Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Association between Increased Bcl-2, Fas and FasL Levels and Inflammation Extent in Labial Salivary Glands During Primary Sjögren's Syndrome

Author(s): Sarah Benchabane*, Assia Slimani-Kaddouri, Dahbia Acheli, Thouraya Bendimerad-Iratene, Redouane Mesbah and Chafia Touil-Boukoffa*

Volume 22, Issue 3, 2022

Published on: 11 January, 2022

Page: [328 - 338] Pages: 11

DOI: 10.2174/1871530321666210809155147

Price: $65

Abstract

Background: Primary Sjögren Syndrome (pSS) is a chronic autoimmune disease characterized by epithelial atrophy, mononuclear infiltration in exocrine glands resulting in the defective function of these glands. In pSS, atrophy of the epithelium is caused by an increased amount of apoptosis.

Objective: The main aim of this study is to investigate the role of the apoptosis-related factors by studying Bcl-2, Fas and FasL expression in relation to the extent of inflammation as well as the effect of therapy on the expression of these mediators.

Methods: In pSS patients (n=62) documented for their serological and clinical features, Fas, FasL and Bcl-2 plasma levels were assessed using enzyme-linked immunosorbent assays. In the same context, we investigated their expression by immunohistochemistry analysis in the labial salivary glands samples in association with the extent of inflammation.

Results: Interestingly, our results indicated that in pSS patients, the plasmatic Bcl-2, Fas and FasL levels, which appeared to be associated with the severity of inflammation and were significantly elevated in comparison to the healthy controls. Moreover, a significant decrease in all these factors was observed in patients after combined corticosteroids-hydroxychloroquine therapy. Importantly, we report a strong positive correlation between Bcl-2 and NO levels. The immunohistochemical staining reveals a strong Bcl-2 expression in infiltrating mononuclear cells and a total absence in the acinar cells. The Bcl-2 level varies according to the severity of pathology. However, the expression of Fas and FasL was less important and predominantly localized in infiltrating mononuclear cells.

Conclusion: Our current study highlights the involvement of Bcl-2, Fas and FasL in pSS glands injury. These factors may act as useful predictor markers of a clinical course in pSS, suggesting a novel approach in the pSS patients monitoring.

Keywords: Primary Sjögren’s syndrome, inflammation, apoptosis, nitric oxide, Bcl-2, Fas, FasL.

Graphical Abstract

[1]
Routsias, J.G.; Goules, J.D.; Charalampakis, G.; Tzima, S.; Papageorgiou, A.; Voulgarelis, M. Malignant lymphoma in primary Sjögren’s syndrome: an update on the pathogenesis and treatment. Semin. Arthritis Rheum., 2013, 43(2), 178-186.
[http://dx.doi.org/10.1016/j.semarthrit.2013.04.004] [PMID: 23816048]
[2]
Ioannidis, J.P.; Vassiliou, V.A.; Moutsopoulos, H.M. Long-term risk of mortality and lymphoproliferative disease and predictive classification of primary Sjögren’s syndrome. Arthritis Rheum., 2002, 46(3), 741-747.
[http://dx.doi.org/10.1002/art.10221] [PMID: 11920410]
[3]
Vitali, C.; Bombardieri, S.; Jonsson, R.; Moutsopoulos, H.M.; Alexander, E.L.; Carsons, S.E.; Daniels, T.E.; Fox, P.C.; Fox, R.I.; Kassan, S.S.; Pillemer, S.R.; Talal, N.; Weisman, M.H. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis., 2002, 61(6), 554-558.
[http://dx.doi.org/10.1136/ard.61.6.554] [PMID: 12006334]
[4]
Kivity, S.; Arango, M.T.; Ehrenfeld, M.; Tehori, O.; Shoenfeld, Y.; Anaya, J.M.; Agmon-Levin, N. Infection and autoimmunity in Sjogren’s syndrome: A clinical study and comprehensive review. J. Autoimmun., 2014, 51, 17-22.
[http://dx.doi.org/10.1016/j.jaut.2014.02.008] [PMID: 24637076]
[5]
Konttinen, Y.T.; Platts, L.A.; Tuominen, S.; Eklund, K.K.; Santavirta, N.; Törnwall, J.; Sorsa, T.; Hukkanen, M.; Polak, J.M. Role of nitric oxide in Sjögren’s syndrome. Arthritis Rheum., 1997, 40(5), 875-883.
[http://dx.doi.org/10.1002/art.1780400515] [PMID: 9153549]
[6]
Wanchu, A.; Khullar, M.; Sud, A.; Bambery, P. Elevated nitric oxide production in patients with primary Sjögren’s syndrome. Clin. Rheumatol., 2000, 19(5), 360-364.
[http://dx.doi.org/10.1007/s100670070028] [PMID: 11055824]
[7]
Benchabane, S.; Belguendouz, H.; Behairi, N.; Arroul-Lammali, A.; Boudjelida, A.; Youinou, P.; Touil-Boukoffa, C. Cardamonin inhibits pro-inflammatory cytokine production and suppresses NO pathway in PBMCs from patients with primary Sjögren’s syndrome. Immunopharmacol. Immunotoxicol., 2018, 40(2), 126-133.
[http://dx.doi.org/10.1080/08923973.2017.1418881] [PMID: 29303022]
[8]
Benchabane, S.; Belkhelfa, M.; Belguendouz, H.; Zidi, S.; Boudjelida, A.; Youinou, P.; Touil-Boukoffa, C. Interferon-β inhibits inflammatory responses mediators via suppression of iNOS signaling pathway in PBMCs from patients with primary Sjögren’s syndrome. Inflammopharmacology, 2018, 26(5), 1165-1174.
[http://dx.doi.org/10.1007/s10787-018-0499-4] [PMID: 29869303]
[9]
Benchabane, S.; Boudjelida, A.; Toumi, R.; Belguendouz, H.; Youinou, P.; Touil-Boukoffa, C. A case for IL-6, IL-17A, and nitric oxide in the pathophysiology of Sjögren’s syndrome. Int. J. Immunopathol. Pharmacol., 2016, 29(3), 386-397.
[http://dx.doi.org/10.1177/0394632016651273] [PMID: 27207443]
[10]
Christodoulou, M.I.; Kapsogeorgou, E.K.; Moutsopoulos, H.M. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J. Autoimmun., 2010, 34(4), 400-407.
[http://dx.doi.org/10.1016/j.jaut.2009.10.004] [PMID: 19889514]
[11]
Rathmell, J.C.; Thompson, C.B. The central effectors of cell death in the immune system. Annu. Rev. Immunol., 1999, 17, 781-828.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.781] [PMID: 10358774]
[12]
Zhang, N.; Hartig, H.; Dzhagalov, I.; Draper, D.; He, Y.W. The role of apoptosis in the development and function of T lymphocytes. Cell Res., 2005, 15(10), 749-769.
[http://dx.doi.org/10.1038/sj.cr.7290345] [PMID: 16246265]
[13]
Clemens, M.J.; van Venrooij, W.J.; van de Putte, L.B.A. Apoptosis and autoimmunity. Cell Death Differ., 2000, 7(1), 131-133.
[http://dx.doi.org/10.1038/sj.cdd.4400633] [PMID: 10858073]
[14]
Eguchi, K. Apoptosis in autoimmune diseases. Intern. Med., 2001, 40(4), 275-284.
[http://dx.doi.org/10.2169/internalmedicine.40.275] [PMID: 11334384]
[15]
Gulbins, E.; Dreschers, S.; Bock, J. Role of mitochondria in apoptosis. Exp. Physiol., 2003, 88(1), 85-90.
[http://dx.doi.org/10.1113/eph8802503] [PMID: 12525857]
[16]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[17]
Touil-Boukoffa, C.; Bauvois, B.; Sancéau, J.; Hamrioui, B.; Wietzerbin, J. Production of nitric oxide (NO) in human hydatidosis: Relationship between nitrite production and interferon-γ levels. Biochimie, 1998, 80(8-9), 739-744.
[http://dx.doi.org/10.1016/S0300-9084(99)80027-3] [PMID: 9865496]
[18]
Daniels, T.E.; Whitcher, J.P. Association of patterns of labial salivary gland inflammation with keratoconjunctivitis sicca. Analysis of 618 patients with suspected Sjögren’s syndrome. Arthritis Rheum., 1994, 37(6), 869-877.
[http://dx.doi.org/10.1002/art.1780370615] [PMID: 8003059]
[19]
Daniels, T.E. Labial salivary gland biopsy in Sjögren’s syndrome. Assessment as a diagnostic criterion in 362 suspected cases. Arthritis Rheum., 1984, 27(2), 147-156.
[http://dx.doi.org/10.1002/art.1780270205] [PMID: 6696772]
[20]
Tarpley, T.M., Jr; Anderson, L.G.; White, C.L. Minor salivary gland involvement in Sjögren’s syndrome. Oral Surg. Oral Med. Oral Pathol., 1974, 37(1), 64-74.
[http://dx.doi.org/10.1016/0030-4220(74)90160-1] [PMID: 4586901]
[21]
Darrah, E.; Andrade, F. NETs: the missing link between cell death and systemic autoimmune diseases? Front. Immunol., 2013, 3, 428.
[http://dx.doi.org/10.3389/fimmu.2012.00428] [PMID: 23335928]
[22]
Luo, J.; Wang, Y.; Yu, B.; Qian, H.; He, Y.; Shi, G. A Potential of sFasL in Preventing Gland Injury in Sjogren’s Syndrome. BioMed Res. Int., 2017, 2017, 5981432.
[http://dx.doi.org/10.1155/2017/5981432] [PMID: 28326325]
[23]
Nozawa, K.; Kayagaki, N.; Tokano, Y.; Yagita, H.; Okumura, K.; Hasimoto, H. Soluble Fas (APO-1, CD95) and soluble Fas ligand in rheumatic diseases. Arthritis Rheum., 1997, 40(6), 1126-1129.
[http://dx.doi.org/10.1002/art.1780400617] [PMID: 9182923]
[24]
Vincent, F.B.; Bubicich, M.; Downie-Doyle, S.; Mackay, F.; Morand, E.F.; Rischmueller, M. Serum soluble Fas and Fas ligand (FasL) in primary Sjögren’s syndrome. Clin. Exp. Rheumatol., 2019, 37(3)(Suppl. 118), 254-256.
[PMID: 30789150]
[25]
Vincent, F.B.; Kandane-Rathnayake, R.; Koelmeyer, R.; Harris, J.; Hoi, A.Y.; Mackay, F.; Morand, E.F. Associations of serum soluble Fas and Fas ligand (FasL) with outcomes in systemic lupus erythematosus. Lupus Sci. Med., 2020, 7(1), 375.
[http://dx.doi.org/10.1136/lupus-2019-000375] [PMID: 32546562]
[26]
Tanaka, M.; Suda, T.; Haze, K.; Nakamura, N.; Sato, K.; Kimura, F.; Motoyoshi, K.; Mizuki, M.; Tagawa, S.; Ohga, S.; Hatake, K.; Drummond, A.H.; Nagata, S. Fas ligand in human serum. Nat. Med., 1996, 2(3), 317-322.
[http://dx.doi.org/10.1038/nm0396-317] [PMID: 8612231]
[27]
Rogge, M.; Yin, X.T.; Godfrey, L.; Lakireddy, P.; Potter, C.A.; Del Rosso, C.R.; Stuart, P.M. Therapeutic use of soluble fas ligand ameliorates acute and recurrent herpetic stromal keratitis in mice. Invest. Ophthalmol. Vis. Sci., 2015, 56(11), 6377-6386.
[http://dx.doi.org/10.1167/iovs.15-16588] [PMID: 26444718]
[28]
Scaffidi, C.; Schmitz, I.; Zha, J.; Korsmeyer, S.J.; Krammer, P.H.; Peter, M.E. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J. Biol. Chem., 1999, 274(32), 22532-22538.
[http://dx.doi.org/10.1074/jbc.274.32.22532] [PMID: 10428830]
[29]
Wang, S.Q.; Zhang, L.W.; Wei, P.; Hua, H. Is hydroxychloroquine effective in treating primary Sjogren’s syndrome: A systematic review and meta-analysis. BMC Musculoskelet. Disord., 2017, 18(1), 186.
[http://dx.doi.org/10.1186/s12891-017-1543-z] [PMID: 28499370]
[30]
Vitali, C.; Palombi, G.; Cataleta, P. Treating Sjögren’s syndrome: Insights for the clinician. Ther. Adv. Musculoskelet. Dis., 2010, 2(3), 155-166.
[http://dx.doi.org/10.1177/1759720X10363246] [PMID: 22870445]
[31]
Vivino, F.B.; Carsons, S.E.; Foulks, G.; Daniels, T.E.; Parke, A.; Brennan, M.T.; Forstot, S.L.; Scofield, R.H.; Hammitt, K.M. New treatment guidelines for Sjögren’s disease. Rheum. Dis. Clin. North Am., 2016, 42(3), 531-551.
[http://dx.doi.org/10.1016/j.rdc.2016.03.010] [PMID: 27431353]
[32]
Ben-Zvi, I.; Kivity, S.; Langevitz, P.; Shoenfeld, Y. Hydroxychloroquine: from malaria to autoimmunity. Clin. Rev. Allergy Immunol., 2012, 42(2), 145-153.
[http://dx.doi.org/10.1007/s12016-010-8243-x] [PMID: 21221847]
[33]
Dos Reis Neto, E.T.; Kakehasi, A.M.; de Medeiros Pinheiro, M.; Ferreira, G.A.; Marques, C.D.L.; da Mota, L.M.H.; Dos Santos Paiva, E.; Pileggi, G.C.S.; Sato, E.I.; Reis, A.P.M.G.; Xavier, R.M.; Provenza, J.R. Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity-mediated inflammatory rheumatic diseases. Adv. Rheumatol., 2020, 60(1), 32.
[http://dx.doi.org/10.1186/s42358-020-00134-8] [PMID: 32517786]
[34]
Lagneaux, L.; Delforge, A.; Dejeneffe, M.; Massy, M.; Bernier, M.; Bron, D. Hydroxychloroquine-induced apoptosis of chronic lymphocytic leukemia involves activation of caspase-3 and modulation of Bcl-2/bax/ratio. Leuk. Lymphoma, 2002, 43(5), 1087-1095.
[http://dx.doi.org/10.1080/10428190290021506] [PMID: 12148891]
[35]
Bodewes, I.L.A.; Gottenberg, J.E.; van Helden-Meeuwsen, C.G.; Mariette, X.; Versnel, M.A. Hydroxychloroquine treatment downregulates systemic interferon activation in primary Sjögren’s syndrome in the JOQUER randomized trial. Rheumatology (Oxford), 2020, 59(1), 107-111.
[http://dx.doi.org/10.1093/rheumatology/kez242] [PMID: 31237947]
[36]
Fox, R.I.; Dixon, R.; Guarrasi, V.; Krubel, S. Treatment of primary Sjögren’s syndrome with hydroxychloroquine: A retrospective, open-label study. Lupus, 1996, 5(1)(Suppl. 1), S31-S36.
[http://dx.doi.org/10.1177/0961203396005001081] [PMID: 8803908]
[37]
Mumcu, G.; Biçakçigil, M.; Yilmaz, N.; Ozay, H.; Karaçayli, U.; Cimilli, H.; Yavuz, S. Salivary and serum B-cell activating factor (BAFF) levels after hydroxychloroquine treatment in primary Sjögren’s syndrome. Oral Health Prev. Dent., 2013, 11(3), 229-234.
[PMID: 23878841]
[38]
Gottenberg, J.E.; Ravaud, P.; Puechal, X. Effects of hydroxychloroquine on symptomatic improvement in primary Sjögren syndrome: The JOQUER randomized clinical trial. jama, 2014, 312(3), 249-258.
[39]
Tuckermann, J.P.; Kleiman, A.; McPherson, K.G.; Reichardt, H.M. Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit. Rev. Clin. Lab. Sci., 2005, 42(1), 71-104.
[http://dx.doi.org/10.1080/10408360590888983] [PMID: 15697171]
[40]
Deroo, B.J.; Archer, T.K. Glucocorticoid receptor activation of the I kappa B alpha promoter within chromatin. Mol. Biol. Cell, 2001, 12(11), 3365-3374.
[http://dx.doi.org/10.1091/mbc.12.11.3365] [PMID: 11694573]
[41]
Gascoyne, D.M.; Kypta, R.M.; Vivanco, Md. Glucocorticoids inhibit apoptosis during fibrosarcoma development by transcriptionally activating Bcl-xL. J. Biol. Chem., 2003, 278(20), 18022-18029.
[http://dx.doi.org/10.1074/jbc.M301812200] [PMID: 12637494]
[42]
Saleh, A.; Srinivasula, S.M.; Acharya, S.; Fishel, R.; Alnemri, E.S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem., 1999, 274(25), 17941-17945.
[http://dx.doi.org/10.1074/jbc.274.25.17941] [PMID: 10364241]
[43]
Smith, L.K.; Cidlowski, J.A. Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes. Prog. Brain Res., 2010, 182, 1-30.
[http://dx.doi.org/10.1016/S0079-6123(10)82001-1] [PMID: 20541659]
[44]
Williams, M.S.; Noguchi, S.; Henkart, P.A.; Osawa, Y. Nitric oxide synthase plays a signaling role in TCR-triggered apoptotic death. J. Immunol., 1998, 161(12), 6526-6531.
[PMID: 9862677]
[45]
Liversidge, J.; Dick, A.; Gordon, S. Nitric oxide mediates apoptosis through formation of peroxynitrite and Fas/Fas-ligand interactions in experimental autoimmune uveitis. Am. J. Pathol., 2002, 160(3), 905-916.
[http://dx.doi.org/10.1016/S0002-9440(10)64913-9] [PMID: 11891189]
[46]
Messmer, U.K.; Reed, U.K.; Brüne, B. Bcl-2 protects macrophages from nitric oxide-induced apoptosis. J. Biol. Chem., 1996, 271(33), 20192-20197.
[http://dx.doi.org/10.1074/jbc.271.33.20192] [PMID: 8702745]
[47]
Snyder, C.M.; Shroff, E.H.; Liu, J.; Chandel, N.S. Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members. PLoS One, 2009, 4(9), e7059.
[http://dx.doi.org/10.1371/journal.pone.0007059]
[48]
Castro, A.; Johnson, M.C.; Anido, M.; Cortinez, A.; Gabler, F.; Vega, M. Role of nitric oxide and bcl-2 family genes in the regulation of human endometrial apoptosis. Fertil. Steril., 2002, 78(3), 587-595.
[http://dx.doi.org/10.1016/S0015-0282(02)03304-6] [PMID: 12215338]
[49]
Lander, H.M.; Jacovina, A.T.; Davis, R.J.; Tauras, J.M. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J. Biol. Chem., 1996, 271(33), 19705-19709.
[http://dx.doi.org/10.1074/jbc.271.33.19705] [PMID: 8702674]
[50]
Kong, L.; Ogawa, N.; McGuff, H.S.; Nakabayashi, T.; Sakata, K.M.; Masago, R.; Vela-Roch, N.; Talal, N.; Dang, H. Bcl-2 family expression in salivary glands from patients with primary Sjögren’s syndrome: involvement of Bax in salivary gland destruction. Clin. Immunol. Immunopathol., 1998, 88(2), 133-141.
[http://dx.doi.org/10.1006/clin.1998.4556] [PMID: 9714690]
[51]
Rudin, C.M.; Thompson, C.B. Apoptosis and disease: Regulation and clinical relevance of programmed cell death. Annu. Rev. Med., 1997, 48, 267-281.
[http://dx.doi.org/10.1146/annurev.med.48.1.267] [PMID: 9046961]
[52]
Favaloro, B.; Allocati, N.; Graziano, V.; Di Ilio, C.; De Laurenzi, V. Role of apoptosis in disease. Aging (Albany NY), 2012, 4(5), 330-349.
[http://dx.doi.org/10.18632/aging.100459] [PMID: 22683550]
[53]
Ohlsson, M.; Skarstein, K.; Bolstad, A.I.; Johannessen, A.C.; Jonsson, R. Fas-induced apoptosis is a rare event in Sjögren’s syndrome. Lab. Invest., 2001, 81(1), 95-105.
[http://dx.doi.org/10.1038/labinvest.3780215] [PMID: 11204278]
[54]
Lee, R.K.; Spielman, J.; Podack, E.R. Bcl-2 protects against Fas-based but not perforin-based T cell-mediated cytolysis. Int. Immunol., 1996, 8(7), 991-1000.
[http://dx.doi.org/10.1093/intimm/8.7.991] [PMID: 8757944]
[55]
Matsumura, H.; Shimizu, Y.; Ohsawa, Y.; Kawahara, A.; Uchiyama, Y.; Nagata, S. Necrotic death pathway in Fas receptor signaling. J. Cell Biol., 2000, 151(6), 1247-1256.
[http://dx.doi.org/10.1083/jcb.151.6.1247] [PMID: 11121439]
[56]
Sharma, K.; Wang, R.X.; Zhang, L.Y.; Yin, D.L.; Luo, X.Y.; Solomon, J.C.; Jiang, R.F.; Markos, K.; Davidson, W.; Scott, D.W.; Shi, Y.F. Death the Fas way: Regulation and pathophysiology of CD95 and its ligand. Pharmacol. Ther., 2000, 88(3), 333-347.
[http://dx.doi.org/10.1016/S0163-7258(00)00096-6] [PMID: 11337030]
[57]
Daniel, P.T.; Wieder, T.; Sturm, I.; Schulze-Osthoff, K. The kiss of death: Promises and failures of death receptors and ligands in cancer therapy. Leukemia, 2001, 15(7), 1022-1032.
[http://dx.doi.org/10.1038/sj.leu.2402169] [PMID: 11455969]
[58]
Peter, M.E.; Hadji, A.; Murmann, A.E.; Brockway, S.; Putzbach, W.; Pattanayak, A.; Ceppi, P. The role of CD95 and CD95 ligand in cancer. Cell Death Differ., 2015, 22(4), 549-559.
[http://dx.doi.org/10.1038/cdd.2015.3] [PMID: 25656654]
[59]
Rossin, A.; Miloro, G.; Hueber, A.O. TRAIL and FasL functions in cancer and autoimmune diseases: towards an increasing complexity. Cancers (Basel), 2019, 11(5), 639.
[http://dx.doi.org/10.3390/cancers11050639] [PMID: 31072029]
[60]
Ogawa, N.; Dang, H.; Kong, L.; Anaya, J.M.; Liu, G.T.; Talal, N. Lymphocyte apoptosis and apoptosis-associated gene expression in Sjögren’s syndrome. Arthritis Rheum., 1996, 39(11), 1875-1885.
[http://dx.doi.org/10.1002/art.1780391114] [PMID: 8912510]
[61]
Akbar, A.N.; Borthwick, N.; Salmon, M.; Gombert, W.; Bofill, M.; Shamsadeen, N.; Pilling, D.; Pett, S.; Grundy, J.E.; Janossy, G. The significance of low bcl-2 expression by CD45RO T cells in normal individuals and patients with acute viral infections. The role of apoptosis in T cell memory. J. Exp. Med., 1993, 178(2), 427-438.
[http://dx.doi.org/10.1084/jem.178.2.427] [PMID: 8340752]
[62]
Nakamura, H.; Horai, Y.; Shimizu, T.; Kawakami, A. Modulation of apoptosis by cytotoxic mediators and cell-survival molecules in Sjögren’s syndrome. Int. J. Mol. Sci., 2018, 19(8), 2369.
[http://dx.doi.org/10.3390/ijms19082369] [PMID: 30103522]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy