Abstract
Background: Monitoring of the chemical synthesis of black titanium.
Objective: In this study, we prepared a black titanium nanomaterial by chemical reduction (NaBH4 treatment). Control of the black TiO2 nanomaterial synthesis followed by a thermal analysis from 100°C to 400°C under azote atmosphere is presented. We used a commercial dye, Reactive Bezactiv Yellow (RBY) degradation, to examine the photocatalytic activity of the black titanium.
Methods: The thermal analysis of WT and a mixture of treated TiO2(WT+NaBH4) was examined by thermogravimetric analysis (TGA).
The obtained nanoparticle is analyzed by X-Ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), UV–visible spectrophotometry, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC).
Results: A deformation of the crystalline lattice is extended beyond the entire visible spectrum. The thermal property reveals that the black titanium is more stable than the white titanium, and BT indicated a more photocatalytic performance than WT.
Conclusion: We have successfully synthesized black titanium via chemical reduction employing a synthesis of white titanium. The thermal analysis reveals that BT has a high resistance than WT that offers a promising opportunity for several photocatalytic applications.
Keywords: Black titanium, chemical reduction, thermal analysis, photocatalytic activity, reduction of TiO2, TiO2 nanomaterial synthesis.
Graphical Abstract
[http://dx.doi.org/10.1007/978-94-007-1591-2_4]
[http://dx.doi.org/10.1007/s12034-014-0028-z]
[http://dx.doi.org/10.1016/j.apcata.2015.02.035]
[http://dx.doi.org/10.1016/j.bios.2020.112234] [PMID: 32392153]
[http://dx.doi.org/10.29333/EJAC/85010]
[http://dx.doi.org/10.1016/j.jare.2012.08.005] [PMID: 25685455]
[http://dx.doi.org/10.1039/C4NR02677B] [PMID: 25102925]
[http://dx.doi.org/10.3390/nano8040245]
[http://dx.doi.org/10.1038/srep11712] [PMID: 26133789]
[http://dx.doi.org/10.1016/j.apsusc.2014.10.067]
[http://dx.doi.org/10.1155/2013/752605]
[http://dx.doi.org/10.5402/2012/372505]
[http://dx.doi.org/10.1016/j.cej.2018.01.069]
[http://dx.doi.org/10.1016/j.apcatb.2017.01.084]
[http://dx.doi.org/10.1016/j.matchemphys.2008.09.025]
[http://dx.doi.org/10.1016/j.scib.2017.01.034]
[http://dx.doi.org/10.4236/jwarp.2016.84037]
[http://dx.doi.org/10.1016/j.apsusc.2012.03.042]
[http://dx.doi.org/10.1016/S0040-6031(01)00642-6]
[http://dx.doi.org/10.1016/j.matchemphys.2017.07.054]
[http://dx.doi.org/10.1021/jp909341z]
[http://dx.doi.org/10.1007/s10934-018-0673-5]
[http://dx.doi.org/10.1039/C3RA44493G]
[http://dx.doi.org/10.1016/j.apcatb.2014.05.031]
[http://dx.doi.org/10.1038/srep01510] [PMID: 23528851]
[http://dx.doi.org/10.1039/C4CS00330F] [PMID: 25590565]
[http://dx.doi.org/10.1021/am405549p] [PMID: 24490636]
[http://dx.doi.org/10.1016/j.materresbull.2017.10.036]
[http://dx.doi.org/10.1002/cctc.201500488]
[http://dx.doi.org/10.1039/C4TA02192D]
[http://dx.doi.org/10.1016/j.memsci.2005.06.014]
[http://dx.doi.org/10.1039/C5CC09176D] [PMID: 26783565]