Review Article

间充质干细胞和癌症干细胞:用于治疗干预的肿瘤-间充质干细胞相互作用概述

卷 23, 期 1, 2022

发表于: 24 August, 2021

页: [60 - 71] 页: 12

弟呕挨: 10.2174/1389450122666210824142247

价格: $65

摘要

肿瘤由导致肿瘤异质性的不同类型的癌细胞组成。在这些细胞中,癌症干细胞 (CSC) 在癌症的发生和发展中具有重要作用。与其他干细胞一样,CSC 具有分化和自我更新的能力。特定的 CSC 群由分化为中胚层特异性细胞的间充质干细胞 (MSC) 构成。 MSCs 对肿瘤细胞增殖和发育的促进或抗肿瘤发生潜力已被报道为相互矛盾的结果。此外,肿瘤进展由相应的肿瘤细胞(如肿瘤微环境)指定。肿瘤微环境由相互细胞类型的网络组成,例如内皮细胞、免疫细胞、间充质干细胞和成纤维细胞以及生长因子、趋化因子和细胞因子。在这篇综述中,将讨论与肿瘤微环境和相关细胞群、MSCs 归巢到肿瘤部位以及 MSCs 与肿瘤细胞的相互作用相关的最新发现。

关键词: 间充质干细胞、癌症干细胞、肿瘤微环境、肿瘤细胞、间充质干细胞归巢、再生医学、治疗干预。

图形摘要

[1]
Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 2019; 37(7): 855-64.
[http://dx.doi.org/10.1002/stem.3016] [PMID: 30977255]
[2]
Saeedi P, Halabian R, Imani Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investig 2019; 6: 34-52.
[http://dx.doi.org/10.21037/sci.2019.08.11] [PMID: 31620481]
[3]
Fathi E, Farahzadi R. Isolation, culturing, characterization and aging of adipose tissue-derived mesenchymal stem cells: A brief overview. Braz Arch Biol Technol 2016; 59: 1-9.
[http://dx.doi.org/10.1590/1678-4324-2016150383]
[4]
Hassan Famian M, Montazer Saheb S, Montaseri A. Conditioned medium of wharton’s jelly derived stem cells can enhance the cartilage specific genes expression by chondrocytes in monolayer and mass culture systems. Adv Pharm Bull 2017; 7(1): 123-30.
[http://dx.doi.org/10.15171/apb.2017.016] [PMID: 28507946]
[5]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905]
[6]
Delarosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 2012; 3: 182-90.
[http://dx.doi.org/10.3389/fimmu.2012.00182] [PMID: 22783256]
[7]
Fathi E, Vietor I. Mesenchymal stem cells promote caspase expression in molt-4 leukemia cells via GSK-3α/Β and ERK1/2 signaling pathways as a therapeutic strategy. Curr Gene Ther 2021; 21(1): 81-8.
[http://dx.doi.org/10.2174/1566523220666201005111126] [PMID: 33019931]
[8]
Fathi E, Valipour B, Farahzadi R. Targeting the proliferation inhibition of chronic myeloid leukemia cells by bone marrow derived-mesenchymal stem cells via ERK pathway as a therapeutic strategy. Acta Med Iran 2020; 58(5): 1-8.
[http://dx.doi.org/10.18502/acta.v58i5.3952]
[9]
Cardoso MT, Pinheiro AO, Vidane AS, et al. Characterization of teratogenic potential and gene expression in canine and feline amniotic membrane-derived stem cells. Reprod Domest Anim 2017; 52(Suppl. 2): 58-64.
[http://dx.doi.org/10.1111/rda.12832] [PMID: 27774699]
[10]
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13(9): 1738-55.
[http://dx.doi.org/10.1002/term.2914] [PMID: 31216380]
[11]
Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez VJFib. Therapeutic potential of mesenchymal stem cells for cancer therapy. Biotechnology 2020; 8: 43-56.
[12]
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4(1): 22.
[http://dx.doi.org/10.1038/s41536-019-0083-6] [PMID: 31815001]
[13]
Fathi E, Charoudeh HN, Sanaat Z, Farahzadi R. Telomere shortening as a hallmark of stem cell senescence. Stem Cell Investig 2019; 6: 7.
[http://dx.doi.org/10.21037/sci.2019.02.04] [PMID: 31019963]
[14]
Liu J, Ding Y, Liu Z, Liang X. Senescence in mesenchymal stem cells: functional alterations, molecular mechanisms, and rejuvenation strategies. Front Cell Dev Biol 2020; 8: 258-75.
[http://dx.doi.org/10.3389/fcell.2020.00258] [PMID: 32478063]
[15]
Das D, Fletcher RB, Ngai J. Cellular mechanisms of epithelial stem cell self-renewal and differentiation during homeostasis and repair. Wiley Interdiscip Rev Dev Biol 2020; 9(1): e361.
[http://dx.doi.org/10.1002/wdev.361] [PMID: 31468728]
[16]
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 2016; 7(1): 125.
[http://dx.doi.org/10.1186/s13287-016-0363-7] [PMID: 27581859]
[17]
Gugjoo M, Pal A, Sharma G. Mesenchymal stem cell and its properties. Mesenchymal stem cell in veterinary sciences. Springer 2020; pp. 13-26.
[http://dx.doi.org/10.1007/978-981-15-6037-8_2]
[18]
Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res 2006; 312(12): 2169-79.
[http://dx.doi.org/10.1016/j.yexcr.2006.03.019] [PMID: 16631737]
[19]
Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2005; 2(1): 8.
[http://dx.doi.org/10.1186/1476-9255-2-8] [PMID: 16045800]
[20]
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif 2020; 53(1): e12712.
[http://dx.doi.org/10.1111/cpr.12712] [PMID: 31730279]
[21]
Wang M, Yang Y, Yang D, et al. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 2009; 126(2): 220-32.
[http://dx.doi.org/10.1111/j.1365-2567.2008.02891.x] [PMID: 18624725]
[22]
Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res 2021; 52(1): 93-101.
[http://dx.doi.org/10.1016/j.arcmed.2020.08.006] [PMID: 32977984]
[23]
Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213(2): 341-7.
[http://dx.doi.org/10.1002/jcp.21200] [PMID: 17620285]
[24]
Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 2018; 18(3): e264-77.
[http://dx.doi.org/10.18295/squmj.2018.18.03.002] [PMID: 30607265]
[25]
Shammaa R, El-Kadiry AE-H, Abusarah J, Rafei M. Mesenchymal stem cells beyond regenerative medicine. Front Cell Dev Biol 2020; 8: 72-89.
[http://dx.doi.org/10.3389/fcell.2020.00072] [PMID: 32133358]
[26]
Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2008; 26(1): 99-107.
[http://dx.doi.org/10.1634/stemcells.2007-0563] [PMID: 17916800]
[27]
Ezquer FE, Ezquer ME, Vicencio JM, Calligaris SD. Two complementary strategies to improve cell engraftment in mesenchymal stem cell-based therapy: Increasing transplanted cell resistance and increasing tissue receptivity. Cell Adhes Migr 2017; 11(1): 110-9.
[http://dx.doi.org/10.1080/19336918.2016.1197480] [PMID: 27294313]
[28]
Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013; 2013: 732742.
[http://dx.doi.org/10.1155/2013/732742] [PMID: 24000286]
[29]
Gholizadeh-Ghaleh Aziz S, Fathi E, Rahmati-Yamchi M, Akbarzadeh A, Fardyazar Z, Pashaiasl M. An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artif Cells Nanomed Biotechnol 2017; 45(4): 765-74.
[http://dx.doi.org/10.1080/21691401.2016.1216857] [PMID: 27684534]
[30]
Ebrahimi T, Abasi M, Seifar F, et al. Transplantation of stem cells as a potential therapeutic strategy in neurodegenerative disorders. Curr Stem Cell Res Ther 2021; 16(2): 133-44.
[http://dx.doi.org/10.2174/1574888X15666200628141314] [PMID: 32598273]
[31]
Eckert MA, Vu Q, Xie K, et al. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab 2013; 33(9): 1322-34.
[http://dx.doi.org/10.1038/jcbfm.2013.91] [PMID: 23756689]
[32]
Xia L, Zeng L, Pan J, Ding Y. Effects of stem cells on non-ischemic cardiomyopathy: a systematic review and meta-analysis of randomized controlled trials. Cytotherapy 2020; 22(12): 699-711.
[http://dx.doi.org/10.1016/j.jcyt.2020.06.006] [PMID: 32893120]
[33]
Fathi E, Farahzadi R, Javanmardi S, Vietor I. L-carnitine extends the telomere length of the cardiac differentiated CD117+- expressing stem cells. Tissue Cell 2020; 67: 101429.
[http://dx.doi.org/10.1016/j.tice.2020.101429] [PMID: 32861877]
[34]
Davies B, Elwood NJ, Li S, et al. Human cord blood stem cells enhance neonatal right ventricular function in an ovine model of right ventricular training. Ann Thorac Surg 2010; 89(2): 585-593, 593.e1-593.e4.
[http://dx.doi.org/10.1016/j.athoracsur.2009.10.035] [PMID: 20103347]
[35]
Mao C, Hou X, Wang B, et al. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats. Stem Cell Res Ther 2017; 8(1): 18.
[http://dx.doi.org/10.1186/s13287-017-0472-y] [PMID: 28129792]
[36]
Fathi E, Farahzadi R, Vietor I, Javanmardi S. Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF- β as clinical agents in cardiac regeneration. J Biosci 2020; 45(1): 1-11.
[http://dx.doi.org/10.1007/s12038-020-00063-0] [PMID: 32713855]
[37]
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886-918.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[38]
Farahzadi R, Fathi E, Vietor I. Mesenchymal stem cells could be considered as a candidate for further studies in cell-based therapy of Alzheimer’s disease via targeting the signaling pathways. ACS Chem Neurosci 2020; 11(10): 1424-35.
[http://dx.doi.org/10.1021/acschemneuro.0c00052] [PMID: 32310632]
[39]
Oliveri RS, Bello S, Biering-Sørensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Neurobiol Dis 2014; 62: 338-53.
[http://dx.doi.org/10.1016/j.nbd.2013.10.014] [PMID: 24148857]
[40]
Das M, Mayilsamy K, Mohapatra SS, Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci 2019; 30(8): 839-55.
[http://dx.doi.org/10.1515/revneuro-2019-0002] [PMID: 31203262]
[41]
Chen Y, Shen J, Ke K, Gu X. Clinical potential and current progress of mesenchymal stem cells for Parkinson’s disease: a systematic review. Neurol Sci 2020; 41(5): 1051-61.
[http://dx.doi.org/10.1007/s10072-020-04240-9] [PMID: 31919699]
[42]
Gugliandolo A, Bramanti P, Mazzon E. Mesenchymal stem cell therapy in Parkinson’s disease animal models. Curr Res Transl Med 2017; 65(2): 51-60.
[http://dx.doi.org/10.1016/j.retram.2016.10.007] [PMID: 28466824]
[43]
Harris VK, Stark J, Vyshkina T, et al. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine 2018; 29: 23-30.
[http://dx.doi.org/10.1016/j.ebiom.2018.02.002] [PMID: 29449193]
[44]
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011; 164(4): 1079-106.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01302.x] [PMID: 21371012]
[45]
Atashzar MR, Baharlou R, Karami J, et al. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol 2020; 235(2): 790-803.
[http://dx.doi.org/10.1002/jcp.29044] [PMID: 31286518]
[46]
Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V. Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development. Stem Cells Transl Med 2017; 6(12): 2115-25.
[http://dx.doi.org/10.1002/sctm.17-0138] [PMID: 29072369]
[47]
Kuşoğlu A, Biray Avcı Ç. Cancer stem cells: A brief review of the current status. Gene 2019; 681: 80-5.
[http://dx.doi.org/10.1016/j.gene.2018.09.052] [PMID: 30268439]
[48]
Walcher L, Kistenmacher A-K, Suo H, et al. Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol 2020; 11: 1280-313.
[http://dx.doi.org/10.3389/fimmu.2020.01280] [PMID: 32849491]
[49]
Monteiro J, Gaspar C, Richer W, et al. Cancer stemness in Wnt-driven mammary tumorigenesis. Carcinogenesis 2014; 35(1): 2-13.
[http://dx.doi.org/10.1093/carcin/bgt279] [PMID: 23955540]
[50]
Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015; 347(6217): 78-81.
[http://dx.doi.org/10.1126/science.1260825] [PMID: 25554788]
[51]
White AC, Lowry WE. Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol 2015; 25(1): 11-20.
[http://dx.doi.org/10.1016/j.tcb.2014.08.008] [PMID: 25242116]
[52]
Hu J, Mirshahidi S, Simental A, et al. Cancer stem cell self-renewal as a therapeutic target in human oral cancer. Oncogene 2019; 38(27): 5440-56.
[http://dx.doi.org/10.1038/s41388-019-0800-z] [PMID: 30936460]
[53]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5(1): 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[54]
Lee Y, Lee J-K, Ahn SH, Lee J, Nam D-H. WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest 2016; 96(2): 137-50.
[http://dx.doi.org/10.1038/labinvest.2015.140] [PMID: 26641068]
[55]
Valkenburg KC, Graveel CR, Zylstra-Diegel CR, Zhong Z, Williams BO. Wnt/β-catenin signaling in normal and cancer stem cells. Cancers 2011; 3(2): 2050-79.
[http://dx.doi.org/10.3390/cancers3022050] [PMID: 24212796]
[56]
Sari IN, Phi LTH, Jun N, Wijaya YT, Lee S, Kwon HY. Hedgehog signaling in cancer: A prospective therapeutic target for eradicating cancer stem cells. Cells 2018; 7(11): 208-41.
[http://dx.doi.org/10.3390/cells7110208] [PMID: 30423843]
[57]
Matsui WH. Cancer stem cell signaling pathways. Medicine 2016; 95(1)(Suppl): S8-S19.
[http://dx.doi.org/10.1097/MD.0000000000004765]
[58]
Li S, Li Q. Cancer stem cells and tumor metastasis (Review). Int J Oncol 2014; 44(6): 1806-12.
[http://dx.doi.org/10.3892/ijo.2014.2362] [PMID: 24691919]
[59]
Sampieri K, Fodde R, Eds. Cancer stem cells and metastasis. Seminars in cancer biology. Elsevier 2012.
[60]
Wang Y, Zhe H, Gao P, Zhang N, Li G, Qin J. Cancer stem cell marker ALDH1 expression is associated with lymph node metastasis and poor survival in esophageal squamous cell carcinoma: a study from high incidence area of northern China. Dis Esophagus 2012; 25(6): 560-5.
[http://dx.doi.org/10.1111/j.1442-2050.2011.01279.x] [PMID: 22098156]
[61]
Liu S, Cong Y, Wang D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2013; 2(1): 78-91.
[http://dx.doi.org/10.1016/j.stemcr.2013.11.009] [PMID: 24511467]
[62]
Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011; 71(2): 614-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0538] [PMID: 21224357]
[63]
Li H-J, Reinhardt F, Herschman HR, Weinberg RA. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2012; 2(9): 840-55.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0101] [PMID: 22763855]
[64]
Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011; 21(2): 193-215.
[http://dx.doi.org/10.1016/j.devcel.2011.07.001] [PMID: 21839917]
[65]
Eid JE, Garcia CB, Eds. Reprogramming of mesenchymal stem cells by oncogenes.Seminars in cancer biology. Elsevier 2015.
[66]
Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 2010; 18(6): 884-901.
[http://dx.doi.org/10.1016/j.devcel.2010.05.012] [PMID: 20627072]
[67]
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[68]
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11(2): 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[69]
Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491(7424): 364-73.
[http://dx.doi.org/10.1038/nature11706] [PMID: 23151579]
[70]
Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14(10): 1014-22.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[71]
Arneth B. Tumor microenvironment. Medicina (Kaunas) 2019; 56(1): 15-36.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[72]
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. nature 2008; 454(7203): 436-44.
[73]
Rezabakhsh A, Montazersaheb S, Nabat E, et al. Effect of hydroxychloroquine on oxidative/nitrosative status and angiogenesis in endothelial cells under high glucose condition. Bioimpacts 2017; 7(4): 219-26.
[http://dx.doi.org/10.15171/bi.2017.26] [PMID: 29435429]
[74]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell 2011; 144(5): 646-74.
[75]
Jiang X, Wang J, Deng X, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res 2020; 39(1): 204.
[http://dx.doi.org/10.1186/s13046-020-01709-5] [PMID: 32993787]
[76]
Saman H, Raza SS, Uddin S, Rasul K. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. Cancers (Basel) 2020; 12(5): 1172-90.
[http://dx.doi.org/10.3390/cancers12051172] [PMID: 32384792]
[77]
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2020; 77(9): 1745-70.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[78]
Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4(1): 71-8.
[http://dx.doi.org/10.1038/nrc1256] [PMID: 14708027]
[79]
Montazersaheb S, Fathi E, Farahzadi R. Cytokines and signaling pathways involved in differentiation potential of hematopoietic stem cells towards natural killer cells. Tissue Cell 2021; 70: 101501.
[http://dx.doi.org/10.1016/j.tice.2021.101501] [PMID: 33578272]
[80]
Zumsteg A, Christofori G. Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 2009; 21(1): 60-70.
[http://dx.doi.org/10.1097/CCO.0b013e32831bed7e] [PMID: 19125020]
[81]
LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 2018; 11(4): dmm029447.
[http://dx.doi.org/10.1242/dmm.029447] [PMID: 29686035]
[82]
Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol Lett 2017; 14(3): 2611-20.
[http://dx.doi.org/10.3892/ol.2017.6497] [PMID: 28927027]
[83]
Borriello L, Nakata R, Sheard MA, et al. Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Res 2017; 77(18): 5142-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2586] [PMID: 28687621]
[84]
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: Key players in cancer progression. Mol Cancer 2017; 16(1): 31-41.
[http://dx.doi.org/10.1186/s12943-017-0597-8] [PMID: 28148268]
[85]
Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 2016; 7(1): 131.
[http://dx.doi.org/10.1186/s13287-016-0394-0] [PMID: 27612948]
[86]
Rhee K-J, Lee JI, Eom YW. Mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci 2015; 16(12): 30015-33.
[http://dx.doi.org/10.3390/ijms161226215] [PMID: 26694366]
[87]
Lam PY. Biological effects of cancer-secreted factors on human mesenchymal stem cells. Stem Cell Res Ther 2013; 4(6): 138.
[http://dx.doi.org/10.1186/scrt349] [PMID: 24456712]
[88]
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci 2012; 125(Pt 23): 5591-6.
[http://dx.doi.org/10.1242/jcs.116392] [PMID: 23420197]
[89]
Reagan MR, Kaplan DL. Concise review: Mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells 2011; 29(6): 920-7.
[http://dx.doi.org/10.1002/stem.645] [PMID: 21557390]
[90]
Wang Q, Li T, Wu W, Ding G. Interplay between mesenchymal stem cell and tumor and potential application. Hum Cell 2020; 33(3): 444-58.
[http://dx.doi.org/10.1007/s13577-020-00369-z] [PMID: 32378164]
[91]
Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013: 130763.
[http://dx.doi.org/10.1155/2013/130763] [PMID: 24194766]
[92]
Lazennec G, Richmond A. Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med 2010; 16(3): 133-44.
[http://dx.doi.org/10.1016/j.molmed.2010.01.003] [PMID: 20163989]
[93]
Klopp AH, Spaeth EL, Dembinski JL, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 2007; 67(24): 11687-95.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1406] [PMID: 18089798]
[94]
Menon LG, Picinich S, Koneru R, et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 2007; 25(2): 520-8.
[http://dx.doi.org/10.1634/stemcells.2006-0257] [PMID: 17053212]
[95]
Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012; 30(2): 266-79.
[http://dx.doi.org/10.1002/stem.787] [PMID: 22102554]
[96]
Haga H, Yan IK, Takahashi K, Wood J, Zubair A, Patel T. Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth. J Extracell Vesicles 2015; 4(1): 24900-5003.
[http://dx.doi.org/10.3402/jev.v4.24900] [PMID: 25557794]
[97]
Coffelt SB, Marini FC, Watson K, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009; 106(10): 3806-11.
[http://dx.doi.org/10.1073/pnas.0900244106] [PMID: 19234121]
[98]
Ho IA, Yulyana Y, Sia KC, et al. Matrix metalloproteinase-1-mediated mesenchymal stem cell tumor tropism is dependent on crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis. FASEB J 2014; 28(10): 4359-68.
[http://dx.doi.org/10.1096/fj.14-252551] [PMID: 25271298]
[99]
Beckermann BM, Kallifatidis G, Groth A, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008; 99(4): 622-31.
[http://dx.doi.org/10.1038/sj.bjc.6604508] [PMID: 18665180]
[100]
Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102(10): 3837-44.
[http://dx.doi.org/10.1182/blood-2003-04-1193] [PMID: 12881305]
[101]
Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 2007; 21(2): 304-10.
[http://dx.doi.org/10.1038/sj.leu.2404489] [PMID: 17170725]
[102]
Fathi E, Sanaat Z, Farahzadi R. Mesenchymal stem cells in acute myeloid leukemia: A focus on mechanisms involved and therapeutic concepts. Blood Res 2019; 54(3): 165-74.
[http://dx.doi.org/10.5045/br.2019.54.3.165] [PMID: 31730689]
[103]
Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol 2018; 9: 259-69.
[http://dx.doi.org/10.3389/fphar.2018.00259] [PMID: 29615915]
[104]
Khurana S, Bhattacharyya S. Interaction of cancer cells with mesenchymal stem cells: implications in metastatic progression. J Indian Inst Sci 2020; 1-11.
[105]
Wong RS, Cheong S-K. Role of mesenchymal stem cells in leukaemia: Dr. Jekyll or Mr. Hyde? Clin Exp Med 2014; 14(3): 235-48.
[http://dx.doi.org/10.1007/s10238-013-0247-4] [PMID: 23794030]
[106]
Akimoto K, Kimura K, Nagano M, et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 2013; 22(9): 1370-86.
[http://dx.doi.org/10.1089/scd.2012.0486] [PMID: 23231075]
[107]
Tian LL, Yue W, Zhu F, Li S, Li W, Li W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 2011; 226(7): 1860-7.
[http://dx.doi.org/10.1002/jcp.22511] [PMID: 21442622]
[108]
Hass R. Role of MSC in the tumor microenvironment. Cancers (Basel) 2020; 12(8): 2107-24.
[http://dx.doi.org/10.3390/cancers12082107] [PMID: 32751163]
[109]
Fasoulakis Z, Daskalakis G, Theodora M, et al. The relevance of notch signaling in cancer progression.Notch signaling in embryology and cancer. Springer 2020; pp. 169-81.
[110]
Mandel K, Yang Y, Schambach A, Glage S, Otte A, Hass R. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo. Stem Cells Dev 2013; 22(23): 3114-27.
[http://dx.doi.org/10.1089/scd.2013.0249] [PMID: 23895436]
[111]
Kandouz M, Batist G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets 2010; 14(7): 681-92.
[http://dx.doi.org/10.1517/14728222.2010.487866] [PMID: 20446866]
[112]
Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW. Gap junctions and cancer: Communicating for 50 years. Nat Rev Cancer 2016; 16(12): 775-88.
[http://dx.doi.org/10.1038/nrc.2016.105] [PMID: 27782134]
[113]
Roehlecke C, Schmidt MHH. Tunneling nanotubes and tumor microtubes in cancer. Cancers 2020; 12(4): 857-78.
[http://dx.doi.org/10.3390/cancers12040857] [PMID: 32244839]
[114]
Caicedo A, Fritz V, Brondello J-M, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 2015; 5: 9073-83.
[http://dx.doi.org/10.1038/srep09073] [PMID: 25766410]
[115]
Melzer C, Yang Y, Hass R. Interaction of MSC with tumor cells. Cell Commun Signal 2016; 14(1): 20-32.
[http://dx.doi.org/10.1186/s12964-016-0143-0] [PMID: 27608835]
[116]
Caplan AI, Correa D. The MSC: An injury drugstore. Cell Stem Cell 2011; 9(1): 11-5.
[http://dx.doi.org/10.1016/j.stem.2011.06.008] [PMID: 21726829]
[117]
Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162): 557-63.
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
[118]
Yuan Y, Lu X, Tao CL, Chen X, Shao HW, Huang SL. Forced expression of indoleamine-2,3-dioxygenase in human umbilical cord-derived mesenchymal stem cells abolishes their anti-apoptotic effect on leukemia cell lines in vitro. in vitro Cell Dev Biol Anim 2013; 49(10): 752-8.
[http://dx.doi.org/10.1007/s11626-013-9667-4] [PMID: 23949777]
[119]
Atiya H, Frisbie L, Pressimone C, Coffman L. Mesenchymal stem cells in the tumor microenvironment.Tumor microenvironment. Springer 2020; pp. 31-42.
[120]
Naderi EH, Jochemsen AG, Blomhoff HK, Naderi S. Activation of cAMP signaling interferes with stress-induced p53 accumulation in ALL-derived cells by promoting the interaction between p53 and HDM2. Neoplasia 2011; 13(7): 653-63.
[http://dx.doi.org/10.1593/neo.11542] [PMID: 21750659]
[121]
Naderi EH, Skah S, Ugland H, et al. Bone marrow stroma-derived PGE2 protects BCP-ALL cells from DNA damage-induced p53 accumulation and cell death. Mol Cancer 2015; 14(1): 14.
[http://dx.doi.org/10.1186/s12943-014-0278-9] [PMID: 25623255]
[122]
Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21(R1): R125-34.
[http://dx.doi.org/10.1093/hmg/dds317] [PMID: 22872698]
[123]
Yang Y, Bucan V, Baehre H, von der Ohe J, Otte A, Hass R. Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol 2015; 47(1): 244-52.
[http://dx.doi.org/10.3892/ijo.2015.3001] [PMID: 25963929]
[124]
Chowdhury R, Webber JP, Gurney M, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 2015; 6(2): 715-31.
[http://dx.doi.org/10.18632/oncotarget.2711] [PMID: 25596732]
[125]
Wu S, Ju G-Q, Du T, Zhu Y-J, Liu G-H. Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 2013; 8(4): e61366.
[http://dx.doi.org/10.1371/journal.pone.0061366] [PMID: 23593475]
[126]
Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell 2014; 14(3): 306-21.
[http://dx.doi.org/10.1016/j.stem.2014.02.002] [PMID: 24607405]
[127]
Li J-H, Fan W-S, Wang M-M, Wang Y-H, Ren Z-G. Effects of mesenchymal stem cells on solid tumor metastasis in experimental cancer models: A systematic review and meta-analysis. J Transl Med 2018; 16(1): 113-26.
[http://dx.doi.org/10.1186/s12967-018-1484-9] [PMID: 29703232]
[128]
Lazennec G, Lam PY. Recent discoveries concerning the tumor - mesenchymal stem cell interactions. Biochim Biophys Acta 2016; 1866(2): 290-9.
[PMID: 27750042]
[129]
Gu JJ, Hoj J, Rouse C, Pendergast AM. Mesenchymal stem cells promote metastasis through activation of an ABL-MMP9 signaling axis in lung cancer cells. PLoS One 2020; 15(10): e0241423.
[http://dx.doi.org/10.1371/journal.pone.0241423] [PMID: 33119681]
[130]
Derossi DR, Amarante MK, Guembarovski RL, et al. CCL5 protein level: Influence on breast cancer staging and lymph nodes commitment. Mol Biol Rep 2019; 46(6): 6165-70.
[http://dx.doi.org/10.1007/s11033-019-05051-8] [PMID: 31691056]
[131]
Luo J, Lee SO, Cui Y, Yang R, Li L, Chang C. Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2α/androgen receptor signals. Oncotarget 2015; 6(29): 27555-65.
[http://dx.doi.org/10.18632/oncotarget.4515] [PMID: 26342197]
[132]
Makinoshima H, Dezawa M. Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Lett 2009; 583(22): 3697-703.
[http://dx.doi.org/10.1016/j.febslet.2009.10.061] [PMID: 19874825]
[133]
Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM. Interleukin-6 is a potent growth factor for ER-α-positive human breast cancer. FASEB J 2007; 21(13): 3763-70.
[http://dx.doi.org/10.1096/fj.07-8832com] [PMID: 17586727]
[134]
Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ, Kuo PC. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 2011; 32(4): 477-87.
[http://dx.doi.org/10.1093/carcin/bgr009] [PMID: 21252118]
[135]
Escobar P, Bouclier C, Serret J, et al. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production. Oncotarget 2015; 6(30): 29034-47.
[http://dx.doi.org/10.18632/oncotarget.4732] [PMID: 26362269]
[136]
Halpern JL, Kilbarger A, Lynch CC. Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor. Cancer Lett 2011; 308(1): 91-9.
[http://dx.doi.org/10.1016/j.canlet.2011.04.018] [PMID: 21601983]
[137]
Wang J, Wang Y, Wang S, et al. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget 2015; 6(40): 42825-37.
[http://dx.doi.org/10.18632/oncotarget.5739] [PMID: 26517517]
[138]
Li W, Zhou Y, Yang J, et al. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. J Exp Clin Cancer Res 2015; 34(1): 52.
[http://dx.doi.org/10.1186/s13046-015-0172-3] [PMID: 25986392]
[139]
Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6): 883-91.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
[140]
Payandeh Z, Yarahmadi M, Nariman-Saleh-Fam Z, et al. Immune therapy of melanoma: Overview of therapeutic vaccines. J Cell Physiol 2019; 234(9): 14612-21.
[141]
Shi S, Zhang Q, Xia Y, et al. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res 2016; 6(2): 459-72.
[PMID: 27186416]
[142]
Barcellos-de-Souza P, Comito G, Pons-Segura C, et al. Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1. Stem Cells 2016; 34(10): 2536-47.
[http://dx.doi.org/10.1002/stem.2412] [PMID: 27300750]
[143]
McAndrews KM, McGrail DJ, Ravikumar N, Dawson MR. Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci Rep 2015; 5: 16941-54.
[http://dx.doi.org/10.1038/srep16941] [PMID: 26585689]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy