; Steen, H.; Tewari, M.; Ghaffari, S.; Blobe, G.C.; Dang, C.V.; Garcia, J.G.; Pevsner, J.; Jensen, O.N.; Roepstorff, P.; Deshpande, K.S.; Chinnaiyan, A.M.; Hamosh, A.; Chakravarti, A.; Pandey, A. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res., 2003, 13(10), 2363-2371.
[http://dx.doi.org/10.1101/gr.1680803] [PMID: 14525934]
[24]
Gnad, F.; Gunawardena, J.; Mann, M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res., 2011, 39(Database issue), D253-D260.
[http://dx.doi.org/10.1093/nar/gkq1159] [PMID: 21081558]
[25]
Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bansal, P.; Bridge, A.J.; Poux, S.; Bougueleret, L.; Xenarios, I. UniProtKB/Swiss-Prot, the manually annotated section of the uniprot knowledgebase: How to use the entry view. Methods Mol. Biol., 2016, 1374, 23-54.
[http://dx.doi.org/10.1007/978-1-4939-3167-5_2] [PMID: 26519399]
[26]
Li, H.; Xing, X.; Ding, G.; Li, Q.; Wang, C.; Xie, L.; Zeng, R.; Li, Y. SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol. Cell. Proteomics, 2009, 8(8), 1839-1849.
[http://dx.doi.org/10.1074/mcp.M900030-MCP200] [PMID: 19366988]
[27]
Lee, T.Y.; Hsu, J.B.; Lin, F.M.; Chang, W.C.; Hsu, P.C.; Huang, H.D. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites. J. Comput. Chem., 2010, 31(15), 2759-2771.
[http://dx.doi.org/10.1002/jcc.21569] [PMID: 20839302]
[28]
Liu, Z.; Cao, J.; Gao, X.; Zhou, Y.; Wen, L.; Yang, X.; Yao, X.; Ren, J.; Xue, Y. CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res., 2011, 39(Database issue), D1029-D1034.
[http://dx.doi.org/10.1093/nar/gkq939] [PMID: 21059677]
[29]
Wang, L.; Du, Y.; Lu, M.; Li, T. ASEB: a web server for KAT-specific acetylation site prediction. Nucleic Acids Res, 2012, 40(Web Server issue), W376-W379.,
[http://dx.doi.org/10.1093/nar/gks437]
[30]
Liu, Z.; Wang, Y.; Gao, T.; Pan, Z.; Cheng, H.; Yang, Q.; Cheng, Z.; Guo, A.; Ren, J.; Xue, Y. CPLM: a database of protein lysine modifications. Nucleic Acids Res., 2014, 42(Database issue), D531-D536.
[http://dx.doi.org/10.1093/nar/gkt1093] [PMID: 24214993]
[31]
Huang, K.Y.; Lee, T.Y.; Kao, H.J.; Ma, C.T.; Lee, C.C.; Lin, T.H.; Chang, W.C.; Huang, H.D. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications. Nucleic Acids Res., 2019, 47(D1), D298-D308.
[http://dx.doi.org/10.1093/nar/gky1074] [PMID: 30418626]
[32]
Huang, K.Y.; Su, M.G.; Kao, H.J.; Hsieh, Y.C.; Jhong, J.H.; Cheng, K.H.; Huang, H.D.; Lee, T.Y. dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res., 2016, 44(D1), D435-D446.
[http://dx.doi.org/10.1093/nar/gkv1240] [PMID: 26578568]
[33]
Xu, H.; Zhou, J.; Lin, S.; Deng, W.; Zhang, Y.; Xue, Y. PLMD: An updated data resource of protein lysine modifications. J. Genet. Genomics, 2017, 44(5), 243-250.
[http://dx.doi.org/10.1016/j.jgg.2017.03.007] [PMID: 28529077]
[34]
Li, A.; Xue, Y.; Jin, C.; Wang, M.; Yao, X. Prediction of Nepsilon-acetylation on internal lysines implemented in bayesian discriminant method. Biochem. Biophys. Res. Commun., 2006, 350(4), 818-824.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.199] [PMID: 17045240]
[35]
Manavalan, B.; Govindaraj, R.G.; Shin, T.H.; Kim, M.O.; Lee, G. iBCE-EL: A new ensemble learning framework for improved linear b-cell epitope prediction. Front. Immunol., 2018, 9, 1695.
[http://dx.doi.org/10.3389/fimmu.2018.01695] [PMID: 30100904]
[36]
Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. PIP-EL: A new ensemble learning method for improved proinflammatory peptide predictions. Front. Immunol., 2018, 9, 1783.
[http://dx.doi.org/10.3389/fimmu.2018.01783] [PMID: 30108593]
[37]
Li, S.; Li, H.; Li, M.; Shyr, Y.; Xie, L.; Li, Y. Improved prediction of lysine acetylation by support vector machines. Protein Pept. Lett., 2009, 16(8), 977-983.
[http://dx.doi.org/10.2174/092986609788923338] [PMID: 19689425]
[38]
Xu, Y.; Wang, X.B.; Ding, J.; Wu, L.Y.; Deng, N.Y. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers. J. Theor. Biol., 2010, 264(1), 130-135.
[http://dx.doi.org/10.1016/j.jtbi.2010.01.013] [PMID: 20085770]
[39]
Shao, J.; Xu, D.; Hu, L.; Kwan, Y.W.; Wang, Y.; Kong, X.; Ngai, S.M. Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation. Mol. Biosyst., 2012, 8(11), 2964-2973.
[http://dx.doi.org/10.1039/c2mb25251a] [PMID: 22936054]
[40]
Shi, S.P.; Qiu, J.D.; Sun, X.Y.; Suo, S.B.; Huang, S.Y.; Liang, R.P. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Mol. Biosyst., 2012, 8(5), 1520-1527.
[http://dx.doi.org/10.1039/c2mb05502c] [PMID: 22402705]
[41]
Suo, S.B.; Qiu, J.D.; Shi, S.P.; Sun, X.Y.; Huang, S.Y.; Chen, X.; Liang, R.P. Position-specific analysis and prediction for protein lysine acetylation based on multiple features. PLoS One, 2012, 7(11)e49108
[http://dx.doi.org/10.1371/journal.pone.0049108] [PMID: 23173045]
[42]
Suo, S.B.; Qiu, J.D.; Shi, S.P.; Chen, X.; Huang, S.Y.; Liang, R.P. Proteome-wide analysis of amino acid variations that influence protein lysine acetylation. J. Proteome Res., 2013, 12(2), 949-958.
[http://dx.doi.org/10.1021/pr301007j] [PMID: 23298314]
[43]
Hou, T.; Zheng, G.; Zhang, P.; Jia, J.; Li, J.; Xie, L.; Wei, C.; Li, Y. LAceP: lysine acetylation site prediction using logistic regression classifiers. PLoS One, 2014, 9(2)e89575
[http://dx.doi.org/10.1371/journal.pone.0089575] [PMID: 24586884]
[44]
Lu, C.T.; Lee, T.Y.; Chen, Y.J.; Chen, Y.J. An intelligent system for identifying acetylated lysine on histones and nonhistone proteins. BioMed Res. Int., 2014, 2014528650
[http://dx.doi.org/10.1155/2014/528650] [PMID: 25147802]
[45]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32(20), 3116-3123.
[http://dx.doi.org/10.1093/bioinformatics/btw380] [PMID: 27334473]
[46]
Li, Y.; Wang, M.; Wang, H.; Tan, H.; Zhang, Z.; Webb, G.I.; Song, J. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features. Sci. Rep., 2014, 4, 5765.
[http://dx.doi.org/10.1038/srep05765] [PMID: 25042424]
[47]
Wuyun, Q.; Zheng, W.; Zhang, Y.; Ruan, J.; Hu, G. Improved species-specific lysine acetylation site prediction based on a large variety of features set. PLoS One, 2016, 11(5)e0155370
[http://dx.doi.org/10.1371/journal.pone.0155370] [PMID: 27183223]
[48]
Bao, W.; Jiang, Z.; Han, K.; Huang, D-S. Prediction of lysine acetylation sites based on neural network.In: Intelligent Computing Theories and Application 2016, Part II, LNCS 9772; Huang, D.-S.A.J.; K.-H., Eds.; Springer International Publishing : Switzerland,; , 2016, pp. 873-879.
[49]
Chen, G.; Cao, M.; Luo, K.; Wang, L.; Wen, P.; Shi, S. ProAcePred: prokaryote lysine acetylation sites prediction based on elastic net feature optimization. Bioinformatics, 2018, 34(23), 3999-4006.
[http://dx.doi.org/10.1093/bioinformatics/bty444] [PMID: 29868863]
[50]
Chen, G.; Cao, M.; Yu, J.; Guo, X.; Shi, S. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC. J. Theor. Biol., 2019, 461, 92-101.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.047] [PMID: 30365945]
[51]
Westbrook, J.; Feng, Z.; Jain, S.; Bhat, T.N.; Thanki, N.; Ravichandran, V.; Gilliland, G.L.; Bluhm, W.; Weissig, H.; Greer, D.S.; Bourne, P.E.; Berman, H.M. The protein data bank: unifying the archive. Nucleic Acids Res., 2002, 30(1), 245-248.
[http://dx.doi.org/10.1093/nar/30.1.245] [PMID: 11752306]
[52]
Xiu, Q.; Li, D.; Li, H.; Wang, N.; Ding, C. Prediction method for lysine acetylation sites based on LSTM network. 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), 2019, pp. 179-182.,
[53]
Yu, B.; Yu, Z.; Chen, C.; Ma, A.; Liu, B.; Tian, B.; Ma, Q. DNNAce: Prediction of prokaryote lysine acetylation sites through deep neural networks with multi-information fusion. Chemom. Intell. Lab. Syst., 2020.103999
[http://dx.doi.org/10.1016/j.chemolab.2020.103999]
[54]
Wei, L.; He, W.; Malik, A.; Su, R.; Cui, L.; Manavalan, B. Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework.Brief. Bioinform.,, 2021, 22(4)bbaa275..
[http://dx.doi.org/10.1093/bib/bbaa275] [PMID: 33152766]
[55]
Tang, Q.; Nie, F.; Kang, J.; Chen, W. mRNALocater: Enhance the prediction accuracy of eukaryotic mRNA subcellular localization by using model fusion strategy. Mol. Ther., 2021, 29(8), 2617-2623.
[http://dx.doi.org/10.1016/j.ymthe.2021.04.004] [PMID: 33823302]
[56]
Hasan, M.M.; Shoombuatong, W.; Kurata, H.; Manavalan, B. Critical evaluation of web-based DNA N6-methyladenine site prediction tools. Brief. Funct. Genomics, 2021, 20(4), 258-272.
[http://dx.doi.org/10.1093/bfgp/elaa028] [PMID: 33491072]
[57]
Hasan, M.M.; Alam, M.A.; Shoombuatong, W.; Deng, H.W.; Manavalan, B.; Kurata, H. NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning.Brief. Bioinform.,, 2021.bbab167..
[http://dx.doi.org/10.1093/bib/bbab167] [PMID: 33975333]
[58]
Charoenkwan, P.; Nantasenamat, C.; Hasan, M.M.; Manavalan, B.; Shoombuatong, W. BERT4Bitter: a bidirectional encoder representations from transformers (BERT)- based model for improving the prediction of bitter peptides. Bioinformatics, 2021, btab133.,
[http://dx.doi.org/10.1093/bioinformatics/btab133] [PMID: 33638635]
[59]
Charoenkwan, P.; Chiangjong, W.; Nantasenamat, C.; Hasan, M.M.; Manavalan, B.; Shoombuatong, W. StackIL6: astacking ensemble model for improving the prediction of IL-6 inducing peptides. Brief. Bioinform., 2021, bbab172.,
[http://dx.doi.org/10.1093/bib/bbab172] [PMID: 33963832]
[60]
Cai, L.; Ren, X.; Fu, X.; Peng, L.; Gao, M.; Zeng, X. iEnhancer-XG: interpretable sequence-based enhancers and their strength predictor. Bioinformatics, 2021, 37(8), 1060-1067.
[http://dx.doi.org/10.1093/bioinformatics/btaa914] [PMID: 33119044]
[61]
Su, R.; Hu, J.; Zou, Q.; Manavalan, B.; Wei, L. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief. Bioinform., 2020, 21(2), 408-420.
[http://dx.doi.org/10.1093/bib/bby124] [PMID: 30649170]
[62]
Hasan, M.M.; Schaduangrat, N.; Basith, S.; Lee, G.; Shoombuatong, W.; Manavalan, B. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics, 2020, 36(11), 3350-3356.
[http://dx.doi.org/10.1093/bioinformatics/btaa160] [PMID: 32145017]
[63]
Hasan, M.M.; Basith, S.; Khatun, M.S.; Lee, G.; Manavalan, B.; Kurata, H. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Brief. Bioinform., 2020.
[PMID: 32910169]
[64]
Govindaraj, R.G.; Subramaniyam, S.; Manavalan, B. Extremely-randomized-tree-based prediction of N6-methyla-denosine sites in Saccharomyces cerevisiae. Curr. Genomics, 2020, 21(1), 26-33.
[http://dx.doi.org/10.2174/1389202921666200219125625] [PMID: 32655295]
[65]
Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med. Res. Rev., 2020, 40(4), 1276-1314.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[66]
Charoenkwan, P.; Kanthawong, S.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iAMY-SCM: Improved prediction and analysis of amyloid proteins using a scoring card method with propensity scores of dipeptides. Genomics, 2021, 113(1 Pt 2), 689-698.
[http://dx.doi.org/10.1016/j.ygeno.2020.09.065] [PMID: 33017626]
[67]
Charoenkwan, P.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. Meta-iPVP: a sequence-based meta-predictor for improving the prediction of phage virion proteins using effective feature representation. J. Comput. Aided Mol. Des., 2020, 34(10), 1105-1116.
[http://dx.doi.org/10.1007/s10822-020-00323-z] [PMID: 32557165]
[68]
Charoenkwan, P.; Yana, J.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iUmami-SCM: A novel sequence-based predictor for prediction and analysis of umami peptides using a scoring card method with propensity scores of dipeptides. J. Chem. Inf. Model., 2020, 60(12), 6666-6678.
[http://dx.doi.org/10.1021/acs.jcim.0c00707] [PMID: 33094610]
[69]
Dao, F.Y.; Lv, H.; Su, W.; Sun, Z.J.; Huang, Q.L.; Lin, H. iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network. Brief. Bioinform., 2021, bbab047.,
[http://dx.doi.org/10.1093/bib/bbab047] [PMID: 33751027]
[70]
Dao, F.Y.; Lv, H.; Zhang, D.; Zhang, Z.M.; Liu, L.; Lin, H. DeepYY1: a deep learning approach to identify YY1-mediated chromatin loops.Brief. Bioinform.,, 2021, 22(4)bbaa356..
[http://dx.doi.org/10.1093/bib/bbaa356] [PMID: 33279983]
[71]
Lv, H.; Dao, F.Y.; Guan, Z.X.; Yang, H.; Li, Y.W.; Lin, H. Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method.Brief. Bioinform.,, 2021, 22(4)bbaa255..
[http://dx.doi.org/10.1093/bib/bbaa255] [PMID: 33099604]
[72]
Lv, H.; Dao, F.Y.; Zulfiqar, H.; Lin, H. DeepIPs: comprehensive assessment and computational identification of phosphorylation sites of SARS-CoV-2 infection using a deep learning-based approach. Brief. Bioinform., 2021, bbab244.,
[PMID: 34184738]
[73]
Malik, A.A.; Phanus-Umporn, C.; Schaduangrat, N.; Shoombuatong, W.; Isarankura-Na-Ayudhya, C.; Nantasenamat, C. HCVpred: A web server for predicting the bioactivity of hepatitis C virus NS5B inhibitors. J. Comput. Chem., 2020, 41(20), 1820-1834.
[http://dx.doi.org/10.1002/jcc.26223] [PMID: 32449536]
[74]
Su, W.; Liu, M.L.; Yang, Y.H.; Wang, J.S.; Li, S.H.; Lv, H.; Dao, F.Y.; Yang, H.; Lin, H. PPD: A manually curated database for experimentally verified prokaryotic promoters. J. Mol. Biol., 2021, 433(11)166860
[http://dx.doi.org/10.1016/j.jmb.2021.166860] [PMID: 33539888]
[75]
Yang, H.; Yang, W.; Dao, F.Y.; Lv, H.; Ding, H.; Chen, W.; Lin, H. A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae. Brief. Bioinform., 2020, 21(5), 1568-1580.
[http://dx.doi.org/10.1093/bib/bbz123] [PMID: 31633777]
[76]
Zhang, D.; Xu, Z.C.; Su, W.; Yang, Y.H.; Lv, H.; Yang, H.; Lin, H. iCarPS: a computational tool for identifying protein carbonylation sites by novel encoded features. Bioinformatics, 2021, 37(2), 171-177.
[http://dx.doi.org/10.1093/bioinformatics/btaa702] [PMID: 32766811]
[77]
Wang, D.; Liang, Y.; Xu, D. Capsule network for protein post-translational modification site prediction. Bioinformatics, 2019, 35(14), 2386-2394.
[http://dx.doi.org/10.1093/bioinformatics/bty977] [PMID: 30520972]
[78]
Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet., 2015, 16(6), 321-332.
[http://dx.doi.org/10.1038/nrg3920] [PMID: 25948244]
[79]
Cortés, A.J.; Restrepo-Montoya, M.; Bedoya-Canas, L.E. Modern strategies to assess and breed forest tree adaptation to changing climate. Front. Plant Sci., 2020, 11583323
[http://dx.doi.org/10.3389/fpls.2020.583323] [PMID: 33193532]
[80]
Tong, H.; Nikoloski, Z. Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data. J. Plant Physiol., 2021, 257153354
[http://dx.doi.org/10.1016/j.jplph.2020.153354] [PMID: 33385619]
[81]
Ma, C.; Zhang, H.H.; Wang, X. Machine learning for Big Data analytics in plants. Trends Plant Sci., 2014, 19(12), 798-808.
[http://dx.doi.org/10.1016/j.tplants.2014.08.004] [PMID: 25223304]
[82]
Tan, B.; Grattapaglia, D.; Martins, G.S.; Ferreira, K.Z.; Sundberg, B.; Ingvarsson, P.K. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol., 2017, 17(1), 110.
[http://dx.doi.org/10.1186/s12870-017-1059-6] [PMID: 28662679]
[83]
Reyes-Herrera, P.H.; Muñoz-Baena, L.; Velásquez-Zapata, V.; Patiño, L.; Delgado-Paz, O.A.; Díaz-Diez, C.A.; Navas-Arboleda, A.A.; Cortés, A.J. Inheritance of rootstock effects in avocado (Persea americana Mill.) cv. Hass. Front. Plant Sci., 2020, 11555071
[http://dx.doi.org/10.3389/fpls.2020.555071] [PMID: 33424874]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy