Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Antibody-Dependent Cell-Mediated Cytotoxicity Through Natural Killer (NK) Cells: Unlocking NK Cells for Future Immunotherapy

Author(s): Ding Sheng Chin, Crystale Siew Ying Lim, Fazlina Nordin, Norsyahida Arifin and Tye Gee Jun*

Volume 23, Issue 4, 2022

Published on: 20 August, 2021

Page: [552 - 578] Pages: 27

DOI: 10.2174/1389201022666210820093608

Price: $65

Abstract

Background: Natural killer (NK) cells have potent effector functions that can be further improved for therapeutic purposes through antibody-dependent cell-mediated cytotoxicity (ADCC). Specific killing of virus-infected cells and cancer cells is modulated through target specific antibodies that subsequently recruit NK cells for ADCC. NK cells produce cytokines similar to activated T cells, but is less persistent as NK cells have short-lived responses. These features benefit the development of customisable and more individualised cell-based therapies.

Objectives: Preclinical studies with NK cells were promising and several clinical studies are ongoing to investigate their use in antibody therapies. However, more reliable ADCC assays are required for evaluating NK cell activity to optimise therapeutic antibodies. The therapeutic potential of NK cell therapy could then be improved by harnessing ADCC.

Methods: This review discusses recent studies on key components of NK cell-mediated ADCC, current clinical trials involving NK cells, ADCC assay developments and various techniques to improve ADCC.

Results: Improvements can be made to NK-mediated ADCC through modifications of antibodies, effector cells and target antigens. Different aspects of antibodies were studied extensively, including modifying glycosylation patterns, novel production methods, combination regiments, bispecific antibodies, and conjugated antibodies. Modification of NK cells and tumour surface markers could improve ADCC of even treatment-resistant cancer cells. Additives such as cytokines and other immunomodulatory agents can further augment ADCC to supplement NK cell-based therapies.

Conclusion: ADCC improvements could be incorporated with current biological techniques such as adoptive transfer of NK cells and chimeric antigen receptor (CAR) NK cells, to improve the outcome of NK cell-based therapy and pave the way for future immunotherapies.

Keywords: Natural killer cell, antibody-dependent cellular cytotoxicity, Fc receptor, CD16, therapeutic antibodies, immunotherapy.

Graphical Abstract

[1]
Chiossone, L.; Dumas, P.Y.; Vienne, M.; Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol., 2018, 18(11), 671-688.
[http://dx.doi.org/10.1038/s41577-018-0061-z] [PMID: 30209347]
[2]
Legris, T.; Picard, C.; Todorova, D.; Lyonnet, L.; Laporte, C.; Dumoulin, C.; Nicolino-Brunet, C.; Daniel, L.; Loundou, A.; Morange, S.; Bataille, S.; Vacher-Coponat, H.; Moal, V.; Berland, Y.; Dignat-George, F.; Burtey, S.; Paul, P. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies. Front. Immunol., 2016, 7, 288.
[http://dx.doi.org/10.3389/fimmu.2016.00288] [PMID: 27563301]
[3]
Wang, W.; Erbe, A.K.; Hank, J.A.; Morris, Z.S.; Sondel, P.M. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front. Immunol., 2015, 6, 368.
[http://dx.doi.org/10.3389/fimmu.2015.00368] [PMID: 26284063]
[4]
Kimpo, M.S.; Oh, B.; Lee, S. The role of natural killer cells as a platform for immunotherapy in pe-diatric cancers. Curr. Oncol. Rep., 2019, 21(10), 93.
[http://dx.doi.org/10.1007/s11912-019-0837-8] [PMID: 31502008]
[5]
Morgan, M.A.; Büning, H.; Sauer, M. Schambach, a. use of cell and genome modification technol-ogies to generate improved “Off-the-Shelf” CAR T and CAR NK Cells. Front. Immunol., 2020, 11, 1965.
[http://dx.doi.org/10.3389/fimmu.2020.01965] [PMID: 32903482]
[6]
Liu, S.; Galat, V.; Galat, Y.; Lee, Y.K.A.; Wainwright, D.; Wu, J. NK cell-based cancer immuno-therapy: from basic biology to clinical development. J. Hematol. Oncol., 2021, 14(1), 7.
[http://dx.doi.org/10.1186/s13045-020-01014-w] [PMID: 33407739]
[7]
Shimasaki, N.; Jain, A.; Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov., 2020, 19(3), 200-218.
[http://dx.doi.org/10.1038/s41573-019-0052-1] [PMID: 31907401]
[8]
Chen, Z.; Yang, Y.; Liu, L.L.; Lundqvist, A. Strategies to augment natural killer (NK) cell activity against solid tumors. Cancers (Basel), 2019, 11(7) ,E1040
[http://dx.doi.org/10.3390/cancers11071040] [PMID: 31340613]
[9]
Yang, C.; Li, Y.; Yang, Y.; Chen, Z. Overview of strategies to improve therapy against tumors using natural killer cell. J. Immunol. Res., 2020, 2020 ,8459496
[http://dx.doi.org/10.1155/2020/8459496] [PMID: 32411806]
[10]
Zhang, C.; Hu, Y.; Shi, C. Targeting natural killer cells for tumor immunotherapy. Front. Immunol., 2020, 11, 60.
[http://dx.doi.org/10.3389/fimmu.2020.00060] [PMID: 32140153]
[11]
Bassani, B.; Baci, D.; Gallazzi, M.; Poggi, A.; Bruno, A.; Mortara, L. Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activi-ties into potent anti-tumor effects. Cancers (Basel), 2019, 11(4), 461.
[http://dx.doi.org/10.3390/cancers11040461] [PMID: 30939820]
[12]
Liu, P.; Chen, L.; Zhang, H. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy. J. Immunol. Res., 2018, 2018 ,1206737
[http://dx.doi.org/10.1155/2018/1206737] [PMID: 30255103]
[13]
Valipour, B.; Velaei, K.; Abedelahi, A.; Karimipour, M.; Darabi, M.; Charoudeh, H.N. NK cells: An attractive candidate for cancer therapy. J. Cell. Physiol., 2019, 234(11), 19352-19365.
[http://dx.doi.org/10.1002/jcp.28657] [PMID: 30993712]
[14]
Carlsten, M.; Järås, M. Natural killer cells in myeloid malignancies: immune surveillance, NK cell dysfunction, and pharmacological opportunities to bolster the endogenous NK cells. Front. Immunol., 2019, 10, 2357.
[http://dx.doi.org/10.3389/fimmu.2019.02357] [PMID: 31681270]
[15]
Choucair, K.; Duff, J.R.; Cassidy, C.S.; Albrethsen, M.T.; Kelso, J.D.; Lenhard, A.; Staats, H.; Pa-tel, R.; Brunicardi, F.C.; Dworkin, L.; Nemunaitis, J. Natural killer cells: a review of biology, thera-peutic potential and challenges in treatment of solid tumors. Future Oncol., 2019, 15(26), 3053-3069.
[http://dx.doi.org/10.2217/fon-2019-0116] [PMID: 31411057]
[16]
Nayyar, G.; Chu, Y.; Cairo, M.S. Overcoming resistance to natural killer cell based immunotherapies for solid tumors. Front. Oncol., 2019, 9, 51.
[http://dx.doi.org/10.3389/fonc.2019.00051] [PMID: 30805309]
[17]
Khan, M.; Arooj, S.; Wang, H.NK Cell-Based Immune Checkpoint Inhibition. Front. Immunol., 2020, 11(February), 167.
[http://dx.doi.org/10.3389/fimmu.2020.00167] [PMID: 32117298]
[18]
Miller, J.S.; Lanier, L.L. Natural killer cells in cancer immunotherapy. Annu. Rev. Cancer Biol., 2019, 3(1), 77-103.
[http://dx.doi.org/10.1146/annurev-cancerbio-030518-055653]
[19]
Long, E.O.; Kim, H.S.; Liu, D.; Peterson, M.E.; Rajagopalan, S. Controlling natural killer cell re-sponses: integration of signals for activation and inhibition. Annu. Rev. Immunol., 2013, 31, 227-258.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075005] [PMID: 23516982]
[20]
Li, Y.; Huang, K.; Liu, L.; Qu, Y.; Huang, Y.; Wu, Y.; Wei, J. Effects of complement and serum IgG on rituximab-dependent natural killer cell-mediated cytotoxicity against Raji cells. Oncol. Lett., 2019, 17(1), 339-347.https://doi.org/https://doi.org/10.3892/ol.2018.9630
[http://dx.doi.org/10.3892/ol.2014.2099] [PMID: 30655772]
[21]
Paul, P.; Pedini, P.; Lyonnet, L.; Di Cristofaro, J.; Loundou, A.; Pelardy, M.; Basire, A.; Dignat-George, F.; Chiaroni, J.; Thomas, P.; Reynaud-Gaubert, M.; Picard, C. FCGR3A and FCGR2A gen-otypes differentially impact allograft rejection and patients’ survival after lung transplant. Front. Immunol., 2019, 10, 1208.
[http://dx.doi.org/10.3389/fimmu.2019.01208] [PMID: 31249568]
[22]
Fujii, R.; Schlom, J.; Hodge, J.W. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. J. Neurosurg., 2018, 128(5), 1419-1427.
[http://dx.doi.org/10.3171/2017.1.JNS162610] [PMID: 28753113]
[23]
Taylor, R.J.; Saloura, V.; Jain, A.; Goloubeva, O.; Wong, S.; Kronsberg, S.; Nagilla, M.; Silpino, L.; de Souza, J.; Seiwert, T.; Vokes, E.; Villaflor, V.; Cohen, E.E.W. Ex vivo antibody-dependent cellu-lar cytotoxicity inducibility predicts efficacy of cetuximab. Cancer Immunol. Res., 2015, 3(5), 567-574.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0188] [PMID: 25769300]
[24]
Temming, A.R.; de Taeye, S.W.; de Graaf, E.L.; de Neef, L.A.; Dekkers, G.; Bruggeman, C.W.; Koers, J.; Ligthart, P.; Nagelkerke, S.Q.; Zimring, J.C.; Kuijpers, T.W.; Wuhrer, M.; Rispens, T.; Vidarsson, G. Functional attributes of antibodies, effector cells, and target cells affecting NK cell–mediated antibody-dependent cellular cytotoxicity. J. Immunol., 2019, 203(12), 3126-3135.
[http://dx.doi.org/10.4049/jimmunol.1900985] [PMID: 31748349]
[25]
Zahavi, D.; AlDeghaither, D.; O’Connell, A.; Weiner, L.M. Enhancing antibody-dependent cell-mediated cytotoxicity: a strategy for improving antibody-based immunotherapy. Antib. Ther., 2018, 1(1), 7-12.
[http://dx.doi.org/10.1093/abt/tby002] [PMID: 33928217]
[26]
Siebert, N.; Jensen, C.; Troschke-Meurer, S.; Zumpe, M.; Jüttner, M.; Ehlert, K.; Kietz, S.; Müller, I.; Lode, H.N. Neuroblastoma patients with high-affinity FCGR2A, -3A and stimulatory KIR 2DS2 treated by long-term infusion of anti-GD2 antibody ch14.18/CHO show higher ADCC levels and improved event-free survival. OncoImmunology, 2016, 5(11) ,e1235108
[http://dx.doi.org/10.1080/2162402X.2016.1235108] [PMID: 27999754]
[27]
Trotta, A.M.; Ottaiano, A.; Romano, C.; Nasti, G.; Nappi, A.; De Divitiis, C.; Napolitano, M.; Za-notta, S.; Casaretti, R.; D’Alterio, C.; Avallone, A.; Califano, D.; Iaffaioli, R.V.; Scala, S. Prospec-tive evaluation of cetuximab-mediated antibody-dependent cell cytotoxicity in metastatic colorectal cancer patients predicts treatment efficacy. Cancer Immunol. Res., 2016, 4(4), 366-374.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0184] [PMID: 26817995]
[28]
Talathi, S.P.; Shaikh, N.N.; Pandey, S.S.; Saxena, V.A.; Mamulwar, M.S.; Thakar, M.R. FcγRIIIa receptor polymorphism influences NK cell mediated ADCC activity against HIV. BMC Infect. Dis., 2019, 19(1), 1-8.
[http://dx.doi.org/10.1186/s12879-019-4674-z] [PMID: 30606108]
[29]
Valipour, B.; Abedelahi, A.; Naderali, E.; Velaei, K.; Movassaghpour, A.; Talebi, M.; Mon-tazersaheb, S.; Karimipour, M.; Darabi, M.; Chavoshi, H.; Nozad Charoudeh, H. Cord blood stem cell derived CD16+ NK cells eradicated acute lymphoblastic leukemia cells using with anti-CD47 antibody. Life Sci., 2020, 242 ,117223
[http://dx.doi.org/10.1016/j.lfs.2019.117223] [PMID: 31881222]
[30]
Bhatnagar, N.; Ahmad, F.; Hong, H.S.; Eberhard, J.; Lu, I.N.; Ballmaier, M.; Schmidt, R.E.; Jacobs, R.; Meyer-Olson, D. FcγRIII (CD16)-mediated ADCC by NK cells is regulated by monocytes and FcγRII (CD32). Eur. J. Immunol., 2014, 44(11), 3368-3379.
[http://dx.doi.org/10.1002/eji.201444515] [PMID: 25100508]
[31]
Phaahla, N.G.; Lassaunière, R.; Da Costa Dias, B.; Waja, Z.; Martinson, N.A.; Tiemessen, C.T. Chronic HIV-1 infection alters the cellular distribution of FcγRIIIa and the functional consequence of the FcγRIIIa-F158V variant. Front. Immunol., 2019, 10, 735.
[http://dx.doi.org/10.3389/fimmu.2019.00735] [PMID: 31024562]
[32]
Guo, X.; Somanchi, S.; Mathur, R.; He, S.; Ye, Q.; Difiglia, A.; Rotondo, S.; Rana, H.; Ling, W.; Edinger, J.; Hariri, R.; Zhang, X. Engineering High Affinity and Cleavage Resistant CD16 to Aug-ment ADCC of Placental Hematopoietic Stem Cells-Derived Natural Killer Cells.Blood, 2019, 134(Supplent-1), 1576.
[http://dx.doi.org/10.1182/blood-2019-127009]
[33]
Misumi, T.; Tanabe, K.; Fujikuni, N.; Ohdan, H. Stimulation of natural killer cells with rhCD137 ligand enhances tumor-targeting antibody efficacy in gastric cancer. PLoS One, 2018, 13(10) ,e0204880
[http://dx.doi.org/10.1371/journal.pone.0204880] [PMID: 30321186]
[34]
Wagner, A.K.; Alici, E.; Lowdell, M.W. Characterization of human natural killer cells for therapeutic use. Cytotherapy, 2019, 21(3), 315-326.
[http://dx.doi.org/10.1016/j.jcyt.2018.11.001] [PMID: 30910383]
[35]
Robinson, J.; Mistry, K.; McWilliam, H.; Lopez, R.; Marsh, S.G.E. IPD—the immuno polymorphism database. Nucleic Acids Res., 2010, 38(Database issue)(Suppl. 1), D863-D869.
[http://dx.doi.org/10.1093/nar/gkp879] [PMID: 19875415]
[36]
Morales-Estevez, C.; De la Haba-Rodriguez, J.; Manzanares-Martin, B.; Porras-Quintela, I. Rodri-guez-Ariza, A.; Moreno-Vega, A.; Ortiz-Morales, M.J.; Gomez-España, M.A.; Cano-Osuna, M.T.; Lopez-Gonzalez, J.; Chia-Delgado, B.; Gonzalez-Fernandez, R.; Aranda-Aguilar, E. KIR genes and their ligands predict the response to anti-EGFR monoclonal antibodies in solid tumors. Front. Immunol., 2016, 7(DEC), 561.
[http://dx.doi.org/10.3389/fimmu.2016.00561] [PMID: 27994592]
[37]
Carbone, E.; Neri, P.; Mesuraca, M.; Fulciniti, M.T.; Otsuki, T.; Pende, D.; Groh, V.; Spies, T.; Pol-lio, G.; Cosman, D.; Catalano, L.; Tassone, P.; Rotoli, B.; Venuta, S. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood, 2005, 105(1), 251-258.
[http://dx.doi.org/10.1182/blood-2004-04-1422] [PMID: 15328155]
[38]
Binyamin, L.; Alpaugh, R.K.; Hughes, T.L.; Lutz, C.T.; Campbell, K.S.; Weiner, L.M. Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy. J. Immunol., 2008, 180(9), 6392-6401.
[http://dx.doi.org/10.4049/jimmunol.180.9.6392] [PMID: 18424763]
[39]
Terszowski, G.; Klein, C.; Stern, M. KIR/HLA interactions negatively affect rituximab- but not GA101 (obinutuzumab)-induced antibody-dependent cellular cytotoxicity. J. Immunol., 2014, 192(12), 5618-5624.
[http://dx.doi.org/10.4049/jimmunol.1400288] [PMID: 24795454]
[40]
Wijaya, R.S.; Read, S.A.; Schibeci, S.; Eslam, M.; Azardaryany, M.K.; El-Khobar, K.; van der Poorten, D.; Lin, R.; Yuen, L.; Lam, V.; George, J.; Douglas, M.W.; Ahlenstiel, G. KLRG1+ natural killer cells exert a novel antifibrotic function in chronic hepatitis B. J. Hepatol., 2019, 71(2), 252-264.
[http://dx.doi.org/10.1016/j.jhep.2019.03.012] [PMID: 30905683]
[41]
Correia, I.R. Stability of IgG isotypes in serum. MAbs, 2010, 2(3), 221-232.
[http://dx.doi.org/10.4161/mabs.2.3.11788] [PMID: 20404539]
[42]
Cheson, B.D.; Leonard, J.P. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N. Engl. J. Med., 2008, 359(6), 613-626.
[http://dx.doi.org/10.1056/NEJMra0708875] [PMID: 18687642]
[43]
Meyer, S.; Evers, M.; Jansen, J.H.M.; Buijs, J.; Broek, B.; Reitsma, S.E.; Moerer, P.; Amini, M.; Kretschmer, A.; Ten Broeke, T.; den Hartog, M.T.; Rijke, M.; Klein, C.; Valerius, T.; Boross, P.; Leusen, J.H.W. New insights in Type I and II CD20 antibody mechanisms-of-action with a panel of novel CD20 antibodies. Br. J. Haematol., 2018, 180(6), 808-820.
[http://dx.doi.org/10.1111/bjh.15132] [PMID: 29468712]
[44]
Vermi, W.; Micheletti, A.; Finotti, G.; Tecchio, C.; Calzetti, F.; Costa, S.; Bugatti, M.; Calza, S.; Agostinelli, C.; Pileri, S.; Balzarini, P.; Tucci, A.; Rossi, G.; Furlani, L.; Todeschini, G.; Zamò, A.; Facchetti, F.; Lorenzi, L.; Lonardi, S.; Cassatella, M.A. Slan+ monocytes and macrophages mediate CD20-dependent b-cell lymphoma elimination via ADCC and ADCP. Cancer Res., 2018, 78(13), 3544-3559.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2344] [PMID: 29748373]
[45]
Kim, S.H.; Jeong, I.H.; Hyun, J.W.; Joung, A.; Jo, H.J.; Hwang, S.H.; Yun, S.; Joo, J.; Kim, H.J. Treatment outcomes with rituximab in 100 patients with neuromyelitis optica: influence of FCGR3A polymorphisms on the therapeutic response to rituximab. JAMA Neurol., 2015, 72(9), 989-995.
[http://dx.doi.org/10.1001/jamaneurol.2015.1276] [PMID: 26167726]
[46]
Decaup, E.; Rossi, C.; Gravelle, P.; Laurent, C.; Bordenave, J.; Tosolini, M.; Tourette, A.; Perrial, E.; Dumontet, C.; Poupot, M.; Klein, C.; Savina, A.; Fournié, J.J.; Bezombes, C. A tridimensional model for NK cell-mediated ADCC of follicular lymphoma. Front. Immunol., 2019, 10, 1943.
[http://dx.doi.org/10.3389/fimmu.2019.01943] [PMID: 31475004]
[47]
Urlaub, D.; Zhao, S.; Blank, N.; Bergner, R.; Claus, M.; Tretter, T.; Lorenz, H.M.; Watzl, C.; Merkt, W. Activation of natural killer cells by rituximab in granulomatosis with polyangiitis. Arthritis Res. Ther., 2019, 21(1), 277.
[http://dx.doi.org/10.1186/s13075-019-2054-0] [PMID: 31829278]
[48]
Le Garff-Tavernier, M.; Herbi, L.; de Romeuf, C.; Nguyen-Khac, F.; Davi, F.; Grelier, A.; Bou-djoghra, M.; Maloum, K.; Choquet, S.; Urbain, R.; Vieillard, V.; Merle-Béral, H. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia, 2014, 28(1), 230-233.
[http://dx.doi.org/10.1038/leu.2013.240] [PMID: 23958919]
[49]
Babiker, H.M.; Glode, A.E.; Cooke, L.S.; Mahadevan, D. Ublituximab for the treatment of CD20 positive B-cell malignancies. Expert Opin. Investig. Drugs, 2018, 27(4), 407-412.
[http://dx.doi.org/10.1080/13543784.2018.1459560] [PMID: 29609506]
[50]
Vidal-Crespo, A.; Matas-Céspedes, A.; Rodriguez, V.; Rossi, C.; Valero, J.G.; Serrat, N.; Sanjuan-Pla, A.; Menéndez, P.; Roué, G.; López-Guillermo, A.; Giné, E.; Campo, E.; Colomer, D.; Bezom-bes, C.; van Bueren, J.L.; Chiu, C.; Doshi, P.; Pérez-Galán, P. Daratumumab displays In vitro and in vivo anti-tumor activity in models of B-cell non-Hodgkin lymphoma and improves responses to standard chemo-immunotherapy regimens. Haematologica, 2020, 105(4), 1032-1041.
[http://dx.doi.org/10.3324/haematol.2018.211904] [PMID: 31296574]
[51]
Casneuf, T.; Xu, X.S.; Adams, H.C., III; Axel, A.E.; Chiu, C.; Khan, I.; Ahmadi, T.; Yan, X.; Loni-al, S.; Plesner, T.; Lokhorst, H.M.; van de Donk, N.W.C.J.; Clemens, P.L.; Sasser, A.K. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv., 2017, 1(23), 2105-2114.
[http://dx.doi.org/10.1182/bloodadvances.2017006866] [PMID: 29296857]
[52]
Korver, W.; Carsillo, M.; Yuan, J.; Idamakanti, N.; Wagoner, M.; Shi, P.; Xia, C.Q.; Smithson, G.; McLean, L.; Zalevsky, J.; Fedyk, E.R. A reduction in B, T, and natural killer cells expressing CD38 by TAK-079 inhibits the induction and progression of collagen-induced arthritis in cynomolgus monkeys. J. Pharmacol. Exp. Ther., 2019, 370(2), 182-196.
[http://dx.doi.org/10.1124/jpet.119.256602] [PMID: 31085699]
[53]
Gildener-Leapman, N.; Ferris, R.L.; Bauman, J.E. Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral Oncol., 2013, 49(12), 1089-1096.
[http://dx.doi.org/10.1016/j.oraloncology.2013.09.009] [PMID: 24126223]
[54]
Lo Nigro, C.; Ricci, V.; Vivenza, D.; Granetto, C.; Fabozzi, T.; Miraglio, E.; Merlano, M.C. Prog-nostic and predictive biomarkers in metastatic colorectal cancer anti-EGFR therapy. World J. Gastroenterol., 2016, 22(30), 6944-6954.
[http://dx.doi.org/10.3748/wjg.v22.i30.6944] [PMID: 27570430]
[55]
Maron, S.B.; Alpert, L.; Kwak, H.A.; Lomnicki, S.; Chase, L.; Xu, D.; O’Day, E.; Nagy, R.J.; Lan-man, R.B.; Cecchi, F.; Hembrough, T.; Schrock, A.; Hart, J.; Xiao, S.Y.; Setia, N.; Catenacci, D.V.T. Targeted therapies for targeted populations: anti-EGFR treatment for EGFR-amplified gas-troesophageal adenocarcinoma. Cancer Discov., 2018, 8(6), 696-713.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1260] [PMID: 29449271]
[56]
Seo, Y.; Ishii, Y.; Ochiai, H.; Fukuda, K.; Akimoto, S.; Hayashida, T.; Okabayashi, K.; Tsuruta, M.; Hasegawa, H.; Kitagawa, Y. Cetuximab-mediated ADCC activity is correlated with the cell surface expression level of EGFR but not with the KRAS/BRAF mutational status in colorectal cancer. Oncol. Rep., 2014, 31(5), 2115-2122.
[http://dx.doi.org/10.3892/or.2014.3077] [PMID: 24626880]
[57]
Nakamura, H.; Tamaki, S.; Yagyuu, T.; Yamakawa, N.; Hatake, K.; Kirita, T. Relationship between EGFR expression in oral cancer cell lines and cetuximab antibody-dependent cell-mediated cytotox-icity. Anticancer Res., 2019, 39(3), 1275-1282.
[http://dx.doi.org/10.21873/anticanres.13238] [PMID: 30842158]
[58]
Inoue, Y.; Hazama, S.; Suzuki, N.; Tokumitsu, Y.; Kanekiyo, S.; Tomochika, S.; Tsunedomi, R.; Tokuhisa, Y.; Iida, M.; Sakamoto, K.; Takeda, S.; Ueno, T.; Yoshino, S.; Nagano, H. Cetuximab strongly enhances immune cell infiltration into liver metastatic sites in colorectal cancer. Cancer Sci., 2017, 108(3), 455-460.
[http://dx.doi.org/10.1111/cas.13162] [PMID: 28075526]
[59]
Klöss, S.; Chambron, N.; Gardlowski, T.; Weil, S.; Koch, J.; Esser, R.; Pogge von Strandmann, E.; Morgan, M.A.; Arseniev, L.; Seitz, O.; Köhl, U. Cetuximab reconstitutes pro-inflammatory cytokine secretions and tumor-infiltrating capabilities of sMICA-inhibited NK cells in HNSCC tumor sphe-roids. Front. Immunol., 2015, 6, 543.
[http://dx.doi.org/10.3389/fimmu.2015.00543] [PMID: 26579120]
[60]
Lattanzio, L.; Denaro, N.; Vivenza, D.; Varamo, C.; Strola, G.; Fortunato, M.; Chamorey, E.; Comino, A.; Monteverde, M.; Lo Nigro, C.; Milano, G.; Merlano, M. Elevated basal antibody-dependent cell-mediated cytotoxicity (ADCC) and high epidermal growth factor receptor (EGFR) expression predict favourable outcome in patients with locally advanced head and neck cancer treat-ed with cetuximab and radiotherapy. Cancer Immunol. Immunother., 2017, 66(5), 573-579.
[http://dx.doi.org/10.1007/s00262-017-1960-8] [PMID: 28197666]
[61]
Lo Nigro, C.; Ricci, V.; Vivenza, D.; Monteverde, M.; Strola, G.; Lucio, F.; Tonissi, F.; Miraglio, E.; Granetto, C.; Fortunato, M.; Merlano, M.C. Evaluation of antibody-dependent cell-mediated cy-totoxicity activity and cetuximab response in KRAS wild-type metastatic colorectal cancer patients. World J. Gastrointest. Oncol., 2016, 8(2), 222-230.
[http://dx.doi.org/10.4251/wjgo.v8.i2.222] [PMID: 26909137]
[62]
Chen, S.; Li, X.; Chen, R.; Yin, M.; Zheng, Q. Cetuximab intensifies the ADCC activity of adoptive NK cells in a nude mouse colorectal cancer xenograft model. Oncol. Lett., 2016, 12(3), 1868-1876.
[http://dx.doi.org/10.3892/ol.2016.4835] [PMID: 27602116]
[63]
Turin, I.; Delfanti, S.; Ferulli, F.; Brugnatelli, S.; Tanzi, M.; Maestri, M.; Cobianchi, L.; Lisini, D.; Luinetti, O.; Paulli, M.; Perotti, C.; Todisco, E.; Pedrazzoli, P.; Montagna, D. In vitro killing of col-orectal carcinoma cells by autologous activated NK cells is boosted by anti-epidermal growth factor receptor-induced ADCC regardless of RAS mutation status. J. Immunother., 2018, 41(4), 190-200.
[http://dx.doi.org/10.1097/CJI.0000000000000205] [PMID: 29293164]
[64]
Veluchamy, J.P.; Spanholtz, J.; Tordoir, M.; Thijssen, V.L.; Heideman, D.A.M.; Verheul, H.M.W.; de Gruijl, T.D.; van der Vliet, H.J. Combination of NK cells and cetuximab to enhance anti-tumor responses in RAS mutant metastatic colorectal cancer. PLoS One, 2016, 11(6) ,e0157830
[http://dx.doi.org/10.1371/journal.pone.0157830] [PMID: 27314237]
[65]
Arriga, R.; Caratelli, S.; Lanzilli, G.; Ottaviani, A.; Cenciarelli, C.; Sconocchia, T.; Spagnoli, G.C.; Iezzi, G.; Roselli, M.; Lauro, D.; Coppola, A.; Dotti, G.; Ferrone, S.; Sconocchia, G. CD16-158-valine chimeric receptor T cells overcome the resistance of KRAS-mutated colorectal carcinoma cells to cetuximab. Int. J. Cancer, 2020, 146(9), 2531-2538.
[http://dx.doi.org/10.1002/ijc.32618] [PMID: 31396956]
[66]
Costa, D.; Venè, R.; Benelli, R.; Romairone, E.; Scabini, S.; Catellani, S.; Rebesco, B.; Mastracci, L.; Grillo, F.; Minghelli, S.; Loiacono, F.; Zocchi, M.R.; Poggi, A. Targeting the epidermal growth factor receptor can counteract the inhibition of natural killer cell function exerted by colorectal tu-mor-associated fibroblasts. Front. Immunol., 2018, 9, 1150.
[http://dx.doi.org/10.3389/fimmu.2018.01150] [PMID: 29910806]
[67]
Kumai, T.; Oikawa, K.; Aoki, N.; Kimura, S.; Harabuchi, Y.; Kobayashi, H. Assessment of the change in cetuximab-induced antibody-dependent cellular cytotoxicity activity of natural killer cells by steroid. Head Neck, 2016, 38(3), 410-416.
[http://dx.doi.org/10.1002/hed.23906] [PMID: 25352398]
[68]
Aldeghaither, D.S.; Zahavi, D.J.; Murray, J.C.; Fertig, E.J.; Graham, G.T.; Zhang, Y.W.; O’Connell, A.; Ma, J.; Jablonski, S.A.; Weiner, L.M. A mechanism of resistance to antibody-targeted immune attack. Cancer Immunol. Res., 2019, 7(2), 230-243.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0266] [PMID: 30563830]
[69]
Rösner, T.; Kahle, S.; Montenegro, F.; Matlung, H.L.; Jansen, J.H.M.; Evers, M.; Beurskens, F.; Leusen, J.H.W.; van den Berg, T.K.; Valerius, T. Immune effector functions of human IgG2 anti-bodies against EGFR. Mol. Cancer Ther., 2019, 18(1), 75-88.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0341] [PMID: 30282813]
[70]
Trivedi, S.; Srivastava, R.M.; Concha-Benavente, F.; Ferrone, S.; Garcia-Bates, T.M.; Li, J.; Ferris, R.L. Anti-EGFR targeted monoclonal antibody isotype influences antitumor cellular immunity in head and neck cancer patients. Clin. Cancer Res., 2016, 22(21), 5229-5237.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2971] [PMID: 27217441]
[71]
Mazorra, Z.; Lavastida, A.; Concha-Benavente, F.; Valdés, A.; Srivastava, R.M.; García-Bates, T.M.; Hechavarría, E.; González, Z.; González, A.; Lugiollo, M.; Cuevas, I.; Frómeta, C.; Mestre, B.F.; Barroso, M.C.; Crombet, T.; Ferris, R.L. Nimotuzumab induces NK cell activation, cytotoxici-ty, dendritic cell maturation and expansion of EGFR-specific T cells in head and neck cancer pa-tients. Front. Pharmacol., 2017, 8, 382.
[http://dx.doi.org/10.3389/fphar.2017.00382] [PMID: 28674498]
[72]
Dong, Q.; Shi, B.; Zhou, M.; Gao, H.; Luo, X.; Li, Z.; Jiang, H. Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12. Front. Med., 2019, 13(1), 83-93.
[http://dx.doi.org/10.1007/s11684-019-0682-z] [PMID: 30671888]
[73]
Maadi, H.; Nami, B.; Tong, J.; Li, G.; Wang, Z. The effects of trastuzumab on HER2-mediated cell signaling in CHO cells expressing human HER2. BMC Cancer, 2018, 18(1), 238.
[http://dx.doi.org/10.1186/s12885-018-4143-x] [PMID: 29490608]
[74]
Rimawi, M.F.; Schiff, R.; Osborne, C.K. Targeting HER2 for the treatment of breast cancer. Annu. Rev. Med., 2015, 66(1), 111-128.
[http://dx.doi.org/10.1146/annurev-med-042513-015127] [PMID: 25587647]
[75]
Xu, R.; Wang, D. FcγR IIA and IIIA polymorphisms predict clinical outcome of trastuzumab treated metastatic gastric cancer. Ann. Oncol., 2016, 27, vi217.
[http://dx.doi.org/10.1093/annonc/mdw371.33]
[76]
Boero, S.; Morabito, A.; Banelli, B.; Cardinali, B.; Dozin, B.; Lunardi, G.; Piccioli, P.; Lastraioli, S.; Carosio, R.; Salvi, S.; Levaggi, A.; Poggio, F.; D’Alonzo, A.; Romani, M.; Del Mastro, L.; Poggi, A.; Pistillo, M.P. Analysis of In vitro ADCC and clinical response to trastuzumab: possible relevance of FcγRIIIA/FcγRIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines. J. Transl. Med., 2015, 13(1), 324.
[http://dx.doi.org/10.1186/s12967-015-0680-0] [PMID: 26450443]
[77]
Hsiao, H.C.; Fan, X.; Jordan, R.E.; Zhang, N.; An, Z. Proteolytic single hinge cleavage of per-tuzumab impairs its Fc effector function and antitumor activity In vitro and in vivo. Breast Cancer Res., 2018, 20(1), 43.
[http://dx.doi.org/10.1186/s13058-018-0972-4] [PMID: 29859099]
[78]
Li, R.; Hu, S.; Chang, Y.; Zhang, Z.; Zha, Z.; Huang, H.; Shen, G.; Liu, J.; Song, L.; Wei, W. De-velopment and characterization of a humanized anti-HER2 antibody HuA21 with potent anti-tumor properties in breast cancer cells. Int. J. Mol. Sci., 2016, 17(4), 563.
[http://dx.doi.org/10.3390/ijms17040563] [PMID: 27092488]
[79]
Amiri, M.M.; Golsaz-Shirazi, F.; Soltantoyeh, T.; Hosseini-Ghatar, R.; Bahadori, T.; Khoshnoodi, J.; Navabi, S.S.; Farid, S.; Karimi-Jafari, M.H.; Jeddi-Tehrani, M.; Shokri, F. Hersintuzumab: A novel humanized anti-HER2 monoclonal antibody induces potent tumor growth inhibition. Invest. New Drugs, 2018, 36(2), 171-186.
[http://dx.doi.org/10.1007/s10637-017-0518-0] [PMID: 28983766]
[80]
Tsao, L.C.; Crosby, E.J.; Trotter, T.N.; Agarwal, P.; Hwang, B.J.; Acharya, C.; Shuptrine, C.W.; Wang, T.; Wei, J.; Yang, X.; Lei, G.; Liu, C.X.; Rabiola, C.A.; Chodosh, L.A.; Muller, W.J.; Lyerly, H.K.; Hartman, Z.C. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight, 2019, 4(24) ,131882
[http://dx.doi.org/10.1172/jci.insight.131882] [PMID: 31689243]
[81]
Yin, J.; Albers, A.J.; Smith, T.S.; Riddell, G.T.; Richards, J.O. Differential regulation of human monocytes and NK cells by antibody-opsonized tumors. Cancer Immunol. Immunother., 2018, 67(8), 1239-1250.
[http://dx.doi.org/10.1007/s00262-018-2179-z] [PMID: 29855696]
[82]
Xie, L.H.; Biondo, M.; Busfield, S.J.; Arruda, A.; Yang, X.; Vairo, G.; Minden, M.D. CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL362 in combi-nation with NKs from AML patients in remission. Blood Cancer J., 2017, 7(6) ,e567
[http://dx.doi.org/10.1038/bcj.2017.52] [PMID: 28574487]
[83]
Modak, S.; Le Luduec, J.B.; Cheung, I.Y.; Goldman, D.A.; Ostrovnaya, I.; Doubrovina, E.; Basu, E.; Kushner, B.H.; Kramer, K.; Roberts, S.S.; O’Reilly, R.J.; Cheung, N.V.; Hsu, K.C. Adoptive immunotherapy with haploidentical natural killer cells and Anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: Results of a phase I study. OncoImmunology, 2018, 7(8) ,e1461305
[http://dx.doi.org/10.1080/2162402X.2018.1461305] [PMID: 30221057]
[84]
Wu, H-W.; Sheard, M.A.; Malvar, J.; Fernandez, G.E.; DeClerck, Y.A.; Blavier, L.; Shimada, H.; Theuer, C.P.; Sposto, R.; Seeger, R.C. Anti-CD105 antibody eliminates tumor microenvironment cells and enhances anti-GD2 antibody immunotherapy of neuroblastoma with activated natural killer cells. Clin. Cancer Res., 2019, 25(15), 4761-4774.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3358] [PMID: 31068371]
[85]
Brunner, K.T.; Mauel, J.; Cerottini, J.C.; Chapuis, B. Quantitative assay of the lytic action of im-mune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology, 1968, 14(2), 181-196.
[PMID: 4966657]
[86]
van der Haar Àvila, I.; Marmol, P.; Kiessling, R.; Pico de Coaña, Y. Evaluating antibody-dependent cell-mediated cytotoxicity by chromium release assay. Methods Mol. Biol., 2019, 1913, 167-179.
[http://dx.doi.org/10.1007/978-1-4939-8979-9_12] [PMID: 30666606]
[87]
Chung, S.; Lin, Y.L.; Reed, C.; Ng, C.; Cheng, Z.J.; Malavasi, F.; Yang, J.; Quarmby, V.; Song, A. Characterization of In vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies - impact of effector cells. J. Immunol. Methods, 2014, 407, 63-75.
[http://dx.doi.org/10.1016/j.jim.2014.03.021] [PMID: 24704820]
[88]
Broussas, M.; Broyer, L.; Goetsch, L. Evaluation of antibodydependent cell cytotoxicity using lactate dehydrogenase (LDH) measurement In: Glycosylation Engineering of Biopharmaceuticals. Methods in Molecular Biology (Methods and Protocols), Beck A. (eds) Humana Press; , 2013. vol 988. Totowa, NJ. Springer, 2013..
[http://dx.doi.org/10.1007/978-1-62703-327-5_19]
[89]
Chung, S.; Nguyen, V.; Lin, Y.L.; Kamen, L.; Song, A. Thaw-and-use target cells pre-labeled with calcein AM for antibody-dependent cell-mediated cytotoxicity assays. J. Immunol. Methods, 2017, 447, 37-46.
[http://dx.doi.org/10.1016/j.jim.2017.04.005] [PMID: 28434980]
[90]
Richard, J.; Veillette, M.; Batraville, L.A.; Coutu, M.; Chapleau, J.P.; Bonsignori, M.; Bernard, N.; Tremblay, C.; Roger, M.; Kaufmann, D.E.; Finzi, A. Flow cytometry-based assay to study HIV-1 gp120 specific antibody-dependent cellular cytotoxicity responses. J. Virol. Methods, 2014, 208, 107-114.
[http://dx.doi.org/10.1016/j.jviromet.2014.08.003] [PMID: 25125129]
[91]
Miller, M.L.; Finn, O.J. Flow cytometry-based assessment of direct-targeting anti-cancer antibody immune effector functions, 1st ed; Elsevier Inc., 2020, Vol. 632, .
[http://dx.doi.org/10.1016/bs.mie.2019.07.026]
[92]
Gillissen, M.A.; Yasuda, E.; de Jong, G.; Levie, S.E.; Go, D.; Spits, H.; van Helden, P.M.; Hazen-berg, M.D. The modified FACS calcein AM retention assay: A high throughput flow cytometer based method to measure cytotoxicity. J. Immunol. Methods, 2016, 434, 16-23.
[http://dx.doi.org/10.1016/j.jim.2016.04.002] [PMID: 27084117]
[93]
Gómez-Román, V.R.; Florese, R.H.; Patterson, L.J.; Peng, B.; Venzon, D.; Aldrich, K.; Robert-Guroff, M. A simplified method for the rapid fluorometric assessment of antibody-dependent cell-mediated cytotoxicity. J. Immunol. Methods, 2006, 308(1-2), 53-67.
[http://dx.doi.org/10.1016/j.jim.2005.09.018] [PMID: 16343526]
[94]
Kramski, M.; Schorcht, A.; Johnston, A.P.R.; Lichtfuss, G.F.; Jegaskanda, S.; De Rose, R.; Stratov, I.; Kelleher, A.D.; French, M.A.; Center, R.J.; Jaworowski, A.; Kent, S.J. Role of monocytes in me-diating HIV-specific antibody-dependent cellular cytotoxicity. J. Immunol. Methods, 2012, 384(1-2), 51-61.
[http://dx.doi.org/10.1016/j.jim.2012.07.006] [PMID: 22841577]
[95]
Pollara, J.; Orlandi, C.; Beck, C.; Edwards, R.W.; Hu, Y.; Liu, S.; Wang, S.; Koup, R.A.; Denny, T.N.; Lu, S.; Tomaras, G.D.; DeVico, A.; Lewis, G.K.; Ferrari, G. Application of area scaling analy-sis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cell-mediated cytotoxicity assay. Cytometry A, 2018, 93(4), 436-447.
[http://dx.doi.org/10.1002/cyto.a.23348] [PMID: 29498807]
[96]
Alrubayyi, A.; Schuetz, A.; Lal, K.G.; Jongrakthaitae, S.; Paolino, K.M.; Ake, J.A.; Robb, M.L.; de Souza, M.S.; Michael, N.L.; Paquin-Proulx, D.; Eller, M.A. A flow cytometry based assay that sim-ultaneously measures cytotoxicity and monocyte mediated antibody dependent effector activity. J. Immunol. Methods, 2018, 462, 74-82.
[http://dx.doi.org/10.1016/j.jim.2018.08.012] [PMID: 30148978]
[97]
Fassy, J.; Tsalkitzi, K.; Salavagione, E.; Hamouda-Tekaya, N.; Braud, V.M. A real-time digital bio-imaging system to quantify cellular cytotoxicity as an alternative to the standard chromium-51 re-lease assay. Immunology, 2017, 150(4), 489-494.
[http://dx.doi.org/10.1111/imm.12702] [PMID: 28004383]
[98]
Kamen, L.; Thakurta, T.; Myneni, S.; Zheng, K.; Chung, S. Development of a kinetic antibody-dependent cellular cytotoxicity assay. J. Immunol. Methods, 2019, 468, 49-54.
[http://dx.doi.org/10.1016/j.jim.2019.02.006] [PMID: 30790564]
[99]
Welter, A.; Sundararaman, S.; Li, R.; Zhang, T.; Karulin, A.Y.; Lehmann, A.; Naeem, V.; Roen, D.R.; Kuerten, S.; Lehmann, P.V. High-throughput GLP-capable target cell visualization assay for measuring cell-mediated cytotoxicity. Cells, 2018, 7(5), 35.
[http://dx.doi.org/10.3390/cells7050035] [PMID: 29695103]
[100]
Tóth, G.; Szöllősi, J.; Vereb, G. Quantitating ADCC against adherent cells: Impedance-based detec-tion is superior to release, membrane permeability, or caspase activation assays in resolving antibody dose response. Cytometry A, 2017, 91(10), 1021-1029.
[http://dx.doi.org/10.1002/cyto.a.23247] [PMID: 28945315]
[101]
Zwick, A.; Bernhard, M.; Knoerck, A.; Linxweiler, M.; Schick, B.; Heinzelmann, J.; Smola, S.; Lohse, S. Monitoring kinetics reveals critical parameters of IgA-dependent granulocyte-mediated anti-tumor cell cytotoxicity. J. Immunol. Methods, 2019, 473 ,112644
[http://dx.doi.org/10.1016/j.jim.2019.112644] [PMID: 31404549]
[102]
Cheng, Z.J.; Garvin, D.; Paguio, A.; Moravec, R.; Engel, L.; Fan, F.; Surowy, T. Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effector function of therapeutic antibodies. J. Immunol. Methods, 2014, 414, 69-81.
[http://dx.doi.org/10.1016/j.jim.2014.07.010] [PMID: 25086226]
[103]
Omokoko, T.A.; Luxemburger, U.; Bardissi, S.; Simon, P.; Utsch, M.; Breitkreuz, A.; Türeci, Ö.; Sahin, U. Luciferase mRNA transfection of antigen presenting cells permits sensitive nonradioactive measurement of cellular and humoral cytotoxicity. J. Immunol. Res., 2016, 2016 ,9540975
[http://dx.doi.org/10.1155/2016/9540975] [PMID: 27057556]
[104]
Rossignol, A.; Bonnaudet, V.; Clémenceau, B.; Vié, H.; Bretaudeau, L. A high-performance, non-radioactive potency assay for measuring cytotoxicity: A full substitute of the chromium-release assay targeting the regulatory-compliance objective. MAbs, 2017, 9(3), 521-535.
[http://dx.doi.org/10.1080/19420862.2017.1286435] [PMID: 28281922]
[105]
González-González, E.; Camacho-Sandoval, R.; Jiménez-Uribe, A.; Montes-Luna, A.; Cortés-Paniagua, I.; Sánchez-Morales, J.; Muñoz-García, L.; Tenorio-Calvo, A.V.; López-Morales, C.A.; Velasco-Velázquez, M.A.; Pavón, L.; Pérez-Tapia, S.M.; Medina-Rivero, E. Validation of an ADCC assay using human primary natural killer cells to evaluate biotherapeutic products bearing an Fc re-gion. J. Immunol. Methods, 2019, 464, 87-94.
[http://dx.doi.org/10.1016/j.jim.2018.11.002] [PMID: 30395815]
[106]
Hassenrück, F.; Knödgen, E.; Göckeritz, E.; Midda, S.H.; Vondey, V.; Neumann, L.; Herter, S.; Klein, C.; Hallek, M.; Krause, G. Sensitive detection of the natural killer cell-mediated cytotoxicity of anti-CD20 antibodies and its impairment by B-cell receptor pathway inhibitors. BioMed Res. Int., 2018, 2018 ,1023490
[http://dx.doi.org/10.1155/2018/1023490] [PMID: 29750146]
[107]
Parekh, B.S.; Berger, E.; Sibley, S.; Cahya, S.; Xiao, L.; LaCerte, M.A.; Vaillancourt, P.; Wooden, S.; Gately, D. Development and Validation of an Antibody-Dependent Cell-Mediated Cytotoxicity-Reporter Gene Assay.In: mAbs; Taylor & Francis; , 2012, 4, pp. 310-318.
[http://dx.doi.org/10.4161/mabs.19873]
[108]
Gurjar, S.A.; Derrick, J.P.; Dearman, R.J.; Thorpe, R.; Hufton, S.; Kimber, I.; Wadhwa, M. Surro-gate CD16-expressing effector cell lines for determining the bioactivity of therapeutic monoclonal antibodies. J. Pharm. Biomed. Anal., 2017, 143, 188-198.
[http://dx.doi.org/10.1016/j.jpba.2017.06.004] [PMID: 28605680]
[109]
Lallemand, C.; Liang, F.; Staub, F.; Simansour, M.; Vallette, B.; Huang, L.; Ferrando-Miguel, R.; Tovey, M.G. A novel system for the quantification of the ADCC activity of therapeutic antibodies. J. Immunol. Res., 2017, 2017 ,3908289
[http://dx.doi.org/10.1155/2017/3908289] [PMID: 29104875]
[110]
Tanaka, M.; Ishige, A.; Yaguchi, M.; Matsumoto, T.; Shirouzu, M.; Yokoyama, S.; Ishikawa, F.; Kitabayashi, I.; Takemori, T.; Harada, M. Development of a simple new flow cytometric antibody-dependent cellular cytotoxicity (ADCC) assay with excellent sensitivity. J. Immunol. Methods, 2019, 464, 74-86.
[http://dx.doi.org/10.1016/j.jim.2018.10.014] [PMID: 30389576]
[111]
Yamashita, M.; Kitano, S.; Aikawa, H.; Kuchiba, A.; Hayashi, M.; Yamamoto, N.; Tamura, K.; Hamada, A. A novel method for evaluating antibody-dependent cell-mediated cytotoxicity by flowcytometry using cryopreserved human peripheral blood mononuclear cells. Sci. Rep., 2016, 6(1), 19772.
[http://dx.doi.org/10.1038/srep19772] [PMID: 26813960]
[112]
Li, Y.; Zhang, T.; Pang, Y.; Li, L.; Chen, Z.N.; Sun, W. 3D bioprinting of hepatoma cells and appli-cation with microfluidics for pharmacodynamic test of Metuzumab. Biofabrication, 2019, 11(3) ,034102
[http://dx.doi.org/10.1088/1758-5090/ab256c] [PMID: 31141796]
[113]
Richard, J.; Prévost, J.; Baxter, A.E.; von Bredow, B.; Ding, S.; Medjahed, H.; Delgado, G.G.; Bras-sard, N.; Stürzel, C.M.; Kirchhoff, F.; Hahn, B.H.; Parsons, M.S.; Kaufmann, D.E.; Evans, D.T.; Finzi, A. Uninfected bystander cells impact the measurement of HIV specific antibody-dependent cellular cytotoxicity responses. MBio, 2018, 9(2), e00358-e18.
[http://dx.doi.org/10.1128/mBio.00358-18] [PMID: 29559570]
[114]
Lin, C.W.; Tsai, M.H.; Li, S.T.; Tsai, T.I.; Chu, K.C.; Liu, Y.C.; Lai, M.Y.; Wu, C.Y.; Tseng, Y.C.; Shivatare, S.S.; Wang, C.H.; Chao, P.; Wang, S.Y.; Shih, H.W.; Zeng, Y.F.; You, T.H.; Liao, J.Y.; Tu, Y.C.; Lin, Y.S.; Chuang, H.Y.; Chen, C.L.; Tsai, C.S.; Huang, C.C.; Lin, N.H.; Ma, C.; Wu, C.Y.; Wong, C.H. A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc. Natl. Acad. Sci. USA, 2015, 112(34), 10611-10616.
[http://dx.doi.org/10.1073/pnas.1513456112] [PMID: 26253764]
[115]
Chen, C.L.; Hsu, J.C.; Lin, C.W.; Wang, C.H.; Tsai, M.H.; Wu, C.Y.; Wong, C.H.; Ma, C. Crystal structure of a homogeneous IgG-Fc glycoform with the N-glycan designed to maximize the antibody dependent cellular cytotoxicity. ACS Chem. Biol., 2017, 12(5), 1335-1345.
[http://dx.doi.org/10.1021/acschembio.7b00140] [PMID: 28318221]
[116]
Lu, X.; Machiesky, L.A.; De Mel, N.; Du, Q.; Xu, W.; Washabaugh, M.; Jiang, X.R.; Wang, J. Characterization of IgG1 Fc deamidation at asparagine 325 and its impact on antibody-dependent cell-mediated cytotoxicity and fcγRIIIa binding. Sci. Rep., 2020, 10(1), 1-11.
[http://dx.doi.org/10.1038/s41598-019-57184-2] [PMID: 31913322]
[117]
Kim, S.; Song, J.; Park, S.; Ham, S.; Paek, K.; Kang, M.; Chae, Y.; Seo, H.; Kim, H.C.; Flores, M. Drifts in ADCC-related quality attributes of Herceptin®: Impact on development of a trastuzumab biosimilar. MAbs, 2017, 9(4), 704-714.
[http://dx.doi.org/10.1080/19420862.2017.1305530] [PMID: 28296619]
[118]
Patel, K.R.; Roberts, J.T.; Subedi, G.P.; Barb, A.W. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function. J. Biol. Chem., 2018, 293(10), 3477-3489.
[http://dx.doi.org/10.1074/jbc.RA117.001207] [PMID: 29330305]
[119]
Subedi, G.P.; Barb, A.W. CD16a with oligomannose-type N-glycans is the only “low-affinity” Fc γ receptor that binds the IgG crystallizable fragment with high affinity in vitro. J. Biol. Chem., 2018, 293(43), 16842-16850.
[http://dx.doi.org/10.1074/jbc.RA118.004998] [PMID: 30213862]
[120]
Dekkers, G.; Treffers, L.; Plomp, R.; Bentlage, A.E.H.; de Boer, M.; Koeleman, C.A.M.; Lissenberg-Thunnissen, S.N.; Visser, R.; Brouwer, M.; Mok, J.Y.; Matlung, H.; van den Berg, T.K.; van Esch, W.J.E.; Kuijpers, T.W.; Wouters, D.; Rispens, T.; Wuhrer, M.; Vidarsson, G. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front. Immunol., 2017, 8, 877.
[http://dx.doi.org/10.3389/fimmu.2017.00877] [PMID: 28824618]
[121]
Wada, R.; Matsui, M.; Kawasaki, N. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. MAbs, 2019, 11(2), 350-372.
[http://dx.doi.org/10.1080/19420862.2018.1551044] [PMID: 30466347]
[122]
Giddens, J.P.; Lomino, J.V.; DiLillo, D.J.; Ravetch, J.V.; Wang, L.X. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc. Natl. Acad. Sci. USA, 2018, 115(47), 12023-12027.
[http://dx.doi.org/10.1073/pnas.1812833115] [PMID: 30397147]
[123]
Simonov, V.; Ivanov, S.; Smolov, M.; Abbasova, S.; Piskunov, A.; Poteryaev, D. Control of thera-peutic IgG antibodies galactosylation during cultivation process and its impact on IgG1/FcγR inter-action and ADCC activity. Biologicals, 2019, 58, 16-21.
[http://dx.doi.org/10.1016/j.biologicals.2019.01.002] [PMID: 30655169]
[124]
Hajduk, J.; Brunner, C.; Malik, S.; Bangerter, J.; Schneider, G.; Thomann, M.; Reusch, D.; Zenobi, R. Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry ap-proach. MAbs, 2020, 12(1) ,1736975
[http://dx.doi.org/10.1080/19420862.2020.1736975] [PMID: 32167012]
[125]
Wirt, T.; Rosskopf, S.; Rösner, T.; Eichholz, K.M.; Kahrs, A.; Lutz, S.; Kretschmer, A.; Valerius, T.; Klausz, K.; Otte, A.; Gramatzki, M.; Peipp, M.; Kellner, C. An Fc double-engineered CD20 an-tibody with enhanced ability to trigger complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity. Transfus. Med. Hemother., 2017, 44(5), 292-300.
[http://dx.doi.org/10.1159/000479978] [PMID: 29070974]
[126]
Cao, J.; Wang, L.; Yu, C.; Wang, K.; Wang, W.; Yan, J.; Li, Y.; Yang, Y.; Wang, X.; Wang, J. De-velopment of an antibody-dependent cellular cytotoxicity reporter assay for measuring anti-Middle East Respiratory Syndrome antibody bioactivity. Sci. Rep., 2020, 10(1), 16615.
[http://dx.doi.org/10.1038/s41598-020-73960-x] [PMID: 33024203]
[127]
Nakajima, T.; Okayama, H.; Ashizawa, M.; Noda, M.; Aoto, K.; Saito, M.; Monma, T.; Ohki, S.; Shibata, M.; Takenoshita, S.; Kono, K. Augmentation of antibody-dependent cellular cytotoxicity with defucosylated monoclonal antibodies in patients with GI-tract cancer. Oncol. Lett., 2018, 15(2), 2604-2610.
[http://dx.doi.org/10.3892/ol.2017.7556] [PMID: 29434980]
[128]
Bruggeman, C.W.; Dekkers, G.; Bentlage, A.E.H.; Treffers, L.W.; Nagelkerke, S.Q.; Lissenberg-Thunnissen, S.; Koeleman, C.A.M.; Wuhrer, M.; van den Berg, T.K.; Rispens, T.; Vidarsson, G.; Kuijpers, T.W. Enhanced effector functions due to antibody defucosylation depend on the effector cell Fcγ receptor profile. J. Immunol., 2017, 199(1), 204-211.
[http://dx.doi.org/10.4049/jimmunol.1700116] [PMID: 28566370]
[129]
Wang, T.T.; Sewatanon, J.; Memoli, M.J.; Wrammert, J.; Bournazos, S.; Bhaumik, S.K.; Pinsky, B.A.; Chokephaibulkit, K.; Onlamoon, N.; Pattanapanyasat, K.; Taubenberger, J.K.; Ahmed, R.; Ravetch, J.V. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science, 2017, 355(6323), 395-398.
[http://dx.doi.org/10.1126/science.aai8128] [PMID: 28126818]
[130]
Martin, T.C.; Ilieva, K.M.; Visconti, A.; Beaumont, M.; Kiddle, S.J.; Dobson, R.J.B.; Mangino, M.; Lim, E.M.; Pezer, M.; Steves, C.J.; Bell, J.T.; Wilson, S.G.; Lauc, G.; Roederer, M.; Walsh, J.P.; Spector, T.D.; Karagiannis, S.N. Dysregulated antibody, natural killer cell and immune mediator profiles in autoimmune thyroid diseases. Cells, 2020, 9(3), 665.
[http://dx.doi.org/10.3390/cells9030665] [PMID: 32182948]
[131]
Lewis, D.J.; Rook, A.H. Mogamulizumab in the treatment of advanced mycosis fungoides and Sézary syndrome: safety and efficacy. Expert Rev. Anticancer Ther., 2020, 20(6), 447-452.
[http://dx.doi.org/10.1080/14737140.2020.1760096] [PMID: 32320304]
[132]
Falconer, D.J.; Subedi, G.P.; Marcella, A.M.; Barb, A.W. Antibody fucosylation lowers the FcγRIIIa/CD16a Affinity by limiting the conformations sampled by the N162-Glycan. ACS Chem. Biol., 2018, 13(8), 2179-2189.
[http://dx.doi.org/10.1021/acschembio.8b00342] [PMID: 30016589]
[133]
Qin, K.; Shi, W.; Zhao, L.; Li, M.; Tang, Y. Faridoon; Jiang, B.; Tang, F.; Huang, W. Thermosta-bility detection and optimization of glycoengineered antibodies and antibody-drug conjugates based on differential scanning flouremitry analysis. Bioorg. Chem., 2020, 94 ,103391
[http://dx.doi.org/10.1016/j.bioorg.2019.103391] [PMID: 31761409]
[134]
Beck, A.; Reichert, J.M. Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs, 2012, 4(4), 419-425.
[http://dx.doi.org/10.4161/mabs.20996] [PMID: 22699226]
[135]
Popp, O.; Moser, S.; Zielonka, J.; Rüger, P.; Hansen, S.; Plöttner, O. Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. MAbs, 2018, 10(2), 290-303.
[http://dx.doi.org/10.1080/19420862.2017.1405203] [PMID: 29173063]
[136]
Louie, S.; Haley, B.; Marshall, B.; Heidersbach, A.; Yim, M.; Brozynski, M.; Tang, D.; Lam, C.; Petryniak, B.; Shaw, D.; Shim, J.; Miller, A.; Lowe, J.B.; Snedecor, B.; Misaghi, S. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality. Biotechnol. Bioeng., 2017, 114(3), 632-644.
[http://dx.doi.org/10.1002/bit.26188] [PMID: 27666939]
[137]
Kelly, R.M.; Kowle, R.L.; Lian, Z.; Strifler, B.A.; Witcher, D.R.; Parekh, B.S.; Wang, T.; Frye, C.C. Modulation of IgG1 immunoeffector function by glycoengineering of the GDP-fucose biosynthesis pathway. Biotechnol. Bioeng., 2018, 115(3), 705-718.
[http://dx.doi.org/10.1002/bit.26496] [PMID: 29150961]
[138]
Liu, W.; Padmashali, R.; Monzon, O.Q.; Lundberg, D.; Jin, S.; Dwyer, B.; Lee, Y.J.; Korde, A.; Park, S.; Pan, C.; Zhang, B. Generation of FX−/− and Gmds−/− CHOZN host cell lines for the pro-duction of afucosylated therapeutic antibodies. Biotechnol. Prog., 2020. ,e3061
[http://dx.doi.org/10.1002/btpr.3061] [PMID: 32748555]
[139]
Zhang, R.; Tang, C.; Guo, H.; Tang, B.; Hou, S.; Zhao, L.; Wang, J.; Ding, F.; Zhao, J.; Wang, H.; Chen, Z.; Dai, Y.; Li, N. A novel glycosylated anti-CD20 monoclonal antibody from transgenic cat-tle. Sci. Rep., 2018, 8(1), 13208.
[http://dx.doi.org/10.1038/s41598-018-31417-2] [PMID: 30181542]
[140]
Freimoser-Grundschober, A.; Rueger, P.; Fingas, F.; Sondermann, P.; Herter, S.; Schlothauer, T.; Umana, P.; Neumann, C. FcγRIIIa chromatography to enrich a-fucosylated glycoforms and assess the potency of glycoengineered therapeutic antibodies. J. Chromatogr. A, 2020, 1610 ,460554
[http://dx.doi.org/10.1016/j.chroma.2019.460554] [PMID: 31597603]
[141]
Egashira, Y.; Nagatoishi, S.; Kiyoshi, M.; Ishii-Watabe, A.; Tsumoto, K. Characterization of gly-coengineered anti-HER2 monoclonal antibodies produced by using a silkworm-baculovirus expres-sion system. J. Biochem., 2018, 163(6), 481-488.
[http://dx.doi.org/10.1093/jb/mvy021] [PMID: 29415204]
[142]
Liu, C.P.; Tsai, T.I.; Cheng, T.; Shivatare, V.S.; Wu, C.Y.; Wu, C.Y.; Wong, C.H. Glycoengineering of antibody (Herceptin) through yeast expression and In vitro enzymatic glycosylation. Proc. Natl. Acad. Sci. USA, 2018, 115(4), 720-725.
[http://dx.doi.org/10.1073/pnas.1718172115] [PMID: 29311294]
[143]
Jin, N.; Lee, J.W.; Heo, W.; Ryu, M.Y.; So, M.K.; Ko, B.J.; Kim, H.Y.; Yoon, S.M.; Lee, J.; Kim, J.Y.; Kim, W.T. Low binding affinity and reduced complement-dependent cell death efficacy of ofatumumab produced using a plant system (Nicotiana benthamiana L.). Protein Expr. Purif., 2019, 159, 34-41.
[http://dx.doi.org/10.1016/j.pep.2019.03.004] [PMID: 30880170]
[144]
Zafir-Lavie, I.; Sherbo, S.; Goltsman, H.; Badinter, F.; Yeini, E.; Ofek, P.; Miari, R.; Tal, O.; Liran, A.; Shatil, T.; Krispel, S.; Shapir, N.; Neil, G.A.; Benhar, I.; Panet, A.; Satchi-Fainaro, R. Successful intracranial delivery of trastuzumab by gene-therapy for treatment of HER2-positive breast cancer brain metastases. J. Control. Release, 2018, 291, 80-89.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.017] [PMID: 30342077]
[145]
Masuda, T.; Fujimoto, H.; Teranaka, R.; Kuroda, M.; Aoyagi, Y.; Nagashima, T.; Sangai, T.; Takada, M.; Nakagawa, A.; Kubota, Y.; Yokote, K.; Ohtsuka, M. Anti-HER2 antibody therapy using gene-transduced adipocytes for HER2-positive breast cancer. Breast Cancer Res. Treat., 2020, 180(3), 625-634.
[http://dx.doi.org/10.1007/s10549-020-05581-x] [PMID: 32124135]
[146]
Swain, S.M.; Baselga, J.; Kim, S-B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J-M.; Schneeweiss, A.; Heeson, S.; Clark, E.; Ross, G.; Benyunes, M.C.; Cortés, J. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med., 2015, 372(8), 724-734.
[http://dx.doi.org/10.1056/NEJMoa1413513] [PMID: 25693012]
[147]
Tóth, G.; Szöőr, Á.; Simon, L.; Yarden, Y.; Szöllősi, J.; Vereb, G. The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity. MAbs, 2016, 8(7), 1361-1370.
[http://dx.doi.org/10.1080/19420862.2016.1204503] [PMID: 27380003]
[148]
Haen, S.P.; Schmiedel, B.J.; Rothfelder, K.; Schmied, B.J.; Dang, T.M.; Mirza, N.; Möhle, R.; Kanz, L.; Vogel, W.; Salih, H.R. Prognostic relevance of HER2/neu in acute lymphoblastic leukemia and induction of NK cell reactivity against primary ALL blasts by trastuzumab. Oncotarget, 2016, 7(11), 13013-13030.
[http://dx.doi.org/10.18632/oncotarget.7344] [PMID: 26887048]
[149]
Kol, A.; Terwisscha van Scheltinga, A.; Pool, M.; Gerdes, C.; de Vries, E.; de Jong, S. ADCC re-sponses and blocking of EGFR-mediated signaling and cell growth by combining the anti-EGFR an-tibodies imgatuzumab and cetuximab in NSCLC cells. Oncotarget, 2017, 8(28), 45432-45446.
[http://dx.doi.org/10.18632/oncotarget.17139] [PMID: 28467975]
[150]
Qi, J.; Chen, S.S.; Chiorazzi, N.; Rader, C. An IgG1-like bispecific antibody targeting CD52 and CD20 for the treatment of B-cell malignancies. Methods, 2019, 154, 70-76.
[http://dx.doi.org/10.1016/j.ymeth.2018.08.008] [PMID: 30145356]
[151]
Han, Y.; Sun, F.; Zhang, X.; Wang, T.; Jiang, J.; Cai, J.; Gao, Q.; Hezam, K.; Liu, Y.; Xie, J.; Wang, M.; Zhang, J. CD24 targeting bi-specific antibody that simultaneously stimulates NKG2D enhances the efficacy of cancer immunotherapy. J. Cancer Res. Clin. Oncol., 2019, 145(5), 1179-1190.
[http://dx.doi.org/10.1007/s00432-019-02865-8] [PMID: 30778749]
[152]
Huang, S.; Li, F.; Liu, H.; Ye, P.; Fan, X.; Yuan, X.; Wu, Z.; Chen, J.; Jin, C.; Shen, B.; Feng, J.; Zhang, B. Structural and functional characterization of MBS301, an afucosylated bispecific anti-HER2 antibody. MAbs, 2018, 10(6), 864-875.
[http://dx.doi.org/10.1080/19420862.2018.1486946] [PMID: 30081724]
[153]
Ellwanger, K.; Reusch, U.; Fucek, I.; Wingert, S.; Ross, T.; Müller, T.; Schniegler-Mattox, U.; Han-eke, T.; Rajkovic, E.; Koch, J.; Treder, M.; Tesar, M. Redirected optimized cell killing (ROCK®): A highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs, 2019, 11(5), 899-918.
[http://dx.doi.org/10.1080/19420862.2019.1616506] [PMID: 31172847]
[154]
Pahl, J.H.W.; Koch, J.; Götz, J.J.; Arnold, A.; Reusch, U.; Gantke, T.; Rajkovic, E.; Treder, M.; Cerwenka, A. Cd16a activation of NK cells promotes NK cell proliferation and memory-like cyto-toxicity against cancer cells. Cancer Immunol. Res., 2018, 6(5), 517-527.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0550] [PMID: 29514797]
[155]
Del Bano, J.; Florès-Florès, R.; Josselin, E.; Goubard, A.; Ganier, L.; Castellano, R.; Chames, P.; Baty, D.; Kerfelec, B. A bispecific antibody-based approach for targeting mesothelin in triple nega-tive breast cancer. Front. Immunol., 2019, 10, 1593.
[http://dx.doi.org/10.3389/fimmu.2019.01593] [PMID: 31354732]
[156]
Kong, D.; Wang, Y.; Ji, P.; Li, W.; Ying, T.; Huang, J.; Wang, C.; Wu, Y.; Wang, Y.; Chen, W.; Hao, Y.; Hong, K.; Shao, Y.; Dimitrov, D.S.; Jiang, S.; Ma, L. A defucosylated bispecific multiva-lent molecule exhibits broad HIV-1-neutralizing activity and enhanced antibody-dependent cellular cytotoxicity against reactivated HIV-1 latently infected cells. AIDS, 2018, 32(13), 1749-1761.
[http://dx.doi.org/10.1097/QAD.0000000000001869] [PMID: 29762173]
[157]
Bardhi, A.; Wu, Y.; Chen, W.; Li, W.; Zhu, Z.; Zheng, J.H.; Wong, H.; Jeng, E.; Jones, J.; Ochsen-bauer, C.; Kappes, J.C.; Dimitrov, D.S.; Ying, T.; Goldstein, H. Potent in vivo NK cell-mediated elimination of HIV-1-infected cells mobilized by a gp120-bispecific and hexavalent broadly neutral-izing fusion protein. J. Virol., 2017, 91(20), e00937-e17.
[http://dx.doi.org/10.1128/JVI.00937-17] [PMID: 28794022]
[158]
Ramadoss, N.S.; Zhao, N.Q.; Richardson, B.A.; Grant, P.M.; Kim, P.S.; Blish, C.A. Enhancing nat-ural killer cell function with gp41-targeting bispecific antibodies to combat HIV infection. AIDS, 2020, 34(9), 1313-1323.
[http://dx.doi.org/10.1097/QAD.0000000000002543] [PMID: 32287071]
[159]
Oberg, H.H.; Kellner, C.; Gonnermann, D.; Sebens, S.; Bauerschlag, D.; Gramatzki, M.; Kabelitz, D.; Peipp, M.; Wesch, D. Tribody [(HER2)2xCD16] is more effective than trastuzumab in enhancing γδ T cell and natural killer cell cytotoxicity against HER2-expressing cancer cells. Front. Immunol., 2018, 9, 814.
[http://dx.doi.org/10.3389/fimmu.2018.00814] [PMID: 29725336]
[160]
Schmohl, J.U.; Felices, M.; Taras, E.; Miller, J.S.; Vallera, D.A. Enhanced ADCC and NK cell acti-vation of an anticarcinoma bispecific antibody by genetic insertion of a modified IL-15 cross-linker. Mol. Ther., 2016, 24(7), 1312-1322.
[http://dx.doi.org/10.1038/mt.2016.88] [PMID: 27157665]
[161]
Schmohl, J.U.; Felices, M.; Oh, F.; Lenvik, A.J.; Lebeau, A.M.; Panyam, J.; Miller, J.S.; Vallera, D.A. Engineering of anti-CD133 trispecific molecule capable of inducing NK expansion and driving antibody-dependent cell-mediated cytotoxicity. Cancer Res. Treat., 2017, 49(4), 1140-1152.
[http://dx.doi.org/10.4143/crt.2016.491] [PMID: 28231426]
[162]
Vallera, D.A.; Ferrone, S.; Kodal, B.; Hinderlie, P.; Bendzick, L.; Ettestad, B.; Hallstrom, C.; Zorko, N.A.; Rao, A.; Fujioka, N.; Ryan, C.J.; Geller, M.A.; Miller, J.S.; Felices, M. NK-cell-mediated tar-geting of various solid tumors using a B7-H3 tri-specific killer engager In vitro and in vivo. Cancers (Basel), 2020, 12(9), 2659.
[http://dx.doi.org/10.3390/cancers12092659] [PMID: 32961861]
[163]
Deng, W.; Liu, J.; Pan, H.; Li, L.; Zhou, C.; Wang, X.; Shu, R.; Dong, B.; Cao, D.; Li, Q.; Wang, Z. A Bispecific Antibody Based on Pertuzumab Fab Has Potent Antitumor Activity. J. Immunother., 2018, 41(1), 1-8.
[http://dx.doi.org/10.1097/CJI.0000000000000200] [PMID: 29232309]
[164]
Li, A.; Xing, J.; Li, L.; Zhou, C.; Dong, B.; He, P.; Li, Q.; Wang, Z. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells. AMB Express, 2016, 6(1), 32.
[http://dx.doi.org/10.1186/s13568-016-0201-4] [PMID: 27112931]
[165]
Wozniak-Knopp, G.; Stadlmayr, G.; Perthold, J.W.; Stadlbauer, K.; Gotsmy, M.; Becker, S.; Rüker, F. An antibody with Fab-constant domains exchanged for a pair of CH3 domains. PLoS One, 2018, 13(4) ,e0195442
[http://dx.doi.org/10.1371/journal.pone.0195442] [PMID: 29630643]
[166]
Sioud, M.; Westby, P.; Olsen, J.K.E.; Mobergslien, A. Generation of new peptide-Fc fusion proteins that mediate antibody-dependent cellular cytotoxicity against different types of cancer cells. Mol. Ther. Methods Clin. Dev., 2015, 2, 15043.
[http://dx.doi.org/10.1038/mtm.2015.43] [PMID: 26605373]
[167]
Jochems, C.; Tritsch, S.R.; Pellom, S.T.; Su, Z.; Soon-Shiong, P.; Wong, H.C.; Gulley, J.L.; Schlom, J. Analyses of functions of an anti-PD-L1/TGFβR2 bispecific fusion protein (M7824). Oncotarget, 2017, 8(43), 75217-75231.
[http://dx.doi.org/10.18632/oncotarget.20680] [PMID: 29088859]
[168]
Pinette, A.; McMichael, E.; Courtney, N.B.; Duggan, M.; Benner, B.N.; Choueiry, F.; Yu, L.; Abood, D.; Mace, T.A.; Carson, W.E. III An IL-15-based superagonist ALT-803 enhances the NK cell response to cetuximab-treated squamous cell carcinoma of the head and neck. Cancer Immunol. Immunother., 2019, 68(8), 1379-1389.
[http://dx.doi.org/10.1007/s00262-019-02372-2] [PMID: 31338557]
[169]
Märklin, M.; Hagelstein, I.; Koerner, S.P.; Rothfelder, K.; Pfluegler, M.S.; Schumacher, A.; Grosse-Hovest, L.; Jung, G.; Salih, H.R. Bispecific NKG2D-CD3 and NKG2D-CD16 fusion proteins for induction of NK and T cell reactivity against acute myeloid leukemia. J. Immunother. Cancer, 2019, 7(1), 143.
[http://dx.doi.org/10.1186/s40425-019-0606-0] [PMID: 31142382]
[170]
Hu, N.; Yin, J.F.; Ji, Z.; Hong, Y.; Wu, P.; Bian, B.; Song, Z.; Li, R.; Liu, Q.; Wu, F. Strengthening gastric cancer therapy by trastuzumab-conjugated nanoparticles with simultaneous encapsulation of anti-MiR-21 and 5-fluorouridine. Cell. Physiol. Biochem., 2017, 44(6), 2158-2173.
[http://dx.doi.org/10.1159/000485955] [PMID: 29241186]
[171]
Wu, F-L.; Zhang, J.; Li, W.; Bian, B-X.; Hong, Y-D.; Song, Z-Y.; Wang, H-Y.; Cui, F-B.; Li, R-T.; Liu, Q.; Jiang, X-D.; Li, X-M.; Zheng, J-N. Enhanced antiproliferative activity of antibody-functionalized polymeric nanoparticles for targeted delivery of anti-miR-21 to HER2 positive gastric cancer. Oncotarget, 2017, 8(40), 67189-67202.
[http://dx.doi.org/10.18632/oncotarget.18066] [PMID: 28978026]
[172]
Dawicki, W.; Allen, K.J.H.; Jiao, R.; Malo, M.E.; Helal, M.; Berger, M.S.; Ludwig, D.L.; Dadachova, E. Daratumumab-225Actinium conjugate demonstrates greatly enhanced antitumor activ-ity against experimental multiple myeloma tumors. OncoImmunology, 2019, 8(8) ,1607673
[http://dx.doi.org/10.1080/2162402X.2019.1607673] [PMID: 31413916]
[173]
Rouwendal, G.J.A.; van der Lee, M.M.; Meyer, S.; Reiding, K.R.; Schouten, J.; de Roo, G.; Egging, D.F.; Leusen, J.H.W.; Boross, P.; Wuhrer, M.; Verheijden, G.F.; Dokter, W.H.; Timmers, M.; Ubink, R. A comparison of anti-HER2 IgA and IgG1 in vivo efficacy is facilitated by high N-glycan sialylation of the IgA. MAbs, 2016, 8(1), 74-86.
[http://dx.doi.org/10.1080/19420862.2015.1102812] [PMID: 26440530]
[174]
Brandsma, A.M.; Ten Broeke, T.; Nederend, M.; Meulenbroek, L.A.P.M.; van Tetering, G.; Meyer, S.; Jansen, J.H.M.; Beltrán Buitrago, M.A.; Nagelkerke, S.Q.; Németh, I.; Ubink, R.; Rouwendal, G.; Lohse, S.; Valerius, T.; Leusen, J.H.W.; Boross, P. Simultaneous targeting of FcgRs and FcaRI enhances tumor cell killing. Cancer Immunol. Res., 2015, 3(12), 1316-1324.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0099-T] [PMID: 26407589]
[175]
Bologna, L.; Gotti, E.; Manganini, M.; Rambaldi, A.; Intermesoli, T.; Introna, M.; Golay, J. Mecha-nism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J. Immunol., 2011, 186(6), 3762-3769.
[http://dx.doi.org/10.4049/jimmunol.1000303] [PMID: 21296976]
[176]
Capuano, C.; Pighi, C.; Molfetta, R.; Paolini, R.; Battella, S.; Palmieri, G.; Giannini, G.; Belardinilli, F.; Santoni, A.; Galandrini, R. Obinutuzumab-mediated high-affinity ligation of FcγRIIIA/CD16 primes NK cells for IFNγ production. OncoImmunology, 2017, 6(3) ,e1290037
[http://dx.doi.org/10.1080/2162402X.2017.1290037] [PMID: 28405525]
[177]
Marcus, R.; Davies, A.; Ando, K.; Klapper, W.; Opat, S.; Owen, C.; Phillips, E.; Sangha, R.; Schlag, R.; Seymour, J.F.; Townsend, W.; Trněný, M.; Wenger, M.; Fingerle-Rowson, G.; Rufibach, K.; Moore, T.; Herold, M.; Hiddemann, W. Obinutuzumab for the first-line treatment of follicular lym-phoma. N. Engl. J. Med., 2017, 377(14), 1331-1344.
[http://dx.doi.org/10.1056/NEJMoa1614598] [PMID: 28976863]
[178]
Awasthi, A.; Rolland, D.C.M.; Ayello, J.; van de Ven, C.; Basrur, V.; Conlon, K.; Fermin, D.; Barth, M.J.; Klein, C.; Elenitoba-Johnson, K.S.J.; Lim, M.S.; Cairo, M.S. A comparative global phosphoproteomics analysis of obinutuzumab (GA101) versus rituximab (RTX) against RTX sensi-tive and resistant Burkitt lymphoma (BL) demonstrates differential phosphorylation of signaling pathway proteins after treatment. Oncotarget, 2017, 8(69), 113895-113909.
[http://dx.doi.org/10.18632/oncotarget.23040] [PMID: 29371955]
[179]
Said, R.; Tsimberidou, A.M. Obinutuzumab for the treatment of chronic lymphocytic leukemia and other B-cell lymphoproliferative disorders. Expert Opin. Biol. Ther., 2017, 17(11), 1463-1470.
[http://dx.doi.org/10.1080/14712598.2017.1377178] [PMID: 28893099]
[180]
Kohrt, H.E.; Sagiv-Barfi, I.; Rafiq, S.; Herman, S.E.M.; Butchar, J.P.; Cheney, C.; Zhang, X.; Bug-gy, J.J.; Muthusamy, N.; Levy, R.; Johnson, A.J.; Byrd, J.C. Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood, 2014, 123(12), 1957-1960.
[http://dx.doi.org/10.1182/blood-2014-01-547869] [PMID: 24652965]
[181]
Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Burger, J.A.; Blum, K.A.; Coleman, M.; Wierda, W.G.; Jones, J.A.; Zhao, W.; Heerema, N.A.; Johnson, A.J.; Shaw, Y.; Bilotti, E.; Zhou, C.; James, D.F.; O’Brien, S. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood, 2015, 125(16), 2497-2506.
[http://dx.doi.org/10.1182/blood-2014-10-606038] [PMID: 25700432]
[182]
Yasuhiro, T.; Sawada, W.; Klein, C.; Kozaki, R.; Hotta, S.; Yoshizawa, T. Anti-tumor efficacy study of the Bruton’s tyrosine kinase (BTK) inhibitor, ONO/GS-4059, in combination with the gly-coengineered type II anti-CD20 monoclonal antibody obinutuzumab (GA101) demonstrates superior in vivo efficacy compared to ONO/GS-4059 in combination with rituximab. Leuk. Lymphoma, 2017, 58(3), 699-707.
[http://dx.doi.org/10.1080/10428194.2016.1201567] [PMID: 27684575]
[183]
Gerdes, C.A.; Nicolini, V.G.; Herter, S.; van Puijenbroek, E.; Lang, S.; Roemmele, M.; Moessner, E.; Freytag, O.; Friess, T.; Ries, C.H.; Bossenmaier, B.; Mueller, H.J.; Umaña, P. GA201 (RG7160): a novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab. Clin. Cancer Res., 2013, 19(5), 1126-1138.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0989] [PMID: 23209031]
[184]
Gonzalez-Nicolini, V.; Herter, S.; Lang, S.; Waldhauer, I.; Bacac, M.; Roemmele, M.; Bommer, E.; Freytag, O.; van Puijenbroek, E.; Umaña, P.; Gerdes, C.A. Premedication and chemotherapy agents do not impair imgatuzumab (GA201)-mediated antibody-dependent cellular cytotoxicity and combi-nation therapies enhance efficacy. Clin. Cancer Res., 2016, 22(10), 2453-2461.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2579] [PMID: 26581243]
[185]
Temam, S.; Spicer, J.; Farzaneh, F.; Soria, J.C.; Oppenheim, D.; McGurk, M.; Hollebecque, A.; Sa-rini, J.; Hussain, K.; Soehrman Brossard, S.; Manenti, L.; Evers, S.; Delmar, P.; Di Scala, L.; Mancao, C.; Feuerhake, F.; Andries, L.; Ott, M.G.; Passioukov, A.; Delord, J.P. An exploratory, open-label, randomized, multicenter study to investigate the pharmacodynamics of a glycoengi-neered antibody (imgatuzumab) and cetuximab in patients with operable head and neck squamous cell carcinoma. Ann. Oncol., 2017, 28(11), 2827-2835.
[http://dx.doi.org/10.1093/annonc/mdx489] [PMID: 28950289]
[186]
Bang, Y.J.; Giaccone, G. Im, S.A.; Oh, D.Y.; Bauer, T.M.; Nordstrom, J.L.; Li, H.; Chichili, G.R.; Moore, P.A.; Hong, S.; Stewart, S.J.; Baughman, J.E.; Lechleider, R.J.; Burris, H.A. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in pa-tients with HER2-positive advanced solid tumors. Ann. Oncol., 2017, 28(4), 855-861.
[http://dx.doi.org/10.1093/annonc/mdx002] [PMID: 28119295]
[187]
Pomeroy, E.J.; Hunzeker, J.T.; Kluesner, M.G.; Lahr, W.S.; Smeester, B.A.; Crosby, M.R.; Lonetree, C.L.; Yamamoto, K.; Bendzick, L.; Miller, J.S.; Geller, M.A.; Walcheck, B.; Felices, M.; Webber, B.R.; Starr, T.K.; Moriarity, B.S. A genetically engineered primary human natural killer cell platform for cancer immunotherapy. Mol. Ther., 2020, 28(1), 52-63.
[http://dx.doi.org/10.1016/j.ymthe.2019.10.009] [PMID: 31704085]
[188]
Huang, R.S.; Shih, H.A.; Lai, M.C.; Chang, Y.J.; Lin, S. Enhanced NK-92 cytotoxicity by CRISPR genome engineering using Cas9 ribonucleoproteins. Front. Immunol., 2020, 11, 1008.
[http://dx.doi.org/10.3389/fimmu.2020.01008] [PMID: 32528479]
[189]
Pham, D.H.; Kim, J.S.; Kim, S.K.; Shin, D.J.; Uong, N.T.T.; Hyun, H.; Yoon, M.S.; Kang, S.J.; Ryu, Y.J.; Cho, J.S.; Yoon, J.H.; Lee, J.S.; Cho, D.; Lee, S.H.; Park, M.H. Effects of ADAM10 and ADAM17 inhibitors on natural killer cell expansion and antibody-dependent cellular cytotoxicity against breast cancer cells in vitro. Anticancer Res., 2017, 37(10), 5507-5513.
[http://dx.doi.org/10.21873/anticanres.11981] [PMID: 28982863]
[190]
Yang, Y.; Badeti, S.; Tseng, H.C.; Ma, M.T.; Liu, T.; Jiang, J.G.; Liu, C.; Liu, D. Superior expansion and cytotoxicity of human primary NK and CAR-NK cells from various sources via enriched metabolic pathways. Mol. Ther. Methods Clin. Dev., 2020, 18, 428-445.
[http://dx.doi.org/10.1016/j.omtm.2020.06.014] [PMID: 32695845]
[191]
Sarkar, S.; Chauhan, S.K.S.; Daly, J.; Natoni, A.; Fairfield, H.; Henderson, R.; Nolan, E.; Swan, D.; Hu, J.; Reagan, M.R.; O’Dwyer, M. The CD38low natural killer cell line KHYG1 transiently express-ing CD16F158V in combination with daratumumab targets multiple myeloma cells with minimal ef-fector NK cell fratricide. Cancer Immunol. Immunother., 2020, 69(3), 421-434.
[http://dx.doi.org/10.1007/s00262-019-02477-8] [PMID: 31919623]
[192]
Kohrt, H.E.; Colevas, A.D.; Houot, R.; Weiskopf, K.; Goldstein, M.J.; Lund, P.; Mueller, A.; Sagiv-Barfi, I.; Marabelle, A.; Lira, R.; Troutner, E.; Richards, L.; Rajapaska, A.; Hebb, J.; Chester, C.; Waller, E.; Ostashko, A.; Weng, W.K.; Chen, L.; Czerwinski, D.; Fu, Y.X.; Sunwoo, J.; Levy, R. Targeting CD137 enhances the efficacy of cetuximab. J. Clin. Invest., 2014, 124(6), 2668-2682.
[http://dx.doi.org/10.1172/JCI73014] [PMID: 24837434]
[193]
Masu, T.; Atsukawa, M.; Nakatsuka, K.; Shimizu, M.; Miura, D.; Arai, T.; Harimoto, H.; Kondo, C.; Kaneko, K.; Futagami, S.; Kawamoto, C.; Takahashi, H.; Iwakiri, K. Anti-CD137 monoclonal anti-body enhances trastuzumab-induced, natural killer cell-mediated cytotoxicity against pancreatic cancer cell lines with low human epidermal growth factor-like receptor 2 expression. PLoS One, 2018, 13(12) ,e0200664
[http://dx.doi.org/10.1371/journal.pone.0200664] [PMID: 30596643]
[194]
Di Modica, M.; Sfondrini, L.; Regondi, V.; Varchetta, S.; Oliviero, B.; Mariani, G.; Bianchi, G.V.; Generali, D.; Balsari, A.; Triulzi, T.; Tagliabue, E. Taxanes enhance trastuzumab-mediated ADCC on tumor cells through NKG2D-mediated NK cell recognition. Oncotarget, 2016, 7(1), 255-265.
[http://dx.doi.org/10.18632/oncotarget.6353] [PMID: 26595802]
[195]
Gomes, S.E.; Simões, A.E.S.; Pereira, D.M.; Castro, R.E.; Rodrigues, C.M.P.; Borralho, P.M. miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotox-icity in human colon cancer cells. Oncotarget, 2016, 7(8), 9368-9387.
[http://dx.doi.org/10.18632/oncotarget.7010] [PMID: 26824186]
[196]
Chew, H.Y.; De Lima, P.O.; Gonzalez Cruz, J.L.; Banushi, B.; Echejoh, G.; Hu, L.; Joseph, S.R.; Lum, B.; Rae, J.; O’Donnell, J.S.; Merida de Long, L.; Okano, S.; King, B.; Barry, R.; Moi, D.; Mazzieri, R.; Thomas, R.; Souza-Fonseca-Guimaraes, F.; Foote, M.; McCluskey, A.; Robinson, P.J.; Frazer, I.H.; Saunders, N.A.; Parton, R.G.; Dolcetti, R.; Cuff, K.; Martin, J.H.; Panizza, B.; Walpole, E.; Wells, J.W.; Simpson, F. Endocytosis inhibition in humans to improve responses to ADCC-mediating antibodies. Cell, 2020, 180(5), 895-914.e27.
[http://dx.doi.org/10.1016/j.cell.2020.02.019] [PMID: 32142680]
[197]
Yagishita, S.; Fujita, Y.; Kitazono, S.; Ko, R.; Nakadate, Y.; Sawada, T.; Kitamura, Y.; Shimoyama, T.; Maeda, Y.; Takahashi, F.; Takahashi, K.; Tamura, T.; Koizumi, F. Chemotherapy-regulated mi-croRNA-125-HER2 pathway as a novel therapeutic target for trastuzumab-mediated cellular cyto-toxicity in small cell lung cancer. Mol. Cancer Ther., 2015, 14(6), 1414-1423.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0625] [PMID: 25833836]
[198]
Mercogliano, M.F.; De Martino, M.; Venturutti, L.; Rivas, M.A.; Proietti, C.J.; Inurrigarro, G.; Frahm, I.; Allemand, D.H.; Deza, E.G.; Ares, S.; Gercovich, F.G.; Guzmán, P.; Roa, J.C.; Elizalde, P.V.; Schillaci, R. TNFα-induced mucin 4 expression elicits trastuzumab resistance in HER2-positive breast cancer. Clin. Cancer Res., 2017, 23(3), 636-648.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0970] [PMID: 27698002]
[199]
Namba, M.; Hattori, N.; Hamada, H.; Yamaguchi, K.; Okamoto, Y.; Nakashima, T.; Masuda, T.; Sakamoto, S.; Horimasu, Y.; Miyamoto, S.; Iwamoto, H.; Fujitaka, K.; Kohno, N. Anti-KL-6/MUC1 monoclonal antibody reverses resistance to trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity by capping MUC1. Cancer Lett., 2019, 442, 31-39.
[http://dx.doi.org/10.1016/j.canlet.2018.10.037] [PMID: 30389434]
[200]
Xiao, H.; Woods, E.C.; Vukojicic, P.; Bertozzi, C.R. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc. Natl. Acad. Sci. USA, 2016, 113(37), 10304-10309.
[http://dx.doi.org/10.1073/pnas.1608069113] [PMID: 27551071]
[201]
Vasu, S.; He, S.; Cheney, C.; Gopalakrishnan, B.; Mani, R.; Lozanski, G.; Mo, X.; Groh, V.; Whit-man, S.P.; Konopitzky, R.; Kössl, C.; Bucci, D.; Lucas, D.M.; Yu, J.; Caligiuri, M.A.; Blum, W.; Adam, P.J.; Borges, E.; Rueter, B.; Heider, K.H.; Marcucci, G.; Muthusamy, N. Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood, 2016, 127(23), 2879-2889.
[http://dx.doi.org/10.1182/blood-2015-11-680546] [PMID: 27013443]
[202]
Fenerty, K.E.; Padget, M.; Wolfson, B.; Gameiro, S.R.; Su, Z.; Lee, J.H.; Rabizadeh, S.; Soon-Shiong, P.; Hodge, J.W. Immunotherapy utilizing the combination of natural killer- and antibody dependent cellular cytotoxicity (ADCC)-mediating agents with poly (ADP-ribose) polymerase (PARP) inhibition. J. Immunother. Cancer, 2018, 6(1), 133.
[http://dx.doi.org/10.1186/s40425-018-0445-4] [PMID: 30486888]
[203]
Ji, T.; Lang, J.; Ning, B.; Qi, F.; Wang, H.; Zhang, Y.; Zhao, R.; Yang, X.; Zhang, L.; Li, W.; Shi, X.; Qin, Z.; Zhao, Y.; Nie, G. Enhanced natural killer cell immunotherapy by rationally assembling Fc fragments of antibodies onto tumor membranes. Adv. Mater., 2019, 31(6) ,e1804395
[http://dx.doi.org/10.1002/adma.201804395] [PMID: 30549110]
[204]
Okita, R.; Shimizu, K.; Nojima, Y.; Yukawa, T.; Maeda, A.; Saisho, S.; Nakata, M. Lapatinib en-hances trastuzumab-mediated antibody-dependent cellular cytotoxicity via upregulation of HER2 in malignant mesothelioma cells. Oncol. Rep., 2015, 34(6), 2864-2870.
[http://dx.doi.org/10.3892/or.2015.4314] [PMID: 26503698]
[205]
Collins, D.M.; Gately, K.; Hughes, C.; Edwards, C.; Davies, A.; Madden, S.F.; O’Byrne, K.J.; O’Donovan, N.; Crown, J. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated anti-body-dependent cell-mediated cytotoxicity in breast cancer cell lines. Cell. Immunol., 2017, 319, 35-42.
[http://dx.doi.org/10.1016/j.cellimm.2017.07.005] [PMID: 28735814]
[206]
Canonici, A.; Ivers, L.; Conlon, N.T.; Pedersen, K.; Gaynor, N.; Browne, B.C.; O’Brien, N.A.; Gullo, G.; Collins, D.M.; O’Donovan, N.; Crown, J. HER-targeted tyrosine kinase inhibitors en-hance response to trastuzumab and pertuzumab in HER2-positive breast cancer. Invest. New Drugs, 2019, 37(3), 441-451.
[http://dx.doi.org/10.1007/s10637-018-0649-y] [PMID: 30062574]
[207]
Mallmann-Gottschalk, N.; Sax, Y.; Kimmig, R.; Lang, S.; Brandau, S. EGFR-specific tyrosine ki-nase inhibitor modifies NK cell-mediated antitumoral activity against ovarian cancer cells. Int. J. Mol. Sci., 2019, 20(19), 4693.
[http://dx.doi.org/10.3390/ijms20194693] [PMID: 31546690]
[208]
Singha, N.C.; Nekoroski, T.; Zhao, C.; Symons, R.; Jiang, P.; Frost, G.I.; Huang, Z.; Shepard, H.M. Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy. Mol. Cancer Ther., 2015, 14(2), 523-532.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0580] [PMID: 25512619]
[209]
Rocca, Y.S.; Roberti, M.P.; Juliá, E.P.; Pampena, M.B.; Bruno, L.; Rivero, S.; Huertas, E.; Sánchez Loria, F.; Pairola, A.; Caignard, A.; Mordoh, J.; Levy, E.M. Phenotypic and functional dysregulated blood NK cells in colorectal cancer patients can be activated by cetuximab plus IL-2 or IL-15. Front. Immunol., 2016, 7, 413.
[http://dx.doi.org/10.3389/fimmu.2016.00413] [PMID: 27777574]
[210]
Asgari, A.; Sharifzadeh, S.; Ghaderi, A.; Hosseini, A.; Ramezani, A. In vitro cytotoxic effect of Trastuzumab in combination with Pertuzumab in breast cancer cells is improved by interleukin-2 ac-tivated NK cells. Mol. Biol. Rep., 2019, 46(6), 6205-6213.
[http://dx.doi.org/10.1007/s11033-019-05059-0] [PMID: 31493284]
[211]
McMichael, E.L.; Jaime-Ramirez, A.C.; Guenterberg, K.D.; Luedke, E.; Atwal, L.S.; Campbell, A.R.; Hu, Z.; Tatum, A.S.; Kondadasula, S.V.; Mo, X.; Tridandapani, S.; Bloomston, M.; Ellison, E.C.; Williams, T.M.; Bekaii-Saab, T.; Carson, W.E., III IL-21 enhances natural killer cell response to cetuximab-coated pancreatic tumor cells. Clin. Cancer Res., 2017, 23(2), 489-502.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0004] [PMID: 27435400]
[212]
Bhatt, S.; Parvin, S.; Zhang, Y.; Cho, H.M.; Kunkalla, K.; Vega, F.; Timmerman, J.M.; Shin, S.U.; Rosenblatt, J.D.; Lossos, I.S. Anti-CD20-interleukin-21 fusokine targets malignant B cells via direct apoptosis and NK-cell-dependent cytotoxicity. Blood, 2017, 129(16), 2246-2256.
[http://dx.doi.org/10.1182/blood-2016-09-738211] [PMID: 28137826]
[213]
McMichael, E.L.; Benner, B.; Atwal, L.S.; Courtney, N.B.; Mo, X.; Davis, M.E.; Campbell, A.R.; Duggan, M.C.; Williams, K.; Martin, K.; Levine, K.; Olaverria Salavaggione, G.N.; Noel, T.; Ganju, A.; Uppati, S.; Paul, B.; Olencki, T.; Teknos, T.N.; Savvides, P.; Tridandapani, S.; Byrd, J.C.; Ca-ligiuri, M.A.; Liu, S.V.; Carson, W.E. III A phase I/II trial of cetuximab in combination with inter-leukin-12 administered to patients with unresectable primary or recurrent head and neck squamous cell carcinoma. Clin. Cancer Res., 2019, 25(16), 4955-4965.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2108] [PMID: 31142501]
[214]
Choi, Y.H.; Lim, E.J.; Kim, S.W.; Moon, Y.W.; Park, K.S.; An, H.J. IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells. J. Immunother. Cancer, 2019, 7(1), 1-12.
[http://dx.doi.org/10.1186/s40425-019-0652-7] [PMID: 30612589]
[215]
Garrido, C.; Abad-Fernandez, M.; Tuyishime, M.; Pollara, J.J.; Ferrari, G.; Soriano-Sarabia, N.; Margolis, D.M. Interleukin-15-stimulated natural killer cells clear HIV-1-infected cells following la-tency reversal ex vivo. J. Virol., 2018, 92(12), e00235-e18.
[http://dx.doi.org/10.1128/JVI.00235-18] [PMID: 29593039]
[216]
Fisher, L.; Zinter, M.; Stanfield-Oakley, S.; Carpp, L.N.; Edwards, R.W.; Denny, T.; Moodie, Z.; Laher, F.; Bekker, L.G.; McElrath, M.J.; Gilbert, P.B.; Corey, L.; Tomaras, G.; Pollara, J.; Ferrari, G. Vaccine-induced antibodies mediate higher antibody-dependent cellular cytotoxicity after inter-leukin-15 pretreatment of natural killer effector cells. Front. Immunol., 2019, 10, 2741.
[http://dx.doi.org/10.3389/fimmu.2019.02741] [PMID: 31827470]
[217]
Zhang, M.; Wen, B.; Anton, O.M.; Yao, Z.; Dubois, S.; Ju, W.; Sato, N.; DiLillo, D.J.; Bamford, R.N.; Ravetch, J.V.; Waldmann, T.A. IL-15 enhanced antibody-dependent cellular cytotoxicity me-diated by NK cells and macrophages. Proc. Natl. Acad. Sci. USA, 2018, 115(46), E10915-E10924.
[http://dx.doi.org/10.1073/pnas.1811615115] [PMID: 30373815]
[218]
Ochoa, M.C.; Minute, L.; López, A.; Pérez-Ruiz, E.; Gomar, C.; Vasquez, M.; Inoges, S.; Etxeberria, I.; Rodriguez, I.; Garasa, S.; Mayer, J.A.; Wirtz, P.; Melero, I.; Berraondo, P. Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleu-kin-15. OncoImmunology, 2017, 7(2) ,e1393597
[http://dx.doi.org/10.1080/2162402X.2017.1393597] [PMID: 29308327]
[219]
Hagner, P.R.; Chiu, H.; Ortiz, M.; Apollonio, B.; Wang, M.; Couto, S.; Waldman, M.F.; Flynt, E.; Ramsay, A.G.; Trotter, M.; Gandhi, A.K.; Chopra, R.; Thakurta, A. Activity of lenalidomide in mantle cell lymphoma can be explained by NK cell-mediated cytotoxicity. Br. J. Haematol., 2017, 179(3), 399-409.
[http://dx.doi.org/10.1111/bjh.14866] [PMID: 28771673]
[220]
Chiu, H.; Trisal, P.; Bjorklund, C.; Carrancio, S.; Toraño, E.G.; Guarinos, C.; Papazoglou, D.; Hag-ner, P.R.; Beldi-Ferchiou, A.; Tarte, K.; Delfau-Larue, M.H.; Morschhauser, F.; Ramsay, A.G.; Gandhi, A.K. Combination lenalidomide-rituximab immunotherapy activates anti-tumour immunity and induces tumour cell death by complementary mechanisms of action in follicular lymphoma. Br. J. Haematol., 2019, 185(2), 240-253.
[http://dx.doi.org/10.1111/bjh.15797] [PMID: 30767211]
[221]
Bertino, E.M.; McMichael, E.L.; Mo, X.; Trikha, P.; Davis, M.; Paul, B.; Grever, M.; Carson, W.E.; Otterson, G.A. A phase I trial to evaluate antibody-dependent cellular cytotoxicity of cetuximab and lenalidomide in advanced colorectal and head and neck cancer. Mol. Cancer Ther., 2016, 15(9), 2244-2250.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0879] [PMID: 27458141]
[222]
Morschhauser, F.; Le Gouill, S.; Feugier, P.; Bailly, S.; Nicolas-Virelizier, E.; Bijou, F.; Salles, G.A.; Tilly, H.; Fruchart, C.; Van Eygen, K.; Snauwaert, S.; Bonnet, C.; Haioun, C.; Thieblemont, C.; Bouabdallah, R.; Wu, K.L.; Canioni, D.; Meignin, V.; Cartron, G.; Houot, R. Obinutuzumab combined with lenalidomide for relapsed or refractory follicular B-cell lymphoma (GALEN): a mul-ticentre, single-arm, phase 2 study. Lancet Haematol., 2019, 6(8), e429-e437.
[http://dx.doi.org/10.1016/S2352-3026(19)30089-4] [PMID: 31296423]
[223]
Besson, L.; Charrier, E.; Karlin, L.; Allatif, O.; Marçais, A.; Rouzaire, P.; Belmont, L.; Attal, M.; Lombard, C.; Salles, G.; Walzer, T.; Viel, S. One-year follow-up of natural killer cell activity in multiple myeloma patients treated with adjuvant lenalidomide therapy. Front. Immunol., 2018, 9, 704.
[http://dx.doi.org/10.3389/fimmu.2018.00704] [PMID: 29706958]
[224]
Carlsten, M.; Korde, N.; Kotecha, R.; Reger, R.; Bor, S.; Kazandjian, D.; Landgren, O.; Childs, R.W. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin. Cancer Res., 2016, 22(21), 5211-5222.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1108] [PMID: 27307594]
[225]
Benson, D.M., Jr; Hofmeister, C.C.; Padmanabhan, S.; Suvannasankha, A.; Jagannath, S.; Abonour, R.; Bakan, C.; Andre, P.; Efebera, Y.; Tiollier, J.; Caligiuri, M.A.; Farag, S.S. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood, 2012, 120(22), 4324-4333.https://doi.org/https://doi.org/10.1182/blood-2012-06-438028
[http://dx.doi.org/10.1182/blood-2012-06-438028] [PMID: 23033266]
[226]
Kohrt, H.E.; Thielens, A.; Marabelle, A.; Sagiv-Barfi, I.; Sola, C.; Chanuc, F.; Fuseri, N.; Bonnafous, C.; Czerwinski, D.; Rajapaksa, A.; Waller, E.; Ugolini, S.; Vivier, E.; Romagné, F.; Levy, R.; Bléry, M.; André, P. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood, 2014, 123(5), 678-686.
[http://dx.doi.org/10.1182/blood-2013-08-519199] [PMID: 24326534]
[227]
Sola, C.; Blery, M.; Bonnafous, C.; Bonnet, E.; Fuseri, N.; Graziano, R.F.; Morel, Y.; André, P. Lirilumab Enhances Anti-Tumor Efficacy of Elotuzumab. Blood; American Society of Hematology Washington: DC, 2014, pp. 4711-4711.
[http://dx.doi.org/10.1182/blood.V124.21.4711.4711]
[228]
Borrego, F.; Kabat, J.; Kim, D.K.; Lieto, L.; Maasho, K.; Peña, J.; Solana, R.; Coligan, J.E. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol. Immunol., 2002, 38(9), 637-660.
[http://dx.doi.org/10.1016/S0161-5890(01)00107-9] [PMID: 11858820]
[229]
Ruggeri, L.; Urbani, E.; André, P.; Mancusi, A.; Tosti, A.; Topini, F.; Bléry, M.; Animobono, L.; Romagné, F.; Wagtmann, N.; Velardi, A. Effects of anti-NKG2A antibody administration on leu-kemia and normal hematopoietic cells. Haematologica, 2016, 101(5), 626-633.
[http://dx.doi.org/10.3324/haematol.2015.135301] [PMID: 26721894]
[230]
André, P.; Denis, C.; Soulas, C.; Bourbon-Caillet, C.; Lopez, J.; Arnoux, T.; Bléry, M.; Bonnafous, C.; Gauthier, L.; Morel, A.; Rossi, B.; Remark, R.; Breso, V.; Bonnet, E.; Habif, G.; Guia, S.; La-lanne, A.I.; Hoffmann, C.; Lantz, O.; Fayette, J.; Boyer-Chammard, A.; Zerbib, R.; Dodion, P.; Ghadially, H.; Jure-Kunkel, M.; Morel, Y.; Herbst, R.; Narni-Mancinelli, E.; Cohen, R.B.; Vivier, E. Anti-NKG2A mAb Is a checkpoint inhibitor that promotes anti-tumor Immunity by Unleashing Both T and NK Cells. Cell, 2018, 175(7), 1731-1743.e13.
[http://dx.doi.org/10.1016/j.cell.2018.10.014] [PMID: 30503213]
[231]
Li, F.; Chen, Y.; Pang, M.; Yang, P.; Jing, H. Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy. Clin. Exp. Immunol., 2021, 205(1), 1-11.
[http://dx.doi.org/10.1111/cei.13592] [PMID: 33675535]
[232]
Armand, P.; Nagler, A.; Weller, E.A.; Devine, S.M.; Avigan, D.E.; Chen, Y.B.; Kaminski, M.S.; Holland, H.K.; Winter, J.N.; Mason, J.R.; Fay, J.W.; Rizzieri, D.A.; Hosing, C.M.; Ball, E.D.; Uber-ti, J.P.; Lazarus, H.M.; Mapara, M.Y.; Gregory, S.A.; Timmerman, J.M.; Andorsky, D.; Or, R.; Wal-ler, E.K.; Rotem-Yehudar, R.; Gordon, L.I. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J. Clin. Oncol., 2013, 31(33), 4199-4206.
[http://dx.doi.org/10.1200/JCO.2012.48.3685] [PMID: 24127452]
[233]
Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; Tomita, A.; von Tresckow, B.; Shipp, M.A.; Zhang, Y.; Ricart, A.D.; Balakumaran, A.; Moskowitz, C.H. Phase II study of the efficacy and safety of pembroli-zumab for relapsed/refractory classic Hodgkin Lymphoma. J. Clin. Oncol., 2017, 35(19), 2125-2132.
[http://dx.doi.org/10.1200/JCO.2016.72.1316] [PMID: 28441111]
[234]
Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; Cohen, J.B.; Collins, G.; Savage, K.J.; Trneny, M.; Kato, K.; Farsaci, B.; Parker, S.M.; Rodig, S.; Roemer, M.G.M.; Ligon, A.H.; Engert, A. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol., 2016, 17(9), 1283-1294.
[http://dx.doi.org/10.1016/S1470-2045(16)30167-X] [PMID: 27451390]
[235]
Galon, J.; Robertson, M.W.; Galinha, A.; Mazières, N.; Spagnoli, R.; Fridman, W.H.; Sautès, C. Af-finity of the interaction between Fc γ receptor type III (Fc gammaRIII) and monomeric human IgG subclasses. Role of Fc gammaRIII glycosylation. Eur. J. Immunol., 1997, 27(8), 1928-1932.
[http://dx.doi.org/10.1002/eji.1830270816] [PMID: 9295028]
[236]
Zhang, S.; Zhang, M.; Wu, W.; Yuan, Z.; Tsun, A.; Wu, M.; Chen, B.; Li, J.; Miao, X.; Miao, X. Preclinical characterization of sintilimab, a fully human anti-PD-1 therapeutic monoclonal antibody for cancer. Antib. Ther., 2018, 1(2), 65-73.
[http://dx.doi.org/10.1093/abt/tby005] [PMID: 30406214]
[237]
Zhang, L.; Mai, W.; Jiang, W.; Geng, Q. Sintilimab: A Promising Anti-Tumor PD-1 Antibody. Front. Oncol., 2020, 10(November) ,594558
[http://dx.doi.org/10.3389/fonc.2020.594558] [PMID: 33324564]
[238]
Geoerger, B.; Zwaan, C.M.; Marshall, L.V.; Michon, J.; Bourdeaut, F.; Casanova, M.; Corradini, N.; Rossato, G.; Farid-Kapadia, M.; Shemesh, C.S.; Hutchinson, K.E.; Donaldson, F.; Liao, M.; Caron, H.; Trippett, T. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): a multicentre phase 1-2 study. Lancet Oncol., 2020, 21(1), 134-144.
[http://dx.doi.org/10.1016/S1470-2045(19)30693-X] [PMID: 31780255]
[239]
Herrera, A.F.; Goy, A.; Mehta, A.; Ramchandren, R.; Pagel, J.M.; Svoboda, J.; Guan, S.; Hill, J.S.; Kwei, K.; Liu, E.A.; Phillips, T. Safety and activity of ibrutinib in combination with durvalumab in patients with relapsed or refractory follicular lymphoma or diffuse large B-cell lymphoma. Am. J. Hematol., 2020, 95(1), 18-27.
[http://dx.doi.org/10.1002/ajh.25659] [PMID: 31621094]
[240]
Boyerinas, B.; Jochems, C.; Fantini, M.; Heery, C.R.; Gulley, J.L.; Tsang, K.Y.; Schlom, J. Anti-body-dependent cellular cytotoxicity activity of a Novel Anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol. Res., 2015, 3(10), 1148-1157.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0059] [PMID: 26014098]
[241]
Gao, J.; Zheng, Q.; Xin, N.; Wang, W.; Zhao, C. CD155, an onco-immunologic molecule in human tumors. Cancer Sci., 2017, 108(10), 1934-1938.
[http://dx.doi.org/10.1111/cas.13324] [PMID: 28730595]
[242]
Kučan Brlić, P.; Lenac Roviš, T.; Cinamon, G.; Tsukerman, P.; Mandelboim, O.; Jonjić, S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell. Mol. Immunol., 2019, 16(1), 40-52.
[http://dx.doi.org/10.1038/s41423-018-0168-y] [PMID: 30275538]
[243]
Zhang, Q.; Bi, J.; Zheng, X.; Chen, Y.; Wang, H.; Wu, W.; Wang, Z.; Wu, Q.; Peng, H.; Wei, H.; Sun, R.; Tian, Z. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol., 2018, 19(7), 723-732.
[http://dx.doi.org/10.1038/s41590-018-0132-0] [PMID: 29915296]
[244]
Golden-Mason, L.; McMahan, R.H.; Strong, M.; Reisdorph, R.; Mahaffey, S.; Palmer, B.E.; Cheng, L.; Kulesza, C.; Hirashima, M.; Niki, T.; Rosen, H.R. Galectin-9 functionally impairs natural killer cells in humans and mice. J. Virol., 2013, 87(9), 4835-4845.
[http://dx.doi.org/10.1128/JVI.01085-12] [PMID: 23408620]
[245]
Xu, L.; Huang, Y.; Tan, L.; Yu, W.; Chen, D.; Lu, C.; He, J.; Wu, G.; Liu, X.; Zhang, Y. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int. Immunopharmacol., 2015, 29(2), 635-641.
[http://dx.doi.org/10.1016/j.intimp.2015.09.017] [PMID: 26428847]
[246]
Farkas, A. M.; Audenet, F.; Anastos, H.; Galsky, M.; Sfakianos, J.; Bhardwaj, N. Tim-3 and TIGIT mark Natural Killer cells susceptible to effector dysfunction in human bladder cancer. J. Immunol., 2018, 200(1 Supplement)124.14..
[247]
Jie, H.B.; Schuler, P.J.; Lee, S.C.; Srivastava, R.M.; Argiris, A.; Ferrone, S.; Whiteside, T.L.; Ferris, R.L. CTLA-4+ regulatory t cells increased in cetuximab-treated head and neck cancer patients sup-press nk cell cytotoxicity and correlate with poor prognosis. Cancer Res., 2015, 75(11), 2200-2210.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2788] [PMID: 25832655]
[248]
Simpson, T.R.; Li, F.; Montalvo-Ortiz, W.; Sepulveda, M.A.; Bergerhoff, K.; Arce, F.; Roddie, C.; Henry, J.Y.; Yagita, H.; Wolchok, J.D.; Peggs, K.S.; Ravetch, J.V.; Allison, J.P.; Quezada, S.A. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med., 2013, 210(9), 1695-1710.
[http://dx.doi.org/10.1084/jem.20130579] [PMID: 23897981]
[249]
Romano, E.; Kusio-Kobialka, M.; Foukas, P.G.; Baumgaertner, P.; Meyer, C.; Ballabeni, P.; Mich-ielin, O.; Weide, B.; Romero, P.; Speiser, D.E. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl. Acad. Sci. USA, 2015, 112(19), 6140-6145.
[http://dx.doi.org/10.1073/pnas.1417320112] [PMID: 25918390]
[250]
Laurent, S.; Queirolo, P.; Boero, S.; Salvi, S.; Piccioli, P.; Boccardo, S.; Minghelli, S.; Morabito, A.; Fontana, V.; Pietra, G.; Carrega, P.; Ferrari, N.; Tosetti, F.; Chang, L.J.; Mingari, M.C.; Ferlazzo, G.; Poggi, A.; Pistillo, M.P. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production. J. Transl. Med., 2013, 11(1), 108.
[http://dx.doi.org/10.1186/1479-5876-11-108] [PMID: 23634660]
[251]
Picarda, E.; Ohaegbulam, K.C.; Zang, X. Molecular pathways: Targeting B7-H3 (CD276) for human cancer immunotherapy. Clin. Cancer Res., 2016, 22(14), 3425-3431.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2428] [PMID: 27208063]
[252]
Ye, Z.; Zheng, Z.; Li, X.; Zhu, Y.; Zhong, Z.; Peng, L.; Wu, Y. B7-H3 Overexpression Predicts Poor Survival of Cancer Patients: A Meta-Analysis. Cell. Physiol. Biochem., 2016, 39(4), 1568-1580.
[http://dx.doi.org/10.1159/000447859] [PMID: 27626927]
[253]
Janakiram, M.; Shah, U.A.; Liu, W.; Zhao, A.; Schoenberg, M.P.; Zang, X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol. Rev., 2017, 276(1), 26-39.
[http://dx.doi.org/10.1111/imr.12521] [PMID: 28258693]
[254]
Loo, D.; Alderson, R.F.; Chen, F.Z.; Huang, L.; Zhang, W.; Gorlatov, S.; Burke, S.; Ciccarone, V.; Li, H.; Yang, Y.; Son, T.; Chen, Y.; Easton, A.N.; Li, J.C.; Rillema, J.R.; Licea, M.; Fieger, C.; Liang, T.W.; Mather, J.P.; Koenig, S.; Stewart, S.J.; Johnson, S.; Bonvini, E.; Moore, P.A. Devel-opment of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clin. Cancer Res., 2012, 18(14), 3834-3845.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0715] [PMID: 22615450]
[255]
Medon, M.; Vidacs, E.; Vervoort, S.J.; Li, J.; Jenkins, M.R.; Ramsbottom, K.M.; Trapani, J.A.; Smyth, M.J.; Darcy, P.K.; Atadja, P.W.; Henderson, M.A.; Johnstone, R.W.; Haynes, N.M. HDAC inhibitor panobinostat engages host innate immune defenses to promote the tumoricidal effects of trastuzumab in HER2+ tumors. Cancer Res., 2017, 77(10), 2594-2606.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2247] [PMID: 28249907]
[256]
Neumann, F.; Acker, F.; Schormann, C.; Pfreundschuh, M.; Bittenbring, J.T. Determination of op-timum vitamin D3 levels for NK cell-mediated rituximab- and obinutuzumab-dependent cellular cy-totoxicity. Cancer Immunol. Immunother., 2018, 67(11), 1709-1718.
[http://dx.doi.org/10.1007/s00262-018-2224-y] [PMID: 30132083]
[257]
Mortara, L.; Gariboldi, M.B.; Bosi, A.; Bregni, M.; Pinotti, G.; Guasti, L.; Squizzato, A.; Noonan, D.M.; Monti, E.; Campiotti, L. Vitamin D deficiency has a negative impact on cetuximab-mediated cellular cytotoxicity against human colon carcinoma cells. Target. Oncol., 2018, 13(5), 657-665.
[http://dx.doi.org/10.1007/s11523-018-0586-x] [PMID: 30090970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy