Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Identification of Key Molecules in Recurrent Miscarriage Based on Bioinformatics Analysis

Author(s): Haiwang Wu, Yan Ning , Qingying Yu, Songping Luo* and Jie Gao*

Volume 25, Issue 10, 2022

Published on: 25 August, 2021

Page: [1745 - 1755] Pages: 11

DOI: 10.2174/1386207324666210825142340

Abstract

Background: Recurrent Miscarriage (RM) affects 1% to 5% of couples, and the mechanisms still stay unclear. In this study, we explored the underlying molecular mechanism and potential molecular biomarkers of RM as well as constructed a miRNA-mRNA regulation network.

Methods: The microarray datasets GSE73025 and GSE22490, which represent mRNA and miRNA profiles, respectively, were downloaded from the Gene Expression Omnibus (GEO) database. Differentially Expressed Genes (DEGs) with p-value < 0.05 and fold-change > 2 were identified while the miRNAs with p-value < 0.05 and fold-change > 1.3 were considered as significant differentially expressed miRNAs (DEMs).

Results: A total of 373 DEGs, including 218 up-regulated genes and 155 down-regulated genes, were identified, while 138 up-regulated and 68 down-regulated DEMs were screened out. After functional enrichment analysis, we found GO Biological Process (BP) terms significantly enriched in the Fc-gamma receptor signaling pathway involved in phagocytosis. Moreover, signaling pathway analyses indicated that the neurotrophin signaling pathway (hsa04722) was the top KEGG enrichment. 6 hub genes (FPR1, C5AR1, CCR1, ADCY7, CXCR2, NPY) were screened out to construct a complex regulation network in RM because they had the highest degree of affecting the network. Besides, we constructed miRNA-mRNA network between DEMs target genes and DEGs in RM, including hsa-miR-1297- KLHL24 and hsa-miR-548a-5p-KLHL24 pairs.

Conclusion: In conclusion, the novel differentially expressed molecules in the present study could provide a new sight to explore the pathogenesis of RM as well as potential biomarkers and therapeutic targets for RM diagnosis and treatment.

Keywords: Key molecules, gene, network, recurrent miscarriage, bioinformatics analysis, pathogenesis.

Graphical Abstract

[1]
Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil. Steril., 2013, 99(1), 63.
[http://dx.doi.org/10.1016/j.fertnstert.2012.09.023] [PMID: 23095139]
[2]
Liu, Y.; Liu, Y.; Li, X.; Jiao, X.; Zhang, R.; Zhang, J. Predictive value of serum β-hCG for early pregnancy outcomes among women with recurrent spontaneous abortion. Int. J. Gynaecol. Obstet., 2016, 135(1), 16-21.
[http://dx.doi.org/10.1016/j.ijgo.2016.03.007] [PMID: 27567433]
[3]
Garrido-Gimenez, C.; Alijotas-Reig, J. Recurrent miscarriage: causes, evaluation and management. Postgrad. Med. J., 2015, 91(1073), 151-162.
[http://dx.doi.org/10.1136/postgradmedj-2014-132672] [PMID: 25681385]
[4]
American College of Obstetricians and Gynecologists. ACOG practice bulletin. Management of recurrent pregnancy loss. Number 24, February 2001. (Replaces Technical Bulletin Number 212, September 1995). Int. J. Gynaecol. Obstet., 2002, 78(2), 179-190.
[http://dx.doi.org/10.1016/S0020-7292(02)00197-2] [PMID: 12360906]
[5]
Romero, R.; Jauniaux, E. Images of the human placenta. Am. J. Obstet. Gynecol., 2015, 213(4)(Suppl.), S1-S2.
[http://dx.doi.org/10.1016/j.ajog.2015.08.039] [PMID: 26428487]
[6]
Barad, O.; Meiri, E.; Avniel, A.; Aharonov, R.; Barzilai, A.; Bentwich, I.; Einav, U.; Gilad, S.; Hurban, P.; Karov, Y.; Lobenhofer, E.K.; Sharon, E.; Shiboleth, Y.M.; Shtutman, M.; Bentwich, Z.; Einat, P. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res., 2004, 14(12), 2486-2494.
[http://dx.doi.org/10.1101/gr.2845604] [PMID: 15574827]
[7]
Cai, M.; Kolluru, G.K.; Ahmed, A. Small molecule, big prospects: MicroRNA in pregnancy and its complications. J. Pregnancy, 2017, 2017, 6972732.
[http://dx.doi.org/10.1155/2017/6972732] [PMID: 28713594]
[8]
Gu, Y.; Zhang, X.; Yang, Q.; Wang, J.; He, Y.; Sun, Z.; Zhang, H.; Wang, J. Aberrant placental villus expression of miR-486-3p and miR-3074-5p in recurrent miscarriage patients and uterine expression of these MicroRNAs during early pregnancy in mice. Gynecol. Obstet. Invest., 2015, 81(2), 112-117.
[http://dx.doi.org/10.1159/000435879] [PMID: 26278328]
[9]
Zhao, W.; Shen, W.W.; Cao, X.M.; Ding, W.Y.; Yan, L.P.; Gao, L.J.; Li, X.L.; Zhong, T.Y. Novel mechanism of miRNA-365-regulated trophoblast apoptosis in recurrent miscarriage. J. Cell. Mol. Med., 2017, 21(10), 2412-2425.
[http://dx.doi.org/10.1111/jcmm.13163] [PMID: 28393453]
[10]
Su, M.T.; Tsai, P.Y.; Tsai, H.L.; Chen, Y.C.; Kuo, P.L. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9. Biofactors, 2017, 43(2), 210-219.
[http://dx.doi.org/10.1002/biof.1325] [PMID: 27619846]
[11]
Reuter, J.A.; Spacek, D.V.; Snyder, M.P. High-throughput sequencing technologies. Mol. Cell, 2015, 58(4), 586-597.
[http://dx.doi.org/10.1016/j.molcel.2015.05.004] [PMID: 26000844]
[12]
Bao, R.; Huang, L.; Andrade, J. Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform., 2014, 13(2), 67-82.
[http://dx.doi.org/10.4137/CIN.S13779]
[13]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[14]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[15]
Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4, 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[16]
Suzumori, N.; Sugiura-Ogasawara, M. Genetic factors as a cause of miscarriage. Curr. Med. Chem., 2010, 17(29), 3431-3437.
[http://dx.doi.org/10.2174/092986710793176302] [PMID: 20712563]
[17]
Hyde, K.J.; Schust, D.J. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb. Perspect. Med., 2015, 5(3), a023119.
[http://dx.doi.org/10.1101/cshperspect.a023119] [PMID: 25659378]
[18]
Du, M.R.; Wang, S.C.; Li, D.J. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell. Mol. Immunol., 2014, 11(5), 438-448.
[http://dx.doi.org/10.1038/cmi.2014.68] [PMID: 25109684]
[19]
Shimoya, K.; Matsuzaki, N.; Taniguchi, T.; Kameda, T.; Koyama, M.; Neki, R.; Saji, F.; Tanizawa, O. Human placenta constitutively produces interleukin-8 during pregnancy and enhances its production in intrauterine infection. Biol. Reprod., 1992, 47(2), 220-226.
[http://dx.doi.org/10.1095/biolreprod47.2.220] [PMID: 1391327]
[20]
Jovanović, M.; Stefanoska, I.; Radojcić, L.; Vićovac, L. Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1. Reproduction, 2010, 139(4), 789-798.
[http://dx.doi.org/10.1530/REP-09-0341] [PMID: 20133364]
[21]
Shi, J.; Wei, P.K. Interleukin-8: A potent promoter of angiogenesis in gastric cancer. Oncol. Lett., 2016, 11(2), 1043-1050.
[http://dx.doi.org/10.3892/ol.2015.4035] [PMID: 26893688]
[22]
Garg, M.; Potter, J.A.; Abrahams, V.M. Identification of microRNAs that regulate TLR2-mediated trophoblast apoptosis and inhibition of IL-6 mRNA. PLoS One, 2013, 8(10), e77249.
[http://dx.doi.org/10.1371/journal.pone.0077249] [PMID: 24143215]
[23]
Jasper, M.J.; Tremellen, K.P.; Robertson, S.A. Reduced expression of IL-6 and IL-1alpha mRNAs in secretory phase endometrium of women with recurrent miscarriage. J. Reprod. Immunol., 2007, 73(1), 74-84.
[http://dx.doi.org/10.1016/j.jri.2006.06.003] [PMID: 17034864]
[24]
Jiang, X.Y.; Lu, T.M.; Shu, W.H.; Zhou, H.Y. Correlation between IL-6 and invasiveness of ectoderm cells of embryo in early pregnancy. J. Biol. Regul. Homeost. Agents, 2016, 30(2), 559-563.
[PMID: 27358148]
[25]
Cao, D.; Jia, Z.; You, L.; Wu, Y.; Hou, Z.; Suo, Y.; Zhang, H.; Wen, S.; Tsukamoto, T.; Oshima, M.; Jiang, J.; Cao, X. 18β-glycyrrhetinic acid suppresses gastric cancer by activation of miR-149-3p-Wnt-1 signaling. Oncotarget, 2016, 7(44), 71960-71973.
[http://dx.doi.org/10.18632/oncotarget.12443] [PMID: 27713126]
[26]
Hattori, Y.; Nakanishi, T.; Ozaki, Y.; Nozawa, K.; Sato, T.; Sugiura-Ogasawara, M. Uterine cervical inflammatory cytokines, interleukin-6 and -8, as predictors of miscarriage in recurrent cases. Am. J. Reprod. Immunol., 2007, 58(4), 350-357.
[http://dx.doi.org/10.1111/j.1600-0897.2007.00516.x] [PMID: 17845205]
[27]
Chen, X.; Song, X.; Li, K.; Zhang, T. FcγR-Binding is an important functional attribute for immune checkpoint antibodies in cancer immunotherapy. Front. Immunol., 2019, 10, 292.
[http://dx.doi.org/10.3389/fimmu.2019.00292] [PMID: 30863404]
[28]
Yao, T.; Hou, H.; Liu, G. Quantitative proteomics suggest a potential link between early embryonic death and trisomy 16. Reprod. Fertil. Dev., 2019, 31(6), 1116-1126.
[http://dx.doi.org/10.1071/RD17319]
[29]
Gao, Y.; Wang, P.L. Increased CD56(+) NK cells and enhanced Th1 responses in human unexplained recurrent spontaneous abortion. Genet. Mol. Res., 2015, 14(4), 18103-18109.
[http://dx.doi.org/10.4238/2015.December.22.36] [PMID: 26782457]
[30]
Wu, H.W.; Feng, Y.H.; Wang, D.Y.; Qiu, W.Y.; Yu, Q.Y.; Yang, L.L.; Liang, C.; Luo, S.P.; Gao, J. Effect of total flavones from cuscuta chinensis on anti-abortion via the MAPK signaling pathway. Evid. Based Complement. Alternat. Med., 2018, 2018, 6356190.
[http://dx.doi.org/10.1155/2018/6356190] [PMID: 30369955]
[31]
Marzioni, D.; Tossetta, G.; Licini, C. Expression of the ciliary neurotrophic factor and its receptor α in human placenta of first and third trimester of gestation. Ital. J. Anat. Embryol., 2016, 121(1), 193.
[32]
Sahay, A.S.; Sundrani, D.P.; Joshi, S.R. Neurotrophins: Role in placental growth and development. Vitam. Horm., 2017, 104, 243-261.
[http://dx.doi.org/10.1016/bs.vh.2016.11.002] [PMID: 28215297]
[33]
Ramer, I.; Kruczek, A.; Doulaveris, G.; Orfanelli, T.; Shulman, B.; Witkin, S.S.; Spandorfer, S.D. Reduced circulating concentration of brain-derived neurotrophic factor is associated with peri- and post-implantation failure following in vitro fertilization-embryo transfer. Am. J. Reprod. Immunol., 2016, 75(1), 36-41.
[http://dx.doi.org/10.1111/aji.12430] [PMID: 26547395]
[34]
Deshmukh, H.; Way, S.S. Immunological basis for recurrent fetal loss and pregnancy complications. Annu. Rev. Pathol., 2019, 14(0), 185-210.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012743] [PMID: 30183507]
[35]
Liu, F.; He, Y.; Shu, R.; Wang, S. MicroRNA-1297 regulates hepatocellular carcinoma cell proliferation and apoptosis by targeting EZH2. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4972-4980.
[PMID: 26191190]
[36]
Wang, Y.; Xue, J.; Kuang, H.; Zhou, X.; Liao, L.; Yin, F. microRNA-1297 inhibits the growth and metastasis of colorectal cancer by suppressing cyclin D2 expression. DNA Cell Biol., 2017, 36(11), 991-999.
[http://dx.doi.org/10.1089/dna.2017.3829] [PMID: 28933597]
[37]
Chen, Z.; Ma, Y.; Pan, Y.; Zhu, H.; Yu, C.; Sun, C. MiR-1297 suppresses pancreatic cancer cell proliferation and metastasis by targeting MTDH. Mol. Cell. Probes, 2018, 40, 19-26.
[http://dx.doi.org/10.1016/j.mcp.2018.06.003] [PMID: 29908229]
[38]
Gao, W.; Cao, Y.; Guo, P.; Bao, X.; Zhu, H.; Zheng, J.; Yao, C.; Chen, D.; Yu, S.; Chen, B.; Zhou, S.; Pang, D.; Chen, W. Downregulation of MiR-1297 predicts poor prognosis and enhances gastric cancer cell growth by targeting CREB1. Biomed. Pharmacother., 2018, 105, 413-419.
[http://dx.doi.org/10.1016/j.biopha.2018.05.094] [PMID: 29870889]
[39]
Liang, X.; Li, H.; Fu, D.; Chong, T.; Wang, Z.; Li, Z. MicroRNA-1297 inhibits prostate cancer cell proliferation and invasion by targeting the AEG-1/Wnt signaling pathway. Biochem. Biophys. Res. Commun., 2016, 480(2), 208-214.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.029] [PMID: 27746178]
[40]
Liu, C.; Liu, Z.; Li, X.; Tang, X.; He, J.; Lu, S. MicroRNA-1297 contributes to tumor growth of human breast cancer by targeting PTEN/PI3K/AKT signaling. Oncol. Rep., 2017, 38(4), 2435-2443.
[http://dx.doi.org/10.3892/or.2017.5884] [PMID: 28791363]
[41]
Bu, W.; Luo, T. MiR-1297 promotes cell proliferation of non-small cell lung cancer cells: involving in PTEN/Akt/Skp2 signaling pathway. DNA Cell Biol., 2017, 36(11), 976-982.
[http://dx.doi.org/10.1089/dna.2017.3886] [PMID: 28872922]
[42]
Lim, J.H.; Kim, D.J.; Lee, D.E.; Han, J.Y.; Chung, J.H.; Ahn, H.K.; Lee, S.W.; Lim, D.H.; Lee, Y.S.; Park, S.Y.; Ryu, H.M. Genome-wide microRNA expression profiling in placentas of fetuses with Down syndrome. Placenta, 2015, 36(3), 322-328.
[http://dx.doi.org/10.1016/j.placenta.2014.12.020] [PMID: 25595853]
[43]
Deng, G.; Yu, S.; He, Y.; Sun, T.; Liang, W.; Yu, L.; Xu, D.; Li, Q.; Zhang, R. MicroRNA profiling of platelets from immune thrombocytopenia and target gene prediction. Mol. Med. Rep., 2017, 16(3), 2835-2843.
[http://dx.doi.org/10.3892/mmr.2017.6901] [PMID: 28677771]
[44]
Jing, L.; Jin, C.; Lu, Y.; Huo, P.; Zhou, L.; Wang, Y.; Tian, Y. Investigation of microRNA expression profiles associated with human alcoholic cardiomyopathy. Cardiology, 2015, 130(4), 223-233.
[http://dx.doi.org/10.1159/000370028] [PMID: 25791397]
[45]
Shin, J.A.; Lee, K.E.; Kim, H.S.; Park, E.M. Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain. Neurochem. Res., 2012, 37(12), 2686-2696.
[http://dx.doi.org/10.1007/s11064-012-0858-2] [PMID: 22878646]
[46]
Arul Nambi Rajan, K.; Khater, M.; Soncin, F.; Pizzo, D.; Moretto-Zita, M.; Pham, J.; Stus, O.; Iyer, P.; Tache, V.; Laurent, L.C.; Parast, M.M. Sirtuin1 is required for proper trophoblast differentiation and placental development in mice. Placenta, 2018, 62, 1-8.
[http://dx.doi.org/10.1016/j.placenta.2017.12.002] [PMID: 29405961]
[47]
Pham, J.; Arul Nambi Rajan, K.; Li, P.; Parast, M.M. The role of Sirtuin1-PPARγ axis in placental development and function. J. Mol. Endocrinol., 2018, 60(4), R201-R212.
[http://dx.doi.org/10.1530/JME-17-0315] [PMID: 29467141]
[48]
Martins, I.J. Single gene inactivation with implications to diabetes and multiple organ dysfunction syndrome. J Clin Epigenet, 2017, 3(24), 1158-2472.
[http://dx.doi.org/10.21767/2472-1158.100058]
[49]
Wu, K.; Yang, Y.; Liu, D.; Qi, Y.; Zhang, C.; Zhao, J.; Zhao, S. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Oncotarget, 2016, 7(28), 44572-44582.
[http://dx.doi.org/10.18632/oncotarget.10067] [PMID: 27323819]
[50]
Backes, C.; Kehl, T.; Stöckel, D.; Fehlmann, T.; Schneider, L.; Meese, E.; Lenhof, H.P.; Keller, A. miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic Acids Res., 2017, 45(D1), D90-D96.
[http://dx.doi.org/10.1093/nar/gkw926] [PMID: 27742822]
[51]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43, 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[52]
Lin, Z.; Li, S.; Feng, C.; Yang, S.; Wang, H.; Ma, D.; Zhang, J.; Gou, M.; Bu, D.; Zhang, T.; Kong, X.; Wang, X.; Sarig, O.; Ren, Y.; Dai, L.; Liu, H.; Zhang, J.; Li, F.; Hu, Y.; Padalon-Brauch, G.; Vodo, D.; Zhou, F.; Chen, T.; Deng, H.; Sprecher, E.; Yang, Y.; Tan, X. Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nat. Genet., 2016, 48(12), 1508-1516.
[http://dx.doi.org/10.1038/ng.3701] [PMID: 27798626]
[53]
Schweikl, H.; Hiller, K.A.; Eckhardt, A.; Bolay, C.; Spagnuolo, G.; Stempfl, T.; Schmalz, G. Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials, 2008, 29(10), 1377-1387.
[http://dx.doi.org/10.1016/j.biomaterials.2007.11.049] [PMID: 18164055]
[54]
Jegga, A.G.; Schneider, L.; Ouyang, X.; Zhang, J. Systems biology of the autophagy-lysosomal pathway. Autophagy, 2011, 7(5), 477-489.
[http://dx.doi.org/10.4161/auto.7.5.14811] [PMID: 21293178]
[55]
Avagliano, L.; Terraneo, L.; Virgili, E.; Martinelli, C.; Doi, P.; Samaja, M.; Bulfamante, G.P.; Marconi, A.M. Autophagy in normal and abnormal early human pregnancies. Reprod. Sci., 2015, 22(7), 838-844.
[http://dx.doi.org/10.1177/1933719114565036] [PMID: 25544676]
[56]
Cai, H.; Chen, L.; Zhang, M.; Xiang, W.; Su, P. Low expression of MFN2 is associated with early unexplained miscarriage by regulating autophagy of trophoblast cells. Placenta, 2018, 70, 34-40.
[http://dx.doi.org/10.1016/j.placenta.2018.08.005] [PMID: 30316324]
[57]
Chou, C.H.; Shrestha, S.; Yang, C.D.; Chang, N.W.; Lin, Y.L.; Liao, K.W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; Chiew, M.Y.; Tai, C.S.; Wei, T.Y.; Tsai, T.R.; Huang, H.T.; Wang, C.Y.; Wu, H.Y.; Ho, S.Y.; Chen, P.R.; Chuang, C.H.; Hsieh, P.J.; Wu, Y.S.; Chen, W.L.; Li, M.J.; Wu, Y.C.; Huang, X.Y.; Ng, F.L.; Buddhakosai, W.; Huang, P.C.; Lan, K.C.; Huang, C.Y.; Weng, S.L.; Cheng, Y.N.; Liang, C.; Hsu, W.L.; Huang, H.D. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res., 2018, 46(D1), D296-D302.
[http://dx.doi.org/10.1093/nar/gkx1067] [PMID: 29126174]
[58]
Zhou, Q.L.; Teng, F.; Zhang, Y.S.; Sun, Q.; Cao, Y.X.; Meng, G.W. FPR1 gene silencing suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/reperfusion injury through the inhibition of MAPK signaling pathway. Exp. Cell Res., 2018, 370(2), 506-518.
[http://dx.doi.org/10.1016/j.yexcr.2018.07.016] [PMID: 30031130]
[59]
Mödinger, Y.; Rapp, A.; Pazmandi, J.; Vikman, A.; Holzmann, K.; Haffner-Luntzer, M.; Huber-Lang, M.; Ignatius, A. C5aR1 interacts with TLR2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL10. J. Cell. Mol. Med., 2018, 22(12), 6002-6014.
[http://dx.doi.org/10.1111/jcmm.13873] [PMID: 30247799]
[60]
Llorián-Salvador, M.; González-Rodríguez, S.; Lastra, A.; Fernández-García, M.T.; Hidalgo, A.; Menéndez, L.; Baamonde, A. Involvement of CC chemokine receptor 1 and ccl3 in acute and chronic inflammatory pain in mice. Basic Clin. Pharmacol. Toxicol., 2016, 119(1), 32-40.
[http://dx.doi.org/10.1111/bcpt.12543] [PMID: 26663750]
[61]
Yellowhair, T.R.; Noor, S.; Maxwell, J.R. Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Experimental Neurology, 2018, 301(B), 110-119.
[http://dx.doi.org/10.1016/j.expneurol.2017.11.002]
[62]
Jeppsson, S.; Srinivasan, S.; Chandrasekharan, B.; Neuropeptide, Y. NPY) promotes inflammation-induced tumorigenesis by enhancing epithelial cell proliferation. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(2), G103-G111.
[http://dx.doi.org/10.1152/ajpgi.00410.2015] [PMID: 27856419]
[63]
Luo, F.; Jia, R.; Ying, S.; Wang, Z.; Wang, F. Analysis of genes that influence sheep follicular development by different nutrition levels during the luteal phase using expression profiling. Anim. Genet., 2016, 47(3), 354-364.
[http://dx.doi.org/10.1111/age.12427] [PMID: 26970339]
[64]
Rosenbaum, D.M.; Rasmussen, S.G.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature, 2009, 459(7245), 356-363.
[http://dx.doi.org/10.1038/nature08144] [PMID: 19458711]

© 2024 Bentham Science Publishers | Privacy Policy