Perspective

气道表面液体的低 pH 值和温度是增强 SARS-CoV-2 感染性的关键决定因素

卷 22, 期 6, 2022

发表于: 16 August, 2021

页: [471 - 477] 页: 7

弟呕挨: 10.2174/1566524021666210816095557

摘要

在临床前和临床水平上看到了压倒性的反应,以了解和对抗由严重急性呼吸综合征冠状病毒 2 [SARS-CoV-2] 引起的 2019 年冠状病毒病 [COVID-19] 大流行。 在诊断、治疗和预防措施方面取得了令人鼓舞的成功,包括疫苗开发。 事实上,SARS-CoV-2 的结构信息和帮助该病毒靶向 AEC 的分子步骤已被大量研究。 此外,在分子、遗传、表观遗传和微环境水平上广泛揭示了 COVID-19 的异质性和复杂性。 尽管在 COVID-19 发病机制方面取得了这些进展,但人们对 SARS-CoV-2 靶向感染 AEC 背后的原因知之甚少。 在这篇小型综述中,我们强调了气道表面液体 [ASL] 的 pH 值和温度作为可能有助于增强 SARS-CoV-2 靶向感染导致 COVID-19 的关键决定因素的作用。

关键词: 瘤形成、气道上皮细胞、细胞信号传导、COVID-19、低 pH 值、温度。

Next »
[1]
(a) Fauci AS, Lane HC, Redfield RR. Covid-19 - navigating the uncharted. N Engl J Med 2020; 382(13): 1268-9.; (b) Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med 2020; 383(23): 2255-73.
[PMID: 33264547]
[2]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[3]
Örd M, Faustova I, Loog M. The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV. Sci Rep 2020; 10(1): 16944.
[http://dx.doi.org/10.1038/s41598-020-74101-0] [PMID: 33037310]
[4]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[5]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[6]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[7]
Benton DJ, Wrobel AG, Xu P, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020; 588(7837): 327-30.
[http://dx.doi.org/10.1038/s41586-020-2772-0] [PMID: 32942285]
[8]
Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 [ACE2], SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 [COVID-19]. J Pathol 2020; 251(3): 228-48.
[http://dx.doi.org/10.1002/path.5471]
[9]
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol 2020; 41(12): 1100-15.
[http://dx.doi.org/10.1016/j.it.2020.10.004] [PMID: 33132005]
[10]
Chan KH, Peiris JS, Lam SY, Poon LL, Yuen KY, Seto WH. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv Virol 2011; 2011: 734690.
[http://dx.doi.org/10.1155/2011/734690] [PMID: 22312351]
[11]
Abou Alaiwa MH, Reznikov LR, Gansemer ND, et al. pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37. Proc Natl Acad Sci USA 2014; 111(52): 18703-8.
[http://dx.doi.org/10.1073/pnas.1422091112] [PMID: 25512526]
[12]
Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018; 14(8): e1007236.
[http://dx.doi.org/10.1371/journal.ppat.1007236] [PMID: 30102747]
[13]
Thornell IM, Li X, Tang XX, et al. Nominal carbonic anhydrase activity minimizes airway-surface liquid pH changes during breathing. Physiol Rep 2018; 6(2): e13569.
[http://dx.doi.org/10.14814/phy2.13569] [PMID: 29380953]
[14]
Thornell IM, Rehman T, Pezzulo AA, Welsh MJ. Paracellular bicarbonate flux across human cystic fibrosis airway epithelia tempers changes in airway surface liquid pH. J Physiol 2020; 598(19): 4307-20.
[http://dx.doi.org/10.1113/JP280120] [PMID: 32627187]
[15]
Zhou T, Tsybovsky Y, Gorman J, et al. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe 2020; 28(6): 867-879.e5.
[http://dx.doi.org/10.1016/j.chom.2020.11.004] [PMID: 33271067]
[16]
Harmooshi NN, Shirbandi K, Rahim F. Environmental concern regarding the effect of humidity and temperature on 2019-nCoV survival: Fact or fiction. Environ Sci Pollut Res Int 2020; 27(29): 36027-36.
[http://dx.doi.org/10.1007/s11356-020-09733-w] [PMID: 32592048]
[17]
Morris DH, Yinda KC, Gamble A, et al. The effect of temperature and humidity on the stability of SARS-CoV-2 and other enveloped viruses. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.10.16.341883] [PMID: 33083797]
[18]
Rath SL, Kumar K. Investigation of the Effect of Temperature on the Structure of SARS-CoV-2 Spike Protein by Molecular Dynamics Simulations. Front Mol Biosci 2020; 7: 583523.
[http://dx.doi.org/10.3389/fmolb.2020.583523] [PMID: 33195427]
[19]
Malladi SK, Singh R, Pandey S, et al. Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. J Biol Chem 2020; 296: 100025.
[http://dx.doi.org/10.1074/jbc.RA120.016284] [PMID: 33154165]
[20]
Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2005; 79(23): 14614-21.
[http://dx.doi.org/10.1128/JVI.79.23.14614-14621.2005] [PMID: 16282461]
[21]
Zhou Z, Yang Z, Ou J, et al. Temperature dependence of the SARS-CoV-2 affinity to human ACE2 determines COVID-19 progression and clinical outcome. Comput Struct Biotechnol J 2021; 19: 161-7.
[http://dx.doi.org/10.1016/j.csbj.2020.12.005] [PMID: 33343834]
[22]
Elad D, Wolf M, Keck T. Air-conditioning in the human nasal cavity. Respir Physiol Neurobiol 2008; 163(1-3): 121-7.
[http://dx.doi.org/10.1016/j.resp.2008.05.002] [PMID: 18565805]
[23]
Kim DW, Chung SK, Na Y. Numerical study on the air conditioning characteristics of the human nasal cavity. Comput Biol Med 2017; 86: 18-30.
[http://dx.doi.org/10.1016/j.compbiomed.2017.04.018] [PMID: 28499215]
[24]
Broman N, Rantasärkkä K, Feuth T, et al. IL-6 and other biomarkers as predictors of severity in COVID-19. Ann Med 2020; 11: 1-5.
[PMID: 33305624]
[25]
Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020; 39(10): e105114.
[http://dx.doi.org/10.15252/embj.2020105114] [PMID: 32246845]
[26]
Patra T, Meyer K, Geerling L, et al. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog 2020; 16(12): e1009128.
[http://dx.doi.org/10.1371/journal.ppat.1009128] [PMID: 33284859]
[27]
Schuler BA, Habermann AC, Plosa EJ, et al. Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium. J Clin Invest 2021; 131(1): 140766.
[http://dx.doi.org/10.1172/JCI140766] [PMID: 33180746]
[28]
Appelberg S, Gupta S, Svensson Akusjärvi S, et al. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 2020; 9(1): 1748-60.
[http://dx.doi.org/10.1080/22221751.2020.1799723] [PMID: 32691695]
[29]
Hertzog RG, Bicheru NS, Popescu DM, Călborean O, Catrina AM. Hypoxic preconditioning - a non-pharmacological approach in COVID-19 prevention. Int J Infect Dis 2021; 103: 415-9.
[30]
Marchetti M. COVID-19-driven endothelial damage: Complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol 2020; 99(8): 1701-7.
[http://dx.doi.org/10.1007/s00277-020-04138-8] [PMID: 32583086]
[31]
Swenson ER. Hypoxia and its acid-base consequences: from mountains to malignancy. Adv Exp Med Biol 2016; 903: 301-23.
[http://dx.doi.org/10.1007/978-1-4899-7678-9_21] [PMID: 27343105]
[32]
Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm (Lond) 2020; 17(1): 33.
[http://dx.doi.org/10.1186/s12950-020-00263-3] [PMID: 33139969]
[33]
Shivaraju M, Chitta UK, Grange RMH, et al. Airway stem cells sense hypoxia and differentiate into protective solitary neuroendocrine cells. Science 2021; 371(6524): 52-7.
[http://dx.doi.org/10.1126/science.aba0629] [PMID: 33384370]
[34]
Coakley RD, Grubb BR, Paradiso AM, et al. Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci USA 2003; 100(26): 16083-8.
[http://dx.doi.org/10.1073/pnas.2634339100] [PMID: 14668433]
[35]
Pezzulo AA, Tang XX, Hoegger MJ, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 2012; 487(7405): 109-13.
[http://dx.doi.org/10.1038/nature11130] [PMID: 22763554]
[36]
Tang XX, Ostedgaard LS, Hoegger MJ, et al. Acidic pH increases airway surface liquid viscosity in cystic fibrosis. J Clin Invest 2016; 126(3): 879-91.
[http://dx.doi.org/10.1172/JCI83922] [PMID: 26808501]
[37]
Simonin J, Bille E, Crambert G, et al. Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Sci Rep 2019; 9(1): 6516.
[http://dx.doi.org/10.1038/s41598-019-42751-4] [PMID: 31019198]
[38]
Colombo C, Burgel PR, Gartner S, et al. Impact of COVID-19 on people with cystic fibrosis. Lancet Respir Med 2020; 8(5): e35-6.
[http://dx.doi.org/10.1016/S2213-2600(20)30177-6] [PMID: 32304639]
[39]
Gianotti A, Capurro V, Delpiano L, et al. Small molecule anion carriers correct abnormal airway surface liquid properties in cystic fibrosis airway epithelia. Int J Mol Sci 2020; 21(4): 1488.
[http://dx.doi.org/10.3390/ijms21041488] [PMID: 32098269]
[40]
Rehman T, Thornell IM, Pezzulo AA, et al. TNFα and IL-17 alkalinize airway surface liquid through CFTR and pendrin. Am J Physiol Cell Physiol 2020; 319(2): C331-44.
[http://dx.doi.org/10.1152/ajpcell.00112.2020] [PMID: 32432926]
[41]
Schultz A, Puvvadi R, Borisov SM, et al. Airway surface liquid pH is not acidic in children with cystic fibrosis. Nat Commun 2017; 8(1): 1409.
[http://dx.doi.org/10.1038/s41467-017-00532-5] [PMID: 29123085]
[42]
Kaya H, Çalışkan A, Okul M, Sarı T, Akbudak İH. Detection of SARS-CoV-2 in the tears and conjunctival secretions of Coronavirus disease 2019 patients. J Infect Dev Ctries 2020; 14(9): 977-81.
[http://dx.doi.org/10.3855/jidc.13224] [PMID: 33031084]
[43]
Xia J, Tong J, Liu M, Shen Y, Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol 2020; 92(6): 589-94.
[http://dx.doi.org/10.1002/jmv.25725] [PMID: 32100876]
[44]
Willcox MD, Walsh K, Nichols JJ, Morgan PB, Jones LW. The ocular surface, coronaviruses and COVID-19. Clin Exp Optom 2020; 103(4): 418-24.
[http://dx.doi.org/10.1111/cxo.13088] [PMID: 32406140]
[45]
Dai M, Tao L, Chen Z, et al. Influence of cigarettes and alcohol on the severity and death of COVID-19: A multicenter retrospective study in Wuhan, China. Front Physiol 2020; 11: 588553.
[http://dx.doi.org/10.3389/fphys.2020.588553] [PMID: 33362576]
[46]
Gallo O. Risk for COVID-19 infection in patients with tobacco smoke-associated cancers of the upper and lower airway. Eur Arch Otorhinolaryngol 2020; 20: 1-8.
[PMID: 33216184]
[47]
Smith JC, Sausville EL, Girish V, et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev Cell 2020; 53(5): 514-529.e3.
[http://dx.doi.org/10.1016/j.devcel.2020.05.012] [PMID: 32425701]
[48]
Nasrolahi A, Haghani K, Gheysarzadeh A, Bakhtiyari S. Do genetic factors predispose people to COVID-19: A review article. Curr Mol Med 2020; 21(6): 457-61.
[PMID: 33191884]
[49]
Liu A, Zhang X, Li R, et al. Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol 2021; 253(1): 17-30.
[http://dx.doi.org/10.1002/path.5555] [PMID: 32991738]

© 2024 Bentham Science Publishers | Privacy Policy