[1]
Oberholtzer, K.; Sivitz, L.; Mack, A.; Lemon, S.; Mahmoud, A.; Knobler, S. Learning from SARS: preparing for the next disease outbreak: workshop summary; National Academies Press, 2004.
[3]
Keum, Y-S.; Lee, J.M.; Yu, M-S.; Chin, Y-W.; Jeong, Y-J. Inhibition of SARS coronavirus helicase by Baicalein. Bull. Korean Chem. Soc., 2013, 34(11), 3187-3188.
[8]
Macchiagodena, M.; Pagliai, M.; Procacci, P. Inhibition of the main
protease 3cl-pro of the coronavirus disease 19 via structure-based
ligand design and molecular modeling. arXiv preprint ar-
Xiv:2002.09937,, 2020.
[11]
Hudson, J.B. Antiviral compounds from plants; CRC Press, 2018.
[12]
Chandel, V.; Raj, S.; Rathi, B.; Kumar, D. In silico identification of potent covid-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach., 2020.
[14]
Tapas, A.; Sakarkar, D.; Kakde, R. A review of flavonoids as nutraceuticals. Trop. J. Pharm. Res., 2008, 7, 1089-1099.
[15]
El-Missiry, M.A.; Fekri, A.; Kesar, L.A.; Othman, A.I. Polyphenols are potential nutritional adjuvants for targeting COVID-19. Phytother. Res., 2021, 35(6), 2879-2889.
[22]
Cheng, L.; Zheng, W.; Li, M.; Huang, J.; Bao, S.; Xu, Q.; Ma, Z. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2., 2020.
[31]
Matsumoto, M.; Mukai, T.; Furukawa, S.; Ohori, H. Inhibitory effects of epigallocatechin gallate on the propagation of bovine coronavirus in Madin-Darby bovine kidney cells. Anim. Sci. J., 2005, 76(5), 507-512.
[38]
Chen, C-N.; Lin, C.P.; Huang, K-K.; Chen, W-C.; Hsieh, H-P.; Liang, P-H.; Hsu, J.T-A. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3′-digallate (TF3); Evid.-Based Complementary Altern. Med, 2005, p. 2.
[42]
Schwarz, S.; Sauter, D.; Wang, K.; Zhang, R.; Sun, B.; Karioti, A.; Bilia, A.R.; Efferth, T.; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta medica, 2014, 80(02-03), 177.,
[46]
Utomo, R.Y.; Meiyanto, E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection., 2020.
[48]
Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X.; Zhu, W. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv, 2020.
[50]
Qamar, T.U. M.; Alqahtani, S.; Alamri, M.; Chen, L.-L Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020.
[57]
Kumar, D.; Bhagat, S. Natural compound against COVID-19 in silico screening by attacking Mpro and ACE2 using molecular docking. IJASBT, 2020, 7(6), 168-180.
[60]
Abd El-Mordy, F.M.; El-Hamouly, M.M.; Ibrahim, M.T.; Abd El-Rheem, G.; Aly, O.M. Abd El-kader, A.M.; Youssif, K.A.; Abdelmohsen, U.R. Inhibition of SARS-CoV-2 main protease by phenolic compounds from Manilkara hexandra (Roxb.) Dubard assisted by metabolite profiling and in silico virtual screening. RSC Advances, 2020, 10(53), 32148-32155.
[61]
Bandyopadhyay, S.; Abiodun, O.A.; Ogboo, B.C.; Kola-Mustapha, A.T.; Attah, E.I.; Edemhanria, L.; Kumari, A.; Jaganathan, R.; Adelakun, N.S. Polypharmacology of some medicinal plant metabolites
against SARS-CoV-2 and host targets: Molecular dynamics
evaluation of NSP9 RNA binding protein., 2020.
[62]
Rathinavel, T.; Meganathan, B.; Kumarasamy, S.; Ammashi, S.; Thangaswamy, S.; Ragunathan, Y.; Palanisamy, S. Potential covid-19 drug from natural phenolic compounds through in silico virtual screening approach. Biointerface Re.s Appl. Chem., , 10161-10173.,
[66]
Omotuyi, I.O.; Nash, O.; Ajiboye, B.O.; Olumekun, V.O.; Oyinloye, B.E.; Osuntokun, O.T.; Olonisakin, A.; Ajayi, A.O.; Olusanya, O.; Akomolafe, F.S. Aframomum melegueta secondary metabolites exhibit polypharmacology against SARS-CoV-2 drug targets: in vitro validation of furin inhibition; Phytoth. Res, 2020.
[76]
Cheng, J.; Tang, Y.; Bao, B.; Zhang, P. Exploring the active compounds
of traditional Mongolian medicine Agsirga in intervention
of novel coronavirus (2019-nCoV) based on HPLC-Q-exactive-
MS/MS and molecular docking method., 2020.
[78]
Gyebi, G.A.; Ogunro, O.B.; Adegunloye, A.P.; Ogunyemi, O.M.; Afolabi, S.O. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. J. Biomol. Struct. Dyn., 2020, 1-19.
[80]
Parvez, M.S.A.; Azim, K.F.; Imran, A.S.; Raihan, T.; Begum, A.; Shammi, T.S.; Howlader, S.; Bhuiyan, F.R.; Hasan, M. Virtual
screening of plant metabolites against main protease, RNAdependent
RNA polymerase and spike protein of SARS-CoV-2:
Therapeutics option of COVID-19. arXiv/preprint ar-
Xiv:2005.11254/v2.html,, 2020.
[81]
Yepes-Pérez, A.F.; Herrera-Calderon, O.; Sánchez-Aparicio, J-E.; Tiessler-Sala, L.; Maréchal, J-D.; Cardona-G, W. Investigating potential inhibitory effect of uncaria tomentosa (Cat’s Claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling; Evid.-Based Complementary Altern. Med, 2020.
[83]
Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M. Terpenoids.Pharmacognosy; Elsevier, 2017, pp. 233-266.
[85]
Chang, F.-R.; Yen, C.-T.; Ei-Shazly, M.; Lin, W.-H.; Yen, M.-H.; Lin, K.-H.; Wu, Y.-C. Anti-human coronavirus (anti-HCoV) triterpenoids
from the leaves of Euphorbia neriifolia. Nat. Prod. Commun.,
2012, 7(11), 1934578X1200701103.,
[86]
Ubani, A.; Agwom, F.; Morenikeji, O.R.; Shehu, N.Y.; Luka, P.; Umera, E.A.; Umar, U.; Omale, S.; Nnadi, E.; Aguiyi, J.C. Molecular docking analysis of some phytochemicals on two SARS-CoV-2 targets. bioRxiv, 2020.
[89]
Azim, K.F.; Ahmed, S.R.; Banik, A.; Khan, M.M.R.; Deb, A.; Somana, S.R. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach; IMU, 2020, p. 100367.
[90]
EF, F.; CFN, B.; PA, N.; DM, E.; FP, F.; GM, N.; DJ, S.; MCM,
S.; JK, B.; AN, B. Searching nature-based solutions to emerging
diseases: a preliminary review of Cameroonian medicinal plants
with potentials for the management of COVID-19 pandemic.. 2020.
[91]
Abdelli, I.; Hassani, F.; Bekkel Brikci, S.; Ghalem, S. In silico study the inhibition of Angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from western Algeria. J. Biomol. Struct. Dyn., 2020, 1-17.
[96]
Singh, R.; Tiwary, A.; Kennedy, J. Lectins: Sources, activities, and applications. Crit. Rev. Biotechnol., 1999, 19(2), 145-178.
[98]
Damme, E.J.V.; Peumans, W.J.; Barre, A.; Rougé, P. Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci., 1998, 17(6), 575-692.
[99]
Hann, I. Modern trends in human leukemia VII. J. Clin. Pathol., 1989, 42(2), 221.
[104]
Mazalovska, M.; Kouokam, J.C. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections.BioMedRes. Int., 2018,, 2018.
[118]
Sharma, A.D. Eucalyptol (1, 8 cineole) from eucalyptus essential
Oil a potential inhibitor of COVID 19 corona virus infection by
molecular docking studies., 2020.
[126]
Sharma, A.D.; Kaur, I. Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. Res. Revi. Biotech. Biosci., 2020, 7(1), 59-66.
[130]
Kumar, A.; Choudhir, G.; Shukla, S.K.; Sharma, M.; Tyagi, P.; Bhushan, A.; Rathore, M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn., 2020, 1-21.