Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Feruloyl Sucrose Esters: Potent and Selective Inhibitors of α-glucosidase and α-amylase

Author(s): Surabhi Devaraj, Yew Mun Yip, Parthasarathi Panda, Li Lin Ong, Pooi Wen Kathy Wong, Dawei Zhang, Yusuf Ali* and Zaher Judeh*

Volume 29, Issue 9, 2022

Published on: 27 August, 2021

Page: [1606 - 1621] Pages: 16

DOI: 10.2174/0929867328666210827102456

Abstract

Introduction: Feruloyl Sucrose Esters (FSEs) are a class of Phenylpropanoid Sucrose Esters (PSEs) widely distributed in plants. They were investigated as potential selective Alpha Glucosidase Inhibitors (AGIs) to eliminate the side effects associated with the current commercial AGIs. The latter effectively lowers blood glucose levels in diabetic patients but causes severe gastrointestinal side effects.

Methods: Systematic structure-activity relationship (SAR) studies using in silico, in vitro and in vivo experiments were used to accomplish this aim. FSEs were evaluated for their in vitro inhibition of starch and oligosaccharide digesting enzymes α-glucosidase and α- amylase followed by in silico docking studies to identify the binding modes. A lead candidate, FSE 12 was investigated in an STZ mouse model.

Results: All active FSEs showed desired higher % inhibition of α-glucosidase and desired lower inhibition of α -amylase in comparison to AGI gold standard acarbose. This suggests a greater selectivity of the FSEs towards α -glucosidase than α -amylase, which is proposed to eliminate the gastrointestinal side effects. From the in vitro studies, the position and number of the feruloyl substituents on the sucrose core, the aromatic ‘OH’ group, and the diisopropylidene bridges were key determinants of the % inhibition of α - glucosidase and α -amylase. In particular, the diisopropylidene bridges are critical for achieving inhibition selectivity. Molecular docking studies of the FSEs corroborates the in vitro results. The molecular docking studies further reveal that the presence of free aromatic ‘OH’ groups and the substitution at position 3 on the sucrose core are critical for the inhibition of both the enzymes. From the in vitro and molecular docking studies, FSE 12 was selected as a lead candidate for validation in vivo. The oral co-administration of FSE 12 with starch abrogated the increase in post-prandial glucose and significantly reduced blood glucose excursion in STZ-treated mice compared to control (starch only) mice.

Conclusion: Our studies reveal the potential of FSEs as selective AGIs for the treatment of diabetes, with a hypothetical reduction of side effects associated with commercial AGIs.

Keywords: Diabetes mellitus, feruloyl sucrose esters, phenylpropanoid sucrose esters, natural products, α- glucosidase inhibition, α-amylase inhibition, glucose excursion.

[1]
IDF Diabetes Atlas, International diabetes federation: Brussels, 2019. Available from: https://www.diabetesatlas.org/Accessed 8th June 2020]
[2]
Kruger, D.F. Exploring the pharmacotherapeutic options for treating type 2 diabetes. Diabetes Educ., 2008, 34(3)(Suppl. 3), 60S-65S.
[http://dx.doi.org/10.1177/0145721708319234] [PMID: 18525066]
[3]
World Health Organisation-fact sheet- diabetes, Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes [Accessed 8th June 2020]
[4]
Akkati, S.; Sam, K.G.; Tungha, G. Emergence of promising therapies in diabetes mellitus. J. Clin. Pharmacol., 2011, 51(6), 796-804.
[http://dx.doi.org/10.1177/0091270010376972] [PMID: 20705952]
[5]
Levetan, C. Oral antidiabetic agents in type 2 diabetes. Curr. Med. Res. Opin., 2007, 23(4), 945-952.
[http://dx.doi.org/10.1185/030079907X178766] [PMID: 17407651]
[6]
Kumar, R.V.; Sinha, V.R. Newer insights into the drug delivery approaches of α-glucosidase inhibitors. Expert Opin. Drug Deliv., 2012, 9(4), 403-416.
[http://dx.doi.org/10.1517/17425247.2012.663080] [PMID: 22364261]
[7]
Hanefeld, M.; Schaper, F. The role of alpha-glucosidase inhibitors (acarbose). Pharmacotherapy of diabetes: New Developments, 2007, 143-152.
[8]
Zhang, W.; Kim, D.; Philip, E.; Miyan, Z.; Barykina, I.; Schmidt, B.; Stein, H. A multinational, observational study to investigate the efficacy, safety and tolerability of acarbose as add-on or monotherapy in a range of patients: The Gluco VIP study. Clin. Drug Investig., 2013, 33(4), 263-274.
[http://dx.doi.org/10.1007/s40261-013-0063-3] [PMID: 23435929]
[9]
Derosa, G.; Maffioli, P. α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci., 2012, 8(5), 899-906.
[http://dx.doi.org/10.5114/aoms.2012.31621] [PMID: 23185202]
[10]
Kelley, D.E.; Bidot, P.; Freedman, Z.; Haag, B.; Podlecki, D.; Rendell, M.; Schimel, D.; Weiss, S.; Taylor, T.; Krol, A.; Magner, J. Efficacy and safety of acarbose in insulin-treated patients with type 2 diabetes. Diabetes Care, 1998, 21(12), 2056-2061.
[http://dx.doi.org/10.2337/diacare.21.12.2056] [PMID: 9839094]
[11]
Cardullo, N.; Muccilli, V.; Pulvirenti, L.; Cornu, A.; Pouységu, L.; Deffieux, D.; Quideau, S.; Tringali, C. C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: A study of α-glucosidase and α-amylase inhibition. Food Chem., 2020, 313126099
[http://dx.doi.org/10.1016/j.foodchem.2019.126099] [PMID: 31927321]
[12]
Costamagna, M.S.; Zampini, I.C.; Alberto, M.R.; Cuello, S.; Torres, S.; Pérez, J.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chem., 2016, 190, 392-402.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.068] [PMID: 26212988]
[13]
Ranilla, L.G.; Kwon, Y-I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol., 2010, 101(12), 4676-4689.
[http://dx.doi.org/10.1016/j.biortech.2010.01.093] [PMID: 20185303]
[14]
Guo, Z-H.; Huang, J.; Wan, G-S.; Huo, X-L.; Gao, H-Y. New inhibitors of α-glucosidase in Salacia hainanensis Chun et How. J. Nat. Med., 2013, 67(4), 844-849.
[http://dx.doi.org/10.1007/s11418-013-0744-5] [PMID: 23361306]
[15]
Phan, M.A.T.; Wang, J.; Tang, J.; Lee, Y.Z.; Ng, K. Evaluation of α-glucosidase inhibition potential of some flavonoids from epimedium brevicornum. Lebensm. Wiss. Technol., 2013, 53(2), 492-498.
[http://dx.doi.org/10.1016/j.lwt.2013.04.002]
[16]
Panda, P.; Appalashetti, M.; Judeh, Z.M.A. Phenylpropanoid sucrose esters: Plant-derived natural products as potential leads for new therapeutics. Curr. Med. Chem., 2011, 18(21), 3234-3251.
[http://dx.doi.org/10.2174/092986711796391589] [PMID: 21671860]
[17]
Fan, P.; Terrier, L.; Hay, A-E.; Marston, A.; Hostettmann, K. Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F.Schmidt ex Maxim (Polygonaceae). Fitoterapia, 2010, 81(2), 124-131.
[http://dx.doi.org/10.1016/j.fitote.2009.08.019] [PMID: 19698767]
[18]
Liu, T.; Yip, Y.M.; Song, L.; Feng, S.; Liu, Y.; Lai, F.; Zhang, D.; Huang, D. Inhibiting enzymatic starch digestion by the phenolic compound diboside A: A mechanistic and in silico study. Food Res. Int., 2013, 54(1), 595-600.
[http://dx.doi.org/10.1016/j.foodres.2013.07.062]
[19]
Panda, P.; Appalashetti, M.; Natarajan, M.; Chan-Park, M.B.; Venkatraman, S.S.; Judeh, Z.M. Synthesis and antitumor activity of lapathoside D and its analogs. Eur. J. Med. Chem., 2012, 53, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.032] [PMID: 22542106]
[20]
Panda, P.; Appalashetti, M.; Natarajan, M.; Mary, C-P.; Venkatraman, S.S.; Judeh, Z.M. Synthesis and antiproliferative activity of helonioside A, 3¢,4¢,6¢-tri-O-feruloylsucrose, lapathoside C and their analogs. Eur. J. Med. Chem., 2012, 58, 418-430.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.034] [PMID: 23153813]
[21]
Panda, P. Synthesis and anticancer activity of phenylpropanoid sucrose esters. Doctoral dissertation, Nanyang Technological University: Singapore, 2011.
[22]
Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. Int. J. Biol. Macromol., 2014, 64, 213-223.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.007] [PMID: 24333230]
[23]
Steed, J.W.; Atwood, J.L. Supramolecular chemistry; John Wiley & Sons Ltd.: London, 2009.
[http://dx.doi.org/10.1002/9780470740880]
[24]
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform., 2006, 65, 712-725.
[25]
Case, D.A.; Darden, T.A.; Cheatham, T.E., III; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Merz, K.M.; Pearlman, D.A.; Crowley, M.; Walker, R.C.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K.F.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; P. A.K. Amber, L, 2006.
[26]
Ryckaert, J-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23, 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[27]
Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; Purisima, E.O. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf. Model., 2007, 47(1), 122-133.
[http://dx.doi.org/10.1021/ci600406v] [PMID: 17238257]
[28]
Cui, Q.; Sulea, T.; Schrag, J.D.; Munger, C.; Hung, M.N.; Naïm, M.; Cygler, M.; Purisima, E.O. Molecular dynamics-solvated interaction energy studies of protein-protein interactions: The MP1-p14 scaffolding complex. J. Mol. Biol., 2008, 379(4), 787-802.
[http://dx.doi.org/10.1016/j.jmb.2008.04.035] [PMID: 18479705]
[29]
Wu, K.K.; Huan, Y. Streptozotocin-induced diabetic models in mice and rats. Curr. Protocols Pharmacol., 2008, 40(SUPPL.), 1-14.
[http://dx.doi.org/10.1002/0471141755.ph0547s40]
[30]
Brosius, F. ow-dose streptozotocin induction protocol (mouse) summary: Reagents and materials: Reagent preparation: Protocol. 2003, 4-6.
[31]
Park, M.H.; Ju, J.W.; Park, M.J.; Han, J.S. Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol., 2013, 712(1-3), 48-52.
[http://dx.doi.org/10.1016/j.ejphar.2013.04.047] [PMID: 23669248]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy