Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

In Vitro Cytotoxicity and Aromatase Inhibitory Activity of Flavonoids: Synthesis, Molecular Docking and In silico ADME Prediction

Author(s): Umang Shah*, Samir Patel, Mehul Patel, Neeraj Jain, Nilesh Pandey, Alex Chauhan, Ashish Patel and Sandip Patel

Volume 22, Issue 7, 2022

Published on: 27 August, 2021

Page: [1370 - 1385] Pages: 16

DOI: 10.2174/1871520621666210827104406

Price: $65

Abstract

Background: Many natural and synthetic flavonoids have been studied and documented by inhibiting aromatase enzymes for their anti-cancer activity against breast carcinoma. The aromatase enzyme is a possible target for the estrogen's positive breast cancer receptor.

Objective: Hence, a series of flavonoids have been synthesized and assessed for their in vitro cytotoxicity and aromatase inhibitory activity.

Methods: 39 Flavonoids were synthesized and characterized by spectroscopic techniques, and their computational study was performed using the maestro version of the Schrodinger. In silico ADME properties were checked by QikProp software. A total of 18 compounds were evaluated based on the docking score using cytotoxicity assay in human breast cancer cell line MCF-7.

Results: Of the 18 compounds tested, 07 compounds, namely 2b, 8b, 14b, 15b, 19b, 24b, and 30b flavonoids were found to be more active with their IC50 values of 20.73 μM, 1.636 μM, 16.08 μM, 22.02 μM, 15.75 μM, 0.345 μM and 16.08 μM, respectively, compared with the reference drug letrozole. The in vitro aromatase inhibitory activity of six compounds 2b, 8b, 14b, 19b, 24b, and 30b was conducted using a fluorogenic assay kit. The values of IC50 for compounds 2b and 24b were found to be 0.31 μM and 0.36 μM, respectively.

Conclusion: Therefore, it was concluded that compounds 2b and 24b had a potent inhibitory effect of aromatase compared with letrozole with an IC50 value of 0.86 μM. At the same time, the other compounds 8b, 14b, 30b, and 19b were considered to have similar aromatase inhibitory activity. Hence, their essential aromatase inhibitory activities make them good lead candidates for developing potent inhibitors of aromatase.

Keywords: Aromatase, flavonoids, cytotoxicity, docking, ADME prediction, cancer.

Graphical Abstract

[1]
Harrington, L.; Bristow, R.G.; Hill, R.P.; Tannock, I.F. Introduction to Cancer Biology.The Basic Science of Oncology; Harrington, L.; Bristow, R.G.; Hill, R.P.; Tannock, I.F., Eds.; McGraw-Hill Education: USA, 2005, pp. 1-4.
[2]
World Health Organization. Cancer Fact Sheets. Globocan, 2012. https://gco.iarc.fr/databases.php (Accessed on 15/01/2017).
[3]
American Cancer Society. Cancer Facts and Figures 2017. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html(Accessed on 15/01/2017).
[4]
Keen, J.C.; Davidson, N.E. The biology of breast carcinoma. Cancer, 2003, 97(3)(Suppl.), 825-833.
[http://dx.doi.org/10.1002/cncr.11126] [PMID: 12548582]
[5]
Sunpaweravong, S.; Sunpaweravong, P. Recent developments in critical genes in the molecular biology of breast cancer. Asian J. Surg., 2005, 28(1), 71-75.
[http://dx.doi.org/10.1016/S1015-9584(09)60265-7] [PMID: 15691805]
[6]
Hulka, B.S.; Moorman, P.G. Breast cancer: hormones and other risk factors. Maturitas, 2001, 38(1), 103-113.
[http://dx.doi.org/10.1016/S0378-5122(00)00196-1] [PMID: 11311599]
[7]
Brueggemeier, R.W. Aromatase inhibitors-mechanisms of steroidal inhibitors. Breast Cancer Res. Treat., 1994, 30(1), 31-42.
[http://dx.doi.org/10.1007/BF00682739] [PMID: 7949203]
[8]
de Jong, P.C.; Blankenstein, M.A.; van de Ven, J.; Nortier, J.W.R.; Blijham, G.H.; Thijssen, J.H.H. Importance of local aromatase activity in hormone-dependent breast cancer: A review. Breast, 2001, 10(2), 91-99.
[http://dx.doi.org/10.1054/brst.2000.0209] [PMID: 14965567]
[9]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[10]
Kao, Y.C.; Zhou, C.; Sherman, M.; Laughton, C.A.; Chen, S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Health Perspect., 1998, 106(2), 85-92.
[http://dx.doi.org/10.1289/ehp.9810685] [PMID: 9435150]
[11]
Pelissero, C.; Lenczowski, M.J.P.; Chinzi, D.; Davail-Cuisset, B.; Sumpter, J.P.; Fostier, A. Effects of flavonoids on aromatase activity, an in vitro study. J. Steroid Biochem. Mol. Biol., 1996, 57(3-4), 215-223.
[http://dx.doi.org/10.1016/0960-0760(95)00261-8] [PMID: 8645631]
[12]
Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci., 2005, 10(5), 236-242.
[http://dx.doi.org/10.1016/j.tplants.2005.03.002] [PMID: 15882656]
[13]
Kočevar, N.; Glavač, I.; Kreft, S. Flavonoidi. Farm. Vestn., 2007, 58(4), 145-148.
[14]
Pouget, C.; Lauthier, F.; Simon, A.; Fagnere, C.; Basly, J.P.; Delage, C.; Chulia, A.J. Flavonoids: Structural requirements for antiproliferative activity on breast cancer cells. Bioorg. Med. Chem. Lett., 2001, 11(24), 3095-3097.
[http://dx.doi.org/10.1016/S0960-894X(01)00617-5] [PMID: 11720850]
[15]
Yahiaoui, S.; Fagnere, C.; Pouget, C.; Buxeraud, J.; Chulia, A.J. New 7,8-benzoflavanones as potent aromatase inhibitors: Synthesis and biological evaluation. Bioorg. Med. Chem., 2008, 16(3), 1474-1480.
[http://dx.doi.org/10.1016/j.bmc.2007.10.057] [PMID: 18042388]
[16]
Ibrahim, A.R.; Abul-Hajj, Y.J. Aromatase inhibition by flavonoids. J. Steroid Biochem. Mol. Biol., 1990, 37(2), 257-260.
[http://dx.doi.org/10.1016/0960-0760(90)90335-I] [PMID: 2268557]
[17]
Yahiaoui, S.; Pouget, C.; Buxeraud, J.; Chulia, A.J.; Fagnère, C. Lead optimization of 4-imidazolylflavans: New promising aromatase inhibitors. Eur. J. Med. Chem., 2011, 46(6), 2541-2545.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.043] [PMID: 21497425]
[18]
Hackett, J.C.; Kim, Y.W.; Su, B.; Brueggemeier, R.W. Synthesis and characterization of azole isoflavone inhibitors of aromatase. Bioorg. Med. Chem., 2005, 13(12), 4063-4070.
[http://dx.doi.org/10.1016/j.bmc.2005.03.050] [PMID: 15911319]
[19]
Geng, Y.; Liu, Y.; Lu, K.; Zhang, L.; Zhang, X.; Dai, Y. Design, synthesis and activity of flavonoids aromatase inhibitors. OP Conf. Ser. Earth Environ. Sci., 2018, 199(3) 032062
[http://dx.doi.org/10.1088/1755-1315/199/3/032062]
[20]
Dev, S.; Dhaneshwar, S.R. A solvent-free protocol for the green synthesis of heterocyclic chalcones. Pharm. Lett., 2013, 5(5), 219-223.
[21]
Patel, S.; Shah, U. Synthesis of flavones from 2-hydroxy acetophenone and aromatic aldehyde derivatives by conventional methods and green chemistry approach. Asian J. Pharm. Clin. Res., 2017, 10(2), 403-406.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15928]
[22]
Albogami, A.S.; Karama, U.; Mousa, A.A.; Khan, M.; Al-Mazroa, S.A.; Alkhathlan, H.Z. Simple and efficient one step synthesis of functionalized flavanones and chalcones. Orient. J. Chem., 2012, 28(2), 619-626.
[http://dx.doi.org/10.13005/ojc/280201]
[23]
Sashidhara, K.V.; Kumar, M.; Kumar, A. A novel route to synthesis of flavones from salicylaldehyde and acetophenone derivatives. Tetrahedron Lett., 2012, 53(18), 2355-2359.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.108]
[24]
Ko, H.H.; Tsao, L.T.; Yu, K.L.; Liu, C.T.; Wang, J.P.; Lin, C.N. Structure-activity relationship studies on chalcone derivatives. the potent inhibition of chemical mediators release. Bioorg. Med. Chem., 2003, 11(1), 105-111.
[http://dx.doi.org/10.1016/S0968-0896(02)00312-7] [PMID: 12467713]
[25]
Juvale, K.; Pape, V.F.S.; Wiese, M. Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein. Bioorg. Med. Chem., 2012, 20(1), 346-355.
[http://dx.doi.org/10.1016/j.bmc.2011.10.074] [PMID: 22112540]
[26]
Gurubasavaraja Swamy, P.M.; Agasimundin, Y.S. Synthesis and antimicrobial activity of some novel chalcones containing 3-hydroxy benzofuran. Acta Pharm. Sci., 2008, 50(3), 197-202.
[27]
Ghosh, D.; Lo, J.; Morton, D.; Valette, D.; Xi, J.; Griswold, J.; Hubbell, S.; Egbuta, C.; Jiang, W.; An, J.; Davies, H.M. Novel aromatase inhibitors by structure-guided design. J. Med. Chem., 2012, 55(19), 8464-8476.
[http://dx.doi.org/10.1021/jm300930n] [PMID: 22951074]
[28]
Sham, Y.; Chen, F. Introduction to Schrodinger ’ s Software. https://www.msi.umn.edu/sites/default/files/SchrodingerTutorial2011.pdf(Accessed on 25/08/2017).
[30]
Shah, U.; Patel, S.; Patel, M.; Upadhayay, J. Molecular docking and in silico ADMET study reveals flavonoids as a potential inhibitor of aromatase. Lett. Drug Des. Discov., 2017, 14(11), 1267-1276.
[http://dx.doi.org/10.2174/1570180814666170327161908]
[31]
Shah, U.; Patel, S.; Patel, M.; Gandhi, K.; Patel, A. Identification of chalcone derivatives as putative non-steroidal aromatase inhibitors potentially useful against breast cancer by molecular docking and ADME prediction. Indian J. Chem. Sect. B, 2020, 59(02), 283-293.
[32]
Shi, Y.; Ye, P.; Long, X. Differential expression profiles of the transcriptome in breast cancer cell lines revealed by next generation sequencing. Cell. Physiol. Biochem., 2017, 44(2), 804-816.
[http://dx.doi.org/10.1159/000485344] [PMID: 29176322]
[33]
Haynes, B.P.; Dowsett, M.; Miller, W.R.; Dixon, J.M.; Bhatnagar, A.S. The pharmacology of letrozole. J. Steroid Biochem. Mol. Biol., 2003, 87(1), 35-45.
[http://dx.doi.org/10.1016/S0960-0760(03)00384-4] [PMID: 14630089]
[34]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[35]
Acar Çevik, U.; Kaya Çavuşoğlu, B.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis, docking studies and biological activity of new benzimidazole- triazolothiadiazine derivatives as aromatase inhibitor. Molecules, 2020, 25(7), 1642.
[http://dx.doi.org/10.3390/molecules25071642] [PMID: 32252458]
[37]
Doiron, J.; Soultan, A.H.; Richard, R.; Touré, M.M.; Picot, N.; Richard, R.; Cuperlović-Culf, M.; Robichaud, G.A.; Touaibia, M. Synthesis and structure-activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 4010-4024.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.074] [PMID: 21703734]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy