Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Engineering Metal-Organic Framework-based Nanozymes for Enhanced Biosensing

Author(s): Weiqing Xu, Yu Wu, Lei Jiao, Wenling Gu, Dan Du, Yuehe Lin* and Chengzhou Zhu*

Volume 18, Issue 6, 2022

Published on: 24 August, 2021

Page: [739 - 752] Pages: 14

DOI: 10.2174/1573411017666210824115722

Price: $65

Abstract

Background: Nanozymes are a kind of emerging nanomaterials that can mimic the catalytic activity of natural enzymes with good stability.

Objective: Benefited by the unique coordination structure and constitution, metal-organic frameworks (MOFs) have been widely exploited as novel nanozymes. Importantly, various MOFs engineered with fascinating functions provide great opportunities to enhance their enzyme-like activity and improve their applied performance, achieving the goal of vividly mimicking natural enzymes.

Conclusion: This review summarized recent advances in the fabrication of the MOFs-based nanozymes and their applications in biosensing. First, MOFs-based nanomaterials containing pristine MOFs, functionalized MOFs, MOFs-based composites and MOFs derivatives are introduced, where the design strategy, enzyme-like activity and the catalytic mechanisms are highlighted systematically. Then, their applications in various target assays are summarized. Finally, the challenges and possible research directions for the development and application of MOFs-based nanozymes are provided.

Keywords: Metal-organic frameworks, nanozymes, biosensing, colorimetry, fluorescence, electrochemistry.

Graphical Abstract

[1]
Benkovic, S.J.; Hammes-Schiffer, S. A perspective on enzyme catalysis. Science, 2003, 301(5637), 1196-1202.
[http://dx.doi.org/10.1126/science.1085515] [PMID: 12947189]
[2]
Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397), 185-194.
[http://dx.doi.org/10.1038/nature11117] [PMID: 22575958]
[3]
Huang, S.; Kou, X.; Shen, J.; Chen, G.; Ouyang, G. “Armor-Plating” Enzymes with Metal-Organic Frameworks (MOFs). Angew. Chem. Int. Ed. Engl., 2020, 59(23), 8786-8798.
[http://dx.doi.org/10.1002/anie.201916474] [PMID: 31901003]
[4]
Wang, X.; Lan, P.C.; Ma, S. Metal-Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. ACS Cent. Sci., 2020, 6(9), 1497-1506.
[http://dx.doi.org/10.1021/acscentsci.0c00687] [PMID: 32999925]
[5]
Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev., 2019, 119(6), 4357-4412.
[http://dx.doi.org/10.1021/acs.chemrev.8b00672] [PMID: 30801188]
[6]
Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev., 2019, 48(4), 1004-1076.
[http://dx.doi.org/10.1039/C8CS00457A] [PMID: 30534770]
[7]
Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev., 2019, 48(14), 3683-3704.
[http://dx.doi.org/10.1039/C8CS00718G] [PMID: 31119258]
[8]
Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2(9), 577-583.
[http://dx.doi.org/10.1038/nnano.2007.260] [PMID: 18654371]
[9]
Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res., 2019, 52(8), 2190-2200.
[http://dx.doi.org/10.1021/acs.accounts.9b00140] [PMID: 31276379]
[10]
Cai, X.; Jiao, L.; Yan, H.; Wu, Y.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Mater. Today, 2021, 44, 211-228.
[http://dx.doi.org/10.1016/j.mattod.2020.12.005]
[11]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[12]
Kirchon, A.; Feng, L.; Drake, H.F.; Joseph, E.A.; Zhou, H-C. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev., 2018, 47(23), 8611-8638.
[http://dx.doi.org/10.1039/C8CS00688A] [PMID: 30234863]
[13]
Li, S.; Liu, X.; Chai, H.; Huang, Y. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC. Trends Analyt. Chem., 2018, 105, 391-403.
[http://dx.doi.org/10.1016/j.trac.2018.06.001]
[14]
Wang, D.; Jana, D.; Zhao, Y. Metal-Organic Framework Derived Nanozymes in Biomedicine. Acc. Chem. Res., 2020, 53(7), 1389-1400.
[http://dx.doi.org/10.1021/acs.accounts.0c00268] [PMID: 32597637]
[15]
Niu, X.; Li, X.; Lyu, Z.; Pan, J.; Ding, S.; Ruan, X.; Zhu, W.; Du, D.; Lin, Y. Metal-organic framework based nanozymes: promising materials for biochemical analysis. Chem. Commun. (Camb.), 2020, 56(77), 11338-11353.
[http://dx.doi.org/10.1039/D0CC04890A] [PMID: 32909017]
[16]
Xu, W.; Jiao, L.; Wu, Y.; Hu, L.; Gu, W.; Zhu, C. Metal-Organic Frameworks Enhance Biomimetic Cascade Catalysis for Biosensing. Adv. Mater., 2021, 33(22), e2005172.
[http://dx.doi.org/10.1002/adma.202005172] [PMID: 33893661]
[17]
Morris, P.D.; McPherson, I.J.; Edwards, M.A.; Kashtiban, R.J.; Walton, R.I.; Unwin, P.R. Electric Field-Controlled Synthesis and Characterisation of Single Metal-Organic-Framework (MOF). Nanoparticles. Angew. Chem. Int. Ed. Engl., 2020, 59(44), 19696-19701.
[http://dx.doi.org/10.1002/anie.202007146] [PMID: 32633454]
[18]
Zhao, Z.; Huang, Y.; Liu, W.; Ye, F.; Zhao, S. Immobilized Glucose Oxidase on Boronic Acid-Functionalized Hierarchically Porous MOF as an Integrated Nanozyme for One-Step Glucose Detection. ACS Sustain. Chem.& Eng., 2020, 8(11), 4481-4488.
[http://dx.doi.org/10.1021/acssuschemeng.9b07631]
[19]
Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H-C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev., 2017, 46(11), 3386-3401.
[http://dx.doi.org/10.1039/C7CS00058H] [PMID: 28451673]
[20]
Dang, S.; Zhu, Q-L.; Xu, Q. Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater., 2017, 3(1), 17075.
[http://dx.doi.org/10.1038/natrevmats.2017.75]
[21]
Wang, Q.; Astruc, D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev., 2020, 120(2), 1438-1511.
[http://dx.doi.org/10.1021/acs.chemrev.9b00223] [PMID: 31246430]
[22]
Wang, H-S. Metal-organic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev., 2017, 349, 139-155.
[http://dx.doi.org/10.1016/j.ccr.2017.08.015]
[23]
Ma, X.; Jannasch, A.; Albrecht, U-R.; Hahn, K.; Miguel-López, A.; Schäffer, E.; Sánchez, S. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Lett., 2015, 15(10), 7043-7050.
[http://dx.doi.org/10.1021/acs.nanolett.5b03100] [PMID: 26437378]
[24]
Liang, S.; Wu, X-L.; Xiong, J.; Zong, M-H.; Lou, W-Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev., 2020, 406, 213149.
[http://dx.doi.org/10.1016/j.ccr.2019.213149]
[25]
Wang, Z.; Jiang, X.; Yuan, R.; Chai, Y.N. -(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosens. Bioelectron., 2018, 121, 250-256.
[http://dx.doi.org/10.1016/j.bios.2018.09.022] [PMID: 30219725]
[26]
Zhang, J-W.; Zhang, H-T.; Du, Z-Y.; Wang, X.; Yu, S-H.; Jiang, H-L. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun. (Camb.), 2014, 50(9), 1092-1094.
[http://dx.doi.org/10.1039/C3CC48398C] [PMID: 24317416]
[27]
Lin, T.; Qin, Y.; Huang, Y.; Yang, R.; Hou, L.; Ye, F.; Zhao, S. A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem. Commun. (Camb.), 2018, 54(14), 1762-1765.
[http://dx.doi.org/10.1039/C7CC09819G] [PMID: 29380827]
[28]
Yang, B.; Ding, L.; Yao, H.; Chen, Y.; Shi, J. A Metal-Organic Framework (MOF) Fenton Nanoagent-Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition. Adv. Mater., 2020, 32(12), e1907152.
[http://dx.doi.org/10.1002/adma.201907152] [PMID: 32053261]
[29]
Ruan, X.; Liu, D.; Niu, X.; Wang, Y.; Simpson, C.D.; Cheng, N.; Du, D.; Lin, Y. 2D Graphene Oxide/Fe-MOF Nanozyme Nest with Superior Peroxidase-Like Activity and Its Application for Detection of Woodsmoke Exposure Biomarker. Anal. Chem., 2019, 91(21), 13847-13854.
[http://dx.doi.org/10.1021/acs.analchem.9b03321] [PMID: 31575114]
[30]
Wang, J.; Hu, Y.; Zhou, Q.; Hu, L.; Fu, W.; Wang, Y. Peroxidase-like Activity of Metal-Organic Framework [Cu(PDA)(DMF)] and Its Application for Colorimetric Detection of Dopamine. ACS Appl. Mater. Interfaces, 2019, 11(47), 44466-44473.
[http://dx.doi.org/10.1021/acsami.9b17488] [PMID: 31691561]
[31]
Li, D.; Zhang, S.; Feng, X.; Yang, H.; Nie, F.; Zhang, W. A novel peroxidase mimetic Co-MOF enhanced luminol chemiluminescence and its application in glucose sensing. Sens. Actuators B Chem., 2019, 296, 126631.
[http://dx.doi.org/10.1016/j.snb.2019.126631]
[32]
Chen, J.; Shu, Y.; Li, H.; Xu, Q.; Hu, X. Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta, 2018, 189, 254-261.
[http://dx.doi.org/10.1016/j.talanta.2018.06.075] [PMID: 30086915]
[33]
Xiong, Y.; Chen, S.; Ye, F.; Su, L.; Zhang, C.; Shen, S.; Zhao, S. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem. Commun. (Camb.), 2015, 51(22), 4635-4638.
[http://dx.doi.org/10.1039/C4CC10346G] [PMID: 25690559]
[34]
Li, M.; Chen, J.; Wu, W.; Fang, Y.; Dong, S. Oxidase-like MOF-818 Nanozyme with High Specificity for Catalysis of Catechol Oxidation. J. Am. Chem. Soc., 2020, 142(36), 15569-15574.
[http://dx.doi.org/10.1021/jacs.0c07273] [PMID: 32790301]
[35]
Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 2010, 5(1), 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[36]
Zhang, L.; Zhang, Y.; Wang, Z.; Cao, F.; Sang, Y.; Dong, K.; Pu, F.; Ren, J.; Qu, X. Constructing metal-organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater. Horiz., 2019, 6(8), 1682-1687.
[http://dx.doi.org/10.1039/C9MH00339H]
[37]
Li, X.; Zhou, H.; Qi, F.; Niu, X.; Xu, X.; Qiu, F.; He, Y.; Pan, J.; Ni, L. Three hidden talents in one framework: a terephthalic acid-coordinated cupric metal-organic framework with cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence for cysteine sensing. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(39), 6207-6211.
[http://dx.doi.org/10.1039/C8TB02167H] [PMID: 32254610]
[38]
Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Appl. Mater. Interfaces, 2017, 9(2), 1352-1360.
[http://dx.doi.org/10.1021/acsami.6b15124] [PMID: 28004568]
[39]
Liu, X.; Qi, W.; Wang, Y.; Su, R.; He, Z. Exploration of Intrinsic Lipase-Like Activity of Zirconium-Based Metal-Organic Frameworks. Eur. J. Inorg. Chem., 2018, 2018(41), 4579-4585.
[http://dx.doi.org/10.1002/ejic.201800898]
[40]
Mondloch, J.E.; Katz, M.J.; Isley, W.C., III; Ghosh, P.; Liao, P.; Bury, W.; Wagner, G.W.; Hall, M.G.; DeCoste, J.B.; Peterson, G.W.; Snurr, R.Q.; Cramer, C.J.; Hupp, J.T.; Farha, O.K. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater., 2015, 14(5), 512-516.
[http://dx.doi.org/10.1038/nmat4238] [PMID: 25774952]
[41]
Chen, J.; Huang, L.; Wang, Q.; Wu, W.; Zhang, H.; Fang, Y.; Dong, S. Bio-inspired nanozyme: a hydratase mimic in a zeolitic imidazolate framework. Nanoscale, 2019, 11(13), 5960-5966.
[http://dx.doi.org/10.1039/C9NR01093A] [PMID: 30888366]
[42]
Wang, K.; Feng, D.; Liu, T-F.; Su, J.; Yuan, S.; Chen, Y-P.; Bosch, M.; Zou, X.; Zhou, H-C. A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J. Am. Chem. Soc., 2014, 136(40), 13983-13986.
[http://dx.doi.org/10.1021/ja507269n] [PMID: 25208035]
[43]
Karagiaridi, O.; Bury, W.; Mondloch, J.E.; Hupp, J.T.; Farha, O.K. Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem. Int. Ed. Engl., 2014, 53(18), 4530-4540.
[http://dx.doi.org/10.1002/anie.201306923] [PMID: 24652755]
[44]
Xu, W.; Kang, Y.; Jiao, L.; Wu, Y.; Yan, H.; Li, J.; Gu, W.; Song, W.; Zhu, C. Tuning Atomically Dispersed Fe Sites in Metal-Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing. Nano-Micro Lett., 2020, 12(1), 184.
[http://dx.doi.org/10.1007/s40820-020-00520-3] [PMID: 34138213]
[45]
Wu, J.; Wang, Z.; Jin, X.; Zhang, S.; Li, T.; Zhang, Y.; Xing, H.; Yu, Y.; Zhang, H.; Gao, X.; Wei, H. Hammett Relationship in Oxidase-Mimicking Metal-Organic Frameworks Revealed through a Protein-Engineering-Inspired Strategy. Adv. Mater., 2021, 33(3), e2005024.
[http://dx.doi.org/10.1002/adma.202005024] [PMID: 33283334]
[46]
Chen, W-H.; Vázquez-González, M.; Kozell, A.; Cecconello, A.; Willner, I. Cu2+ -Modified Metal-Organic Framework Nanoparticles: A Peroxidase-Mimicking Nanoenzyme. Small, 2018, 14(5), 1703149.
[http://dx.doi.org/10.1002/smll.201703149] [PMID: 29205812]
[47]
Wang, D.; Wu, H.; Phua, S.Z.F.; Yang, G.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H.; Guo, Z.; Chen, H.; Zhao, Y. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun., 2020, 11(1), 357.
[http://dx.doi.org/10.1038/s41467-019-14199-7] [PMID: 31953423]
[48]
Huang, Y.; Zhao, M.; Han, S.; Lai, Z.; Yang, J.; Tan, C.; Ma, Q.; Lu, Q.; Chen, J.; Zhang, X.; Zhang, Z.; Li, B.; Chen, B.; Zong, Y.; Zhang, H. Growth of Au Nanoparticles on 2D Metalloporphyrinic Metal-Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Adv. Mater., 2017, 29(32), 1700102.
[http://dx.doi.org/10.1002/adma.201700102] [PMID: 28634989]
[49]
Li, H.; Liu, H.; Zhang, J.; Cheng, Y.; Zhang, C.; Fei, X.; Xian, Y. Platinum Nanoparticle Encapsulated Metal-Organic Frameworks for Colorimetric Measurement and Facile Removal of Mercury(II). ACS Appl. Mater. Interfaces, 2017, 9(46), 40716-40725.
[http://dx.doi.org/10.1021/acsami.7b13695] [PMID: 29087174]
[50]
Li, Y.; Yu, C.; Yang, B.; Liu, Z.; Xia, P.; Wang, Q. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens. Bioelectron., 2018, 102, 307-315.
[http://dx.doi.org/10.1016/j.bios.2017.11.047] [PMID: 29156406]
[51]
Su, L.; Xiong, Y.; Yang, H.; Zhang, P.; Ye, F. Prussian blue nanoparticles encapsulated inside a metal-organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(1), 128-134.
[http://dx.doi.org/10.1039/C5TB01924A] [PMID: 32262816]
[52]
Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H. Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. ACS Nano, 2017, 11(6), 5558-5566.
[http://dx.doi.org/10.1021/acsnano.7b00905] [PMID: 28549217]
[53]
Wang, Q.; Zhang, X.; Huang, L.; Zhang, Z.; Dong, S. GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 16082-16085.
[http://dx.doi.org/10.1002/anie.201710418] [PMID: 29119659]
[54]
Zhang, L.; Liu, Z.; Deng, Q.; Sang, Y.; Dong, K.; Ren, J.; Qu, X. Nature-Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia-Like Surface for Enhanced Bacterial Inhibition. Angew. Chem. Int. Ed. Engl., 2021, 60(7), 3469-3474.
[http://dx.doi.org/10.1002/anie.202012487] [PMID: 33118263]
[55]
Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc., 2008, 130(16), 5390-5391.
[http://dx.doi.org/10.1021/ja7106146] [PMID: 18376833]
[56]
Tan, H.; Ma, C.; Gao, L.; Li, Q.; Song, Y.; Xu, F.; Wang, T.; Wang, L. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry, 2014, 20(49), 16377-16383.
[http://dx.doi.org/10.1002/chem.201404960] [PMID: 25332148]
[57]
Cao, F.; Zhang, Y.; Sun, Y.; Wang, Z.; Zhang, L.; Huang, Y.; Liu, C.; Liu, Z.; Ren, J.; Qu, X. Ultrasmall Nanozymes Isolated within Porous Carbonaceous Frameworks for Synergistic Cancer Therapy: Enhanced Oxidative Damage and Reduced Energy Supply. Chem. Mater., 2018, 30(21), 7831-7839.
[http://dx.doi.org/10.1021/acs.chemmater.8b03348]
[58]
Wang, D.; Wu, H.; Lim, W.Q.; Phua, S.Z.F.; Xu, P.; Chen, Q.; Guo, Z.; Zhao, Y. A Mesoporous Nanoenzyme Derived from Metal-Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy. Adv. Mater., 2019, 31(27), e1901893.
[http://dx.doi.org/10.1002/adma.201901893] [PMID: 31095804]
[59]
Huang, L.; Chen, J.; Gan, L.; Wang, J.; Dong, S. Single-atom nanozymes. Sci. Adv., 2019, 5(5), eaav5490.
[http://dx.doi.org/10.1126/sciadv.aav5490] [PMID: 31058221]
[60]
Jiao, L.; Xu, W.; Yan, H.; Wu, Y.; Liu, C.; Du, D.; Lin, Y.; Zhu, C. Fe-N-C Single-Atom Nanozymes for the Intracellular Hydrogen Peroxide Detection. Anal. Chem., 2019, 91(18), 11994-11999.
[http://dx.doi.org/10.1021/acs.analchem.9b02901] [PMID: 31436084]
[61]
Jiao, L.; Yan, H.; Wu, Y.; Gu, W.; Zhu, C.; Du, D.; Lin, Y. When Nanozymes Meet Single-Atom Catalysis. Angew. Chem. Int. Ed. Engl., 2020, 59(7), 2565-2576.
[http://dx.doi.org/10.1002/anie.201905645] [PMID: 31209985]
[62]
Wu, Y.; Jiao, L.; Luo, X.; Xu, W.; Wei, X.; Wang, H.; Yan, H.; Gu, W.; Xu, B.Z.; Du, D.; Lin, Y.; Zhu, C. Oxidase-Like Fe-N-C Single-Atom Nanozymes for the Detection of Acetylcholinesterase Activity. Small, 2019, 15(43), e1903108.
[http://dx.doi.org/10.1002/smll.201903108] [PMID: 31482681]
[63]
Jiao, L.; Wu, J.; Zhong, H.; Zhang, Y.; Xu, W.; Wu, Y.; Chen, Y.; Yan, H.; Zhang, Q.; Gu, W.; Gu, L.; Beckman, S.P.; Huang, L.; Zhu, C. Densely Isolated FeN4 Sites for Peroxidase Mimicking. ACS Catal., 2020, 10(11), 6422-6429.
[http://dx.doi.org/10.1021/acscatal.0c01647]
[64]
Jiao, L.; Xu, W.; Wu, Y.; Yan, H.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev., 2021, 50(2), 750-765.
[http://dx.doi.org/10.1039/D0CS00367K] [PMID: 33306069]
[65]
Jiao, L.; Xu, W.; Zhang, Y.; Wu, Y.; Gu, W.; Ge, X.; Chen, B.; Zhu, C.; Guo, S. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today, 2020, 35, 100971.
[http://dx.doi.org/10.1016/j.nantod.2020.100971]
[66]
Xu, B.; Wang, H.; Wang, W.; Gao, L.; Li, S.; Pan, X.; Wang, H.; Yang, H.; Meng, X.; Wu, Q.; Zheng, L.; Chen, S.; Shi, X.; Fan, K.; Yan, X.; Liu, H. A Single-Atom Nanozyme for Wound Disinfection Applications. Angew. Chem. Int. Ed. Engl., 2019, 58(15), 4911-4916.
[http://dx.doi.org/10.1002/anie.201813994] [PMID: 30697885 ]
[67]
Wang, Y.; Zhao, M.; Ping, J.; Chen, B.; Cao, X.; Huang, Y.; Tan, C.; Ma, Q.; Wu, S.; Yu, Y.; Lu, Q.; Chen, J.; Zhao, W.; Ying, Y.; Zhang, H. Bioinspired Design of Ultrathin 2D Bimetallic Metal-Organic-Framework Nanosheets Used as Biomimetic Enzymes. Adv. Mater., 2016, 28(21), 4149-4155.
[http://dx.doi.org/10.1002/adma.201600108] [PMID: 27008574]
[68]
Ai, L.; Li, L.; Zhang, C.; Fu, J.; Jiang, J. MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chemistry, 2013, 19(45), 15105-15108.
[http://dx.doi.org/10.1002/chem.201303051] [PMID: 24150880]
[69]
Wang, Y.; Zhao, M.; Ping, J.; Chen, B.; Cao, X.; Huang, Y.; Tan, C.; Ma, Q.; Wu, S.; Yu, Y.; Lu, Q.; Chen, J.; Zhao, W.; Ying, Y.; Zhang, H. Bioinspired Design of Ultrathin 2D Bimetallic Metal-Organic-Framework Nanosheets Used as Biomimetic Enzymes. Adv. Mater., 2016, 28(21), 4149-4155.
[http://dx.doi.org/10.1002/adma.201600108] [PMID: 27008574]
[70]
Xu, W.; Jiao, L.; Yan, H.; Wu, Y.; Chen, L.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Glucose Oxidase-Integrated Metal-Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS Appl. Mater. Interfaces, 2019, 11(25), 22096-22101.
[http://dx.doi.org/10.1021/acsami.9b03004] [PMID: 31134797]
[71]
Guo, J.; Wu, S.; Wang, Y.; Zhao, M. A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sens. Actuators B Chem., 2020, 312, 128021.
[http://dx.doi.org/10.1016/j.snb.2020.128021]
[72]
Luo, L.; Huang, L.; Liu, X.; Zhang, W.; Yao, X.; Dou, L.; Zhang, X.; Nian, Y.; Sun, J.; Wang, J. Mixed-Valence Ce-BPyDC Metal-Organic Framework with Dual Enzyme-like Activities for Colorimetric Biosensing. Inorg. Chem., 2019, 58(17), 11382-11388.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00661] [PMID: 31402664]
[73]
Sun, Z.J.; Jiang, J.Z.; Li, Y.F. A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system. Analyst (Lond.), 2015, 140(24), 8201-8208.
[http://dx.doi.org/10.1039/C5AN01673H] [PMID: 26568205]
[74]
Liu, Y.L.; Fu, W.L.; Li, C.M.; Huang, C.Z.; Li, Y.F. Gold nanoparticles immobilized on metal-organic frameworks with enhanced catalytic performance for DNA detection. Anal. Chim. Acta, 2015, 861, 55-61.
[http://dx.doi.org/10.1016/j.aca.2014.12.032] [PMID: 25702274]
[75]
Chen, Q.; Li, S.; Liu, Y.; Zhang, X.; Tang, Y.; Chai, H.; Huang, Y. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B Chem., 2020, 305, 127511.
[http://dx.doi.org/10.1016/j.snb.2019.127511]
[76]
Bagheri, N.; Khataee, A.; Hassanzadeh, J.; Habibi, B. Sensitive biosensing of organophosphate pesticides using enzyme mimics of magnetic ZIF-8. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 209, 118-125.
[http://dx.doi.org/10.1016/j.saa.2018.10.039] [PMID: 30384017]
[77]
Wang, S.; Deng, W.; Yang, L.; Tan, Y.; Xie, Q.; Yao, S. Copper-Based Metal-Organic Framework Nanoparticles with Peroxidase-Like Activity for Sensitive Colorimetric Detection of Staphylococcus aureus. ACS Appl. Mater. Interfaces, 2017, 9(29), 24440-24445.
[http://dx.doi.org/10.1021/acsami.7b07307] [PMID: 28691795]
[78]
Zhang, T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X.; Lu, N.; Liu, H.; Xu, Z.; Xu, H.; Zhang, Z.; Yang, M. AuPt/MOF-Graphene: A Synergistic Catalyst with Surprisingly High Peroxidase-Like Activity and Its Application for H2O2 Detection. Anal. Chem., 2019, 91(16), 10589-10595.
[http://dx.doi.org/10.1021/acs.analchem.9b01715] [PMID: 31333020]
[79]
Zhang, X.; Li, G.; Wu, D.; Li, X.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron., 2019, 137, 178-198.
[http://dx.doi.org/10.1016/j.bios.2019.04.061] [PMID: 31100598]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy