Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Research Progress on the Natural Product Aloperine and Its Derivatives

Author(s): Yu Cheng, Abdur Rauf and Xiandao Pan*

Volume 22, Issue 5, 2022

Published on: 04 January, 2022

Page: [729 - 742] Pages: 14

DOI: 10.2174/1389557521666210831155426

Price: $65

Abstract

In this review, an effort towards presenting an all-around account of the recent progress on the natural product, aloperine, is made, and the antivirus structure-activity relationship of its derivatives is also summarized comprehensively. In addition, the principal pharmacological effects and corresponding molecular mechanisms of aloperine are discussed. Some new structural modifications of aloperine are also given, which might provide brief guidance for further investigations on the natural product aloperine.

Keywords: Aloperine, structure elucidation, total synthesis, antivirus structure-activity relationship, anti-inflammatory effect, anticancer activity, molecular mechanisms.

Graphical Abstract

[1]
Laitinen, L.A.; Empey, D.W.; Bye, C.; Britton, M.G.; McDonnell, K.; Hughes, D.T. A comparison of the bronchodilator action of pseudoephedrine and ephedrine in patients with reversible airway obstruction. Eur. J. Clin. Pharmacol., 1982, 23(2), 107-109.
[http://dx.doi.org/10.1007/BF00545963] [PMID: 7140799]
[2]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[3]
Tang, J.; Feng, Y.; Tsao, S.; Wang, N.; Curtain, R.; Wang, Y. Berberine and Coptidis rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations. J. Ethnopharmacol., 2009, 126(1), 5-17.
[http://dx.doi.org/10.1016/j.jep.2009.08.009] [PMID: 19686830]
[4]
Kuchkarov, S.; Kushmuradov, Y.K. Lupinine alkal-oids from Sophora alopecuroides. Chem. Nat. Compd., 1979, 15(3), 364-365.
[http://dx.doi.org/10.1007/BF00566104]
[5]
Qin, X.G. Y, Y. Alkaloids in Sophora alopecuroid-es and utilization. Zhongguo Yesheng Zhiwu Ziyuan, 2000, 19(4), 30-32.
[6]
Chen, X.; Yi, C.; Yang, X.; Wang, X. Liquid chromatography of active principles in Sophora flavescens root. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 812(1-2), 149-163.
[http://dx.doi.org/10.1016/S1570-0232(04)00679-8] [PMID: 15556494]
[7]
Song, J.Z.; Xu, H.X.; Tian, S.J.; But, P.P. Determination of quinolizidine alkaloids in traditional Chinese herbal drugs by nonaqueous capillary electrophoresis. J. Chromatogr. A, 1999, 857(1-2), 303-311.
[http://dx.doi.org/10.1016/S0021-9673(99)00758-X] [PMID: 10536849]
[8]
Huang, Y.X.; Wang, G.; Zhu, J.S.; Zhang, R.; Zh-ang, J. Traditional uses, phytochemistry, and pharmacologic-al properties of Sophora alopecuroides L. Eur. J. Inflamm., 2016, 14(2), 128-132.
[http://dx.doi.org/10.1177/1721727X16642779]
[9]
Wang, R.; Deng, X.; Gao, Q.; Wu, X.; Han, L.; Gao, X.; Zhao, S.; Chen, W.; Zhou, R.; Li, Z.; Bai, C. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. J. Ethnopharmacol., 2020, 248, 112172.
[http://dx.doi.org/10.1016/j.jep.2019.112172] [PMID: 31442619]
[10]
Zhou, C.C.; Gao, H.B.; Sun, X.B.; Shi, H.B.; Liu, W.; Yuan, H.N.; Wang, Z.X. Anti-inflammatory and anti-allergic action of aloperine. Chung Kuo Yao Li Hsueh Pao, 1989, 10(4), 360-365.
[PMID: 2533795]
[11]
Ren, D.; Ma, W.; Guo, B.; Wang, S. Aloperine attenuates hydrogen peroxide-induced injury via anti-apoptotic activity and suppression of the nuclear factor-κB signaling pathway. Exp. Ther. Med., 2017, 13(1), 315-320.
[http://dx.doi.org/10.3892/etm.2016.3962] [PMID: 28123508]
[12]
Hu, S.; Zhang, Y.; Zhang, M.; Guo, Y.; Yang, P.; Zhang, S.; Simsekyilmaz, S.; Xu, J.F.; Li, J.; Xiang, X.; Yu, Q.; Wang, C.Y. Aloperine protects mice against ischemia-reperfusion (IR)-induced renal injury by regulating PI3K/AKT/mTOR signaling and AP-1 activity. Mol. Med., 2016, 21(1), 912-923.
[http://dx.doi.org/10.2119/molmed.2015.00056] [PMID: 26552059]
[13]
Chen, S.; Jin, Z.; Dai, L.; Wu, H.; Wang, J.; Wang, L.; Zhou, Z.; Yang, L.; Gao, W. Aloperine induces apoptosis and inhibits invasion in MG-63 and U2OS human osteosarcoma cells. Biomed. Pharmacother., 2018, 97, 45-52.
[http://dx.doi.org/10.1016/j.biopha.2017.09.066] [PMID: 29080457]
[14]
Zhou, H.; Li, J.; Sun, F.; Wang, F.; Li, M.; Dong, Y.; Fan, H.; Hu, D. A review on recent advances in aloperine research: Pharmacological activities and underlying biological mechanisms. Front. Pharmacol., 2020, 11, 538137.
[http://dx.doi.org/10.3389/fphar.2020.538137] [PMID: 33536900]
[15]
Baldwin, A.S., Jr The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol., 1996, 14, 649-683.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.649] [PMID: 8717528]
[16]
LoPiccolo, J.; Blumenthal, G.M.; Bernstein, W.B.; Dennis, P.A. Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations. Drug Resist. Updat., 2008, 11(1-2), 32-50.
[http://dx.doi.org/10.1016/j.drup.2007.11.003] [PMID: 18166498]
[17]
Noser, J.A.; Mael, A.A.; Sakuma, R.; Ohmine, S.; Marcato, P.; Lee, P.W.; Ikeda, Y. The RAS/Raf1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: Implication for the defective interferon response in cancer cells. Mol. Ther., 2007, 15(8), 1531-1536.
[http://dx.doi.org/10.1038/sj.mt.6300193] [PMID: 17505473]
[18]
Garazd, Y.L.; Garazd, M.M. Modified coumarins. 39. Synthesis of aloperine-containing mannich bases of 7-hydroxycoumarins. Chem. Nat. Compd., 2017, 53(3), 444-447.
[http://dx.doi.org/10.1007/s10600-017-2019-y]
[19]
Bondarenko, S.P.; Frasinyuk, M.S.; Khilya, V.P. New aloperine–isoflavone conjugates. Chem. Nat. Compd., 2016, 52(4), 615-619.
[http://dx.doi.org/10.1007/s10600-016-1723-3]
[20]
Tolkachev, O.N.; Monakhova, T.E. V. I. S. Alkal-oids of a new type from Sophora alopecuroides L. Chem. Nat. Compd., 1976, 29-34.
[21]
Brosius, A.D.; Ziller, J.W.; Zhang, Q. Relative and absolute configuration of aloperine. Acta Crystallogr. C, 1997, 53(Pt 10), 1510-1512.
[http://dx.doi.org/10.1107/S0108270197009244] [PMID: 9362555]
[22]
Ohmiya, S.; Saito, K.; Murakoshi, I. Chapter 1 lu-pine alkaloids.In: The alkaloids: Chemistry and pharmaco-logy; Cordell, G.A., Ed.; Academic Press: New York , 1995; 47, pp. 1-114.
[23]
Brosius, A.D.; Overman, L.E.; Schwink, L. Total synthesis of (+)-aloperine. Use of a nitrogen-bound silicon tether in an intramolecular diels-alder reaction. J. Am. C-hem. Sin., 1999, 12(10), 700-709.
[24]
Gschwend, H.W.; Lee, A.O.; Meier, H.P. Rates of intramolecular Diels-Alder reactions of pentadienylacrylami-des. Org. Lett., 2002, 38(12), 2169-2175.
[25]
Passarella, D.; Angoli, M.; Giardini, A.; Lesma, G.; Silvani, A.; Danieli, B. Concise total synthesis of (+/-)-aloperine and 6-epi-aloperine. Org. Lett., 2002, 4(17), 2925-2928.
[http://dx.doi.org/10.1021/ol0263144] [PMID: 12182590]
[26]
Barilli, A.; Belinghieri, F.; Passarella, D.; Lesma, G.; Riva, S.; Silvani, A.; Danieli, B. Enzyme assisted enant-ioselective synthesis of the alkaloid (+)-aloperine. Tetrahedron Asymmetry, 2004, 15(18), 2921-2925.
[http://dx.doi.org/10.1016/j.tetasy.2004.06.056]
[27]
Dang, Z.; Jung, K.; Zhu, L.; Lai, W.; Xie, H. L-ee, K. H.; Huang, L.; Chen, C. H. Identification and synthes-is of quinolizidines with anti-influenza a virus activity. ACS Med. Chem. Lett., 2014, 5(8), 942-946.
[http://dx.doi.org/10.1021/ml500236n] [PMID: 25147619]
[28]
Dang, Z.; Zhu, L.; Lai, W.; Bogerd, H.; Lee, K.H.; Huang, L.; Chen, C.H. Aloperine and its derivatives as a new class of HIV-1 entry inhibitors. ACS Med. Chem. Lett., 2016, 7(3), 240-244.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00339] [PMID: 26985308]
[29]
Dang, Z.; Xie, H.; Zhu, L.; Zhang, Q.; Li, Z.; Huang, L.; Chen, C.H. Structure optimization of aloperine derivatives as HIV-1 entry inhibitors. ACS Med. Chem. Lett., 2017, 8(11), 1199-1203.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00376] [PMID: 29152054]
[30]
Julien, J.P.; Cupo, A.; Sok, D.; Stanfield, R.L.; Lyumkis, D.; Deller, M.C.; Klasse, P.J.; Burton, D.R.; Sanders, R.W.; Moore, J.P.; Ward, A.B.; Wilson, I.A. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science, 2013, 342(6165), 1477-1483.
[http://dx.doi.org/10.1126/science.1245625] [PMID: 24179159]
[31]
Zhang, X.; Liu, Q.; Zhang, N.; Li, Q.Q.; Liu, Z.D.; Li, Y.H.; Gao, L.M.; Wang, Y.C.; Deng, H.B.; Song, D.Q. Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. Eur. J. Med. Chem., 2018, 149, 45-55.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.061] [PMID: 29494844]
[32]
Zhang, X.; Lv, X.Q.; Tang, S.; Mei, L.; Li, Y.H.; Zhang, J.P.; Jiang, J.D.; Peng, Z.G.; Song, D.Q. Discovery and evolution of aloperine derivatives as a new family of HCV inhibitors with novel mechanism. Eur. J. Med. Chem., 2018, 143, 1053-1065.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.002] [PMID: 29232582]
[33]
Dawood, F.S.; Jain, S.; Finelli, L.; Shaw, M.W.; Lindstrom, S.; Garten, R.J.; Gubareva, L.V.; Xu, X.; Bridges, C.B.; Uyeki, T.M.; Uyeki, T.M. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med., 2009, 360(25), 2605-2615.
[http://dx.doi.org/10.1056/NEJMoa0903810] [PMID: 19423869]
[34]
Das, K.; Aramini, J.M.; Ma, L.C.; Krug, R.M.; Arnold, E. Structures of influenza A proteins and insights into antiviral drug targets. Nat. Struct. Mol. Biol., 2010, 17(5), 530-538.
[http://dx.doi.org/10.1038/nsmb.1779] [PMID: 20383144]
[35]
Stevenson, M. HIV-1 pathogenesis. Nat. Med., 2003, 9(7), 853-860.
[http://dx.doi.org/10.1038/nm0703-853] [PMID: 12835705]
[36]
Dragic, T.; Litwin, V.; Allaway, G.P.; Martin, S.R.; Huang, Y.; Nagashima, K.A.; Cayanan, C.; Maddon, P.J.; Koup, R.A.; Moore, J.P.; Paxton, W.A. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996, 381(6584), 667-673.
[http://dx.doi.org/10.1038/381667a0] [PMID: 8649512]
[37]
Motomura, K.; Chen, J.; Hu, W.S. Genetic recombination between human immunodeficiency virus type 1 (HIV-1) and HIV-2, two distinct human lentiviruses. J. Virol., 2008, 82(4), 1923-1933.
[http://dx.doi.org/10.1128/JVI.01937-07] [PMID: 18057256]
[38]
Blumenthal, R.; Durell, S.; Viard, M. HIV entry and envelope glycoprotein-mediated fusion. J. Biol. Chem., 2012, 287(49), 40841-40849.
[http://dx.doi.org/10.1074/jbc.R112.406272] [PMID: 23043104]
[39]
Nakayama, E.; Takada, A. Ebola and marburg vir-uses. J. Disaster Res., 2011, 6(4), 381-389.
[http://dx.doi.org/10.20965/jdr.2011.p0381]
[40]
Jones, S.M.; Feldmann, H.; Ströher, U.; Geisbert, J.B.; Fernando, L.; Grolla, A.; Klenk, H.D.; Sullivan, N.J.; Volchkov, V.E.; Fritz, E.A.; Daddario, K.M.; Hensley, L.E.; Jahrling, P.B.; Geisbert, T.W. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med., 2005, 11(7), 786-790.
[http://dx.doi.org/10.1038/nm1258] [PMID: 15937495]
[41]
Basu, A.; Li, B.; Mills, D.M.; Panchal, R.G.; Cardinale, S.C.; Butler, M.M.; Peet, N.P.; Majgier-Baranowska, H.; Williams, J.D.; Patel, I.; Moir, D.T.; Bavari, S.; Ray, R.; Farzan, M.R.; Rong, L.; Bowlin, T.L. Identification of a small-molecule entry inhibitor for filoviruses. J. Virol., 2011, 85(7), 3106-3119.
[http://dx.doi.org/10.1128/JVI.01456-10] [PMID: 21270170]
[42]
Dube, D.; Brecher, M.B.; Delos, S.E.; Rose, S.C.; Park, E.W.; Schornberg, K.L.; Kuhn, J.H.; White, J.M. The primed ebolavirus glycoprotein (19-kilodalton GP1,2): sequence and residues critical for host cell binding. J. Virol., 2009, 83(7), 2883-2891.
[http://dx.doi.org/10.1128/JVI.01956-08] [PMID: 19144707]
[43]
Guidotti, L.G.; Chisari, F.V. Immunobiology and pathogenesis of viral hepatitis. Annu. Rev. Pathol., 2006, 1, 23-61.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100230] [PMID: 18039107]
[44]
Rehermann, B.; Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol., 2005, 5(3), 215-229.
[http://dx.doi.org/10.1038/nri1573] [PMID: 15738952]
[45]
Lv, X.Q.; Zou, L.L.; Tan, J.L.; Li, H.; Li, J.R.; Liu, N.N.; Dong, B.; Song, D.Q.; Peng, Z.G. Aloperine inhibits hepatitis C virus entry into cells by disturbing internalisation from endocytosis to the membrane fusion process. Eur. J. Pharmacol., 2020, 883, 173323.
[http://dx.doi.org/10.1016/j.ejphar.2020.173323] [PMID: 32622669]
[46]
Song, D.Q.; Jiang, J.D.; Peng, Z.G.; Xin, Z.; Tang, S.; Li, Y.H. Preparation method and application of aloper-ine derivatives. CN Patent 201510956338, 2015.
[47]
Chen, J.J.; Nie, H.M.; Gao, Y.Q.; Jin, S.Y. The u-se of aloperine in the preparation of drugs for the treatment of chronic hepatitis B. CN Patent 200710172984, 2007.
[48]
Piguet, P.F.; Grau, G.E.; Hauser, C.; Vassalli, P. Tumor necrosis factor is a critical mediator in hapten induced irritant and contact hypersensitivity reactions. J. Exp. Med., 1991, 173(3), 673-679.
[http://dx.doi.org/10.1084/jem.173.3.673] [PMID: 1900080]
[49]
Xing, Z.; Gauldie, J.; Cox, G.; Baumann, H.; Jordana, M.; Lei, X.F.; Achong, M.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Invest., 1998, 101(2), 311-320.
[http://dx.doi.org/10.1172/JCI1368] [PMID: 9435302]
[50]
Yuan, X.Y.; Liu, W.; Zhang, P.; Wang, R.Y.; Guo, J.Y. Effects and mechanisms of aloperine on 2, 4-dinitrofluorobenzene-induced allergic contact dermatitis in BALB/c mice. Eur. J. Pharmacol., 2010, 629(1-3), 147-152.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.007] [PMID: 20006963]
[51]
Lin, W.C.; Lin, J.Y. Five bitter compounds display different anti-inflammatory effects through modulating cytokine secretion using mouse primary splenocytes in vitro. J. Agric. Food Chem., 2011, 59(1), 184-192.
[http://dx.doi.org/10.1021/jf103581r] [PMID: 21155568]
[52]
Wang, C.; Choi, Y.H.; Xian, Z.; Zheng, M.; Piao, H.; Yan, G. Aloperine suppresses allergic airway inflammation through NF-κB, MAPK, and Nrf2/HO-1 signaling pathways in mice. Int. Immunopharmacol., 2018, 65, 571-579.
[http://dx.doi.org/10.1016/j.intimp.2018.11.003] [PMID: 30415164]
[53]
Tak, P.P.; Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[54]
Kaminska, B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta, 2005, 1754(1-2), 253-262.
[http://dx.doi.org/10.1016/j.bbapap.2005.08.017] [PMID: 16198162]
[55]
Fu, X.; Sun, F.; Wang, F.; Zhang, J.; Zheng, B.; Zhong, J.; Yue, T.; Zheng, X.; Xu, J.F.; Wang, C.Y. Aloperine protects mice against DSS-induced colitis by PP2A-mediated PI3K/Akt/mTOR signaling suppression. Mediators Inflamm., 2017, 2017, 5706152.
[http://dx.doi.org/10.1155/2017/5706152] [PMID: 29056830]
[56]
Thomson, A.W.; Turnquist, H.R.; Raimondi, G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol., 2009, 9(5), 324-337.
[http://dx.doi.org/10.1038/nri2546] [PMID: 19390566]
[57]
McHugh, W.M.; Russell, W.W.; Fleszar, A.J. R-odenhouse, P.E.; Rietberg, S.P.; Sun, L.; Shanley, T.P.; C-ornell, T.T. Protein phosphatase 2A activation attenuates inf-lammation in murine models of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 311(5), L903-L912.
[http://dx.doi.org/10.1152/ajplung.00007.2016] [PMID: 27638902]
[58]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[59]
Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L.E.; Bollag, G.; Trail, P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 2004, 64(19), 7099-7109.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1443] [PMID: 15466206]
[60]
Tian, D.; Li, Y.; Li, X.; Tian, Z. Aloperine inhibits proliferation, migration and invasion and induces apoptosis by blocking the RAS signaling pathway in human breast cancer cells. Mol. Med. Rep., 2018, 18(4), 3699-3710.
[http://dx.doi.org/10.3892/mmr.2018.9419] [PMID: 30132540]
[61]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[62]
Zhang, L.; Zheng, Y.; Deng, H.; Liang, L.; Peng, J. Aloperine induces G2/M phase cell cycle arrest and apoptosis in HCT116 human colon cancer cells. Int. J. Mol. Med., 2014, 33(6), 1613-1620.
[http://dx.doi.org/10.3892/ijmm.2014.1718] [PMID: 24682388]
[63]
Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science, 1995, 267(5203), 1456-1462.
[http://dx.doi.org/10.1126/science.7878464] [PMID: 7878464]
[64]
Hengartner, M.O. The biochemistry of apoptosis. Nature, 2000, 407(6805), 770-776.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[65]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[66]
Ruefli, A.A.; Ausserlechner, M.J.; Bernhard, D.; Sutton, V.R.; Tainton, K.M.; Kofler, R.; Smyth, M.J.; Johnstone, R.W. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10833-10838.
[http://dx.doi.org/10.1073/pnas.191208598] [PMID: 11535817]
[67]
Micheau, O.; Solary, E.; Hammann, A.; Dimanche-Boitrel, M.T. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J. Biol. Chem., 1999, 274(12), 7987-7992.
[http://dx.doi.org/10.1074/jbc.274.12.7987] [PMID: 10075697]
[68]
Wang, H.; Yang, S.; Zhou, H.; Sun, M.; Du, L.; Wei, M.; Luo, M.; Huang, J.; Deng, H.; Feng, Y.; Huang, J.; Zhou, Y. Aloperine executes antitumor effects against multiple myeloma through dual apoptotic mechanisms. J. Hematol. Oncol., 2015, 8, 26.
[http://dx.doi.org/10.1186/s13045-015-0120-x] [PMID: 25886453]
[69]
Lee, Y.R.; Chen, S.H.; Lin, C.Y.; Chao, W.Y. L-in, Y.P.; Yu, H. I.; Lu, C. H. In vitro antitumor activity of aloperine on human thyroid cancer cells through caspase-dependent apoptosis. Int. J. Mol. Sci., 2018, 19(1), 312.
[http://dx.doi.org/10.3390/ijms19010312]
[70]
Zhang, N.; Dou, Y.; Liu, L.; Zhang, X.; Liu, X.; Zeng, Q.; Liu, Y.; Yin, M.; Liu, X.; Deng, H.; Song, D. SA-49, a novel aloperine derivative, induces MITF-dependent lysosomal degradation of PD-L1. EBioMedicine, 2019, 40(0), 151-162.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.054] [PMID: 30711516]
[71]
Gong, Z.C.; Xu, Z.J.; Yan, Y.L.; Xiong, X.M.; Qian, L.; Zeng, S.S. D, S. Preparation of radiosensitizer for lung cancer by aloperine. CN Patent 201710127018, 2017.
[72]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[73]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[74]
Andersen, J.K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med., 2004, 10(Suppl. 1), S18-S25.
[http://dx.doi.org/10.1038/nrn1434] [PMID: 15298006]
[75]
Siniscalco, D.; Fuccio, C.; Giordano, C.; Ferraraccio, F.; Palazzo, E.; Luongo, L.; Rossi, F.; Roth, K.A.; Maione, S.; de Novellis, V. Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacol. Res., 2007, 55(2), 158-166.
[http://dx.doi.org/10.1016/j.phrs.2006.11.009] [PMID: 17207636]
[76]
Kim, H.K.; Park, S.K.; Zhou, J.L.; Taglialatela, G.; Chung, K.; Coggeshall, R.E.; Chung, J.M. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain, 2004, 111(1-2), 116-124.
[http://dx.doi.org/10.1016/j.pain.2004.06.008] [PMID: 15327815]
[77]
Xu, Y.Q.; Jin, S.J.; Liu, N.; Li, Y.X.; Zheng, J.; Ma, L.; Du, J.; Zhou, R.; Zhao, C.J.; Niu, Y.; Sun, T.; Yu, J.Q. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway. Biochem. Biophys. Res. Commun., 2014, 451(4), 568-573.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.025] [PMID: 25128276]
[78]
Ma, N.T.; Zhou, R.; Chang, R.Y.; Hao, Y.J.; Ma, L.; Jin, S.J.; Du, J.; Zheng, J.; Zhao, C.J.; Niu, Y.; Sun, T.; Li, W.; Koike, K.; Yu, J.Q.; Li, Y.X. Protective effects of aloperine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion. J. Nat. Med., 2015, 69(4), 575-583.
[http://dx.doi.org/10.1007/s11418-015-0928-2] [PMID: 26142710]
[79]
Zhao, J.; Zhang, G.; Li, M.; Luo, Q.; Leng, Y.; Liu, X. Neuro-protective effects of aloperine in an Alzheimer’s disease cellular model. Biomed. Pharmacother., 2018, 108, 137-143.
[http://dx.doi.org/10.1016/j.biopha.2018.09.008] [PMID: 30218858]
[80]
Mao, Q.; Guo, F.; Liang, X.; Wu, Y.; Lu, Y. Aloperine activates the PI3K/Akt pathway and protects against coronary microembolisation-induced myocardial injury in rats. Pharmacology, 2019, 104(1-2), 90-97.
[http://dx.doi.org/10.1159/000500761] [PMID: 31163448]
[81]
Voelkel, N.F.; Gomez-Arroyo, J.; Abbate, A. B-ogaard, H.J.; Nicolls, M.R. Pathobiology of pulmonary arter-ial hypertension and right ventricular failure. Eur. Respir. J., 2012, 40(6), 1555-1565.
[http://dx.doi.org/10.1183/09031936.00046612] [PMID: 22743666]
[82]
Wu, F.; Yao, W.; Yang, J.; Zhang, M.; Xu, Y.; Hao, Y.; Yan, L.; Niu, Y.; Sun, T.; Yu, J.; Zhou, R. Protective effects of aloperin on monocroline-induced pulmonary hypertension via regulation of Rho A/Rho kinsase pathway in rats. Biomed. Pharmacother., 2017, 95, 1161-1168.
[http://dx.doi.org/10.1016/j.biopha.2017.08.126] [PMID: 28926926]
[83]
Yin, W.; Han, J.; Zhang, Z.; Han, Z.; Wang, S. Aloperine protects mice against bleomycin-induced pulmonary fibrosis by attenuating fibroblast proliferation and differentiation. Sci. Rep., 2018, 8(1), 6265.
[http://dx.doi.org/10.1038/s41598-018-24565-y] [PMID: 29674691]
[84]
Wang, K.; Guo, Z.; Bao, Y.; Pang, Y.; Li, Y.; He, H.; Song, D. Structure-activity relationship of aloperine derivatives as new anti-liver fibrogenic agents. Molecules, 2020, 25(21), 4977.
[http://dx.doi.org/10.3390/molecules25214977] [PMID: 33121156]
[85]
Carvalho, E.; Kotani, K.; Peroni, O.D.; Kahn, B.B. Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am. J. Physiol. Endocrinol. Metab., 2005, 289(4), E551-E561.
[http://dx.doi.org/10.1152/ajpendo.00116.2005] [PMID: 15928024]
[86]
Song, G.; Huang, Y.; Xiong, M.; Yang, Z.; Liu, Q.; Shen, J.; Zhao, P.; Yang, X. Aloperine relieves type 2 diabetes mellitus via enhancing GLUT4 expression and translocation. Front. Pharmacol., 2021, 11, 561956.
[http://dx.doi.org/10.3389/fphar.2020.561956] [PMID: 33568989]
[87]
Ma, T.; Yan, H.; Shi, X.; Liu, B.; Ma, Z.; Zhang, X. Comprehensive evaluation of effective constituents in tot-al alkaloids from Sophora alopecuroides L. and their joint a-ction against aphids by laboratory toxicity and field efficacy. Ind. Crops Prod., 2018, 111, 149-157.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.021]
[88]
Liu, L.; Alam, M.S.; Hirata, K.; Matsuda, K.; Ozoe, Y. Actions of quinolizidine alkaloids on Periplaneta americana nicotinic acetylcholine receptors. Pest Manag. Sci., 2008, 64(12), 1222-1228.
[http://dx.doi.org/10.1002/ps.1622] [PMID: 18566954]
[89]
Luo, W.C.; Li, Y.S.; Mu, L.Y.; Chiu, S.F. Toxicity of cytisine against the mustard aphid lipaphis erysimi kal-tenbach (Homoptera: Aphididae) and its effect on esterases. PestiC. Biochem. Physio., 1999, 65(1), 1-5.
[http://dx.doi.org/10.1006/pest.1999.2400]
[90]
Lu, H.; Leng, X.H.; Huang, L.; Huang, S.K. Gas C-hromatographic determination of aloperine and its pharma-cokinetics. Zhongguo Yaoke Daxue Xuebao, 1990, 21(6), 361-363.
[91]
Lu, Z.B.; Fan, C.L.; Zhou, H.L.; Yu, Z.L.; Yu, L.Z.; Liu, J.S. Acute toxicity of aloperine on mice. Nat. Pro. Rev.Dev., 2017, 5, 821-825.
[92]
Lin, F.; Gao, P.S. Study on the mutagenicity of alo-perine. Carcinogenesis. Teratogenesis and Mutagenesis., 1991, 3(2), 120-121.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy