Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Medicinal Herbs and Nutritional Supplements for Dementia Therapy: Potential Targets and Clinical Evidence

Author(s): Guido Dorman*, Ignacio Flores, Carlos Gutiérrez, Ramiro Fernández Castaño, Mayra Aldecoa and Leandro Kim

Volume 21, Issue 1, 2022

Published on: 09 August, 2021

Page: [26 - 51] Pages: 26

DOI: 10.2174/1871527320666210809121230

Price: $65

Abstract

Spices and herbs have been used for medicinal purposes for centuries. Also, in the last decades, the use of different nutritional supplements has been implemented to treat all kinds of diseases, including those that present an alteration in cognitive functioning. Dementia is a clinical syndrome in which a person's mental and cognitive capacities gradually decline. As the disease progresses, the person’s autonomy diminishes. As there is not an effective treatment to prevent progressive deterioration in many of these pathologies, nutritional interventions have been, and still are, one of the most widely explored therapeutic possibilities. In this review, we have discussed a great number of potentially interesting plants, nutritional derivatives, and probiotics for the treatment of dementia around the world. Their action mechanisms generally involve neuroprotective effects via anti-inflammatory, antioxidant, anti-apoptotic, b-amyloid, and tau anti-aggregate actions; brain blood flow improvement, and effects on synaptic cholinergic and dopaminergic neurotransmission, which may optimize cognitive performance in patients with cognitive impairment. As for their efficacy in patients with cognitive impairment and/or dementias, evidence is still scarce andthe outcomes are controversial. We consider that many of these substances have promising therapeutic properties. Therefore, the scientific community has to continue with a complete research focused on both identifying possible action mechanisms and carrying out clinical trials, preferably randomized, double-blind ones, with a greater number of patients, a long-term follow-up, dose standardization, and the use of current diagnostic criteria

Keywords: Medicinal herbs, natural supplements, dementia, cognitive impairment, nutraceuticals, Alzheimer´s disease.

Graphical Abstract

[1]
Jiang TA. Health benefits of culinary herbs and spices. J AOAC Int 2019; 102(2): 395-411.
[http://dx.doi.org/10.5740/jaoacint.18-0418] [PMID: 30651162]
[2]
Meeusen R, Decroix L. Nutritional supplements and the brain. Int J Sport Nutr Exerc Metab 2018; 28(2): 200-11.
[http://dx.doi.org/10.1123/ijsnem.2017-0314] [PMID: 29252056]
[3]
Gale SA, Acar D, Daffner KR. Dementia. Am J Med 2018; 131(10): 1161-9.
[http://dx.doi.org/10.1016/j.amjmed.2018.01.022] [PMID: 29425707]
[4]
Raz L, Knoefel J, Bhaskar K. The neuropathology and cerebrovascular mechanisms of dementia. J Cereb Blood Flow Metab 2016; 36(1): 172-86.
[http://dx.doi.org/10.1038/jcbfm.2015.164] [PMID: 26174330]
[5]
Abbott KM, Pachucki MC. Associations between social network characteristics, cognitive function, and quality of life among residents in a dementia special care unit: A pilot study. Dementia 2017; 16(8): 1004-19.
[http://dx.doi.org/10.1177/1471301216630907] [PMID: 26862130]
[6]
Olivera-Pueyo J, Pelegrín-Valero C. Dietary supplements for cognitive impairment. Actas Esp Psiquiatr 2017; 45(Suppl.): 37-47.
[PMID: 29171642]
[7]
Villars H, Oustric S, Andrieu S, et al. The primary care physician and Alzheimer’s disease: an international position paper. J Nutr Health Aging 2010; 14(2): 110-20.
[http://dx.doi.org/10.1007/s12603-010-0022-0] [PMID: 20126959]
[8]
Prince M, Ali GC, Guerchet M, Prina AM, Albanese E, Wu YT. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 2016; 8(1): 23.
[http://dx.doi.org/10.1186/s13195-016-0188-8] [PMID: 27473681]
[9]
Power R, Prado-Cabrero A, Mulcahy R, Howard A, Nolan JM. The role of nutrition for the aging population: implications for cognition and alzheimer’s disease. Annu Rev Food Sci Technol 2019; 10: 619-39.
[http://dx.doi.org/10.1146/annurev-food-030216-030125] [PMID: 30908950]
[10]
Tucker KL. Nutrient intake, nutritional status, and cognitive function with aging. Ann N Y Acad Sci 2016; 1367(1): 38-49.
[http://dx.doi.org/10.1111/nyas.13062] [PMID: 27116240]
[11]
Agatonovic-Kustrin S, Kustrin E, Morton DW. Essential oils and functional herbs for healthy aging. Neural Regen Res 2019; 14(3): 441-5.
[http://dx.doi.org/10.4103/1673-5374.245467] [PMID: 30539810]
[12]
Tewari D, Stankiewicz AM, Mocan A, et al. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front Aging Neurosci 2018; 10: 3.
[http://dx.doi.org/10.3389/fnagi.2018.00003] [PMID: 29483867]
[13]
Braun L and Cohen M. Herbs and natural supplements: An evidence-based guide Australia: Churchill Living Stone. 2015.
[14]
Ginkgo biloba. Natural medicines. Therapeutic Research Center Healthcare 2020. Available from: https://naturalmedicines.therapeuticresearch.com/ [Accessed on August 10, 2020]
[15]
Blumenthal M, Busse WR, Goldberg A, et al. The complete german commission e monographs therapeutic guide to herbal medicine. Austin, Texas: American Botanical Council 1998.
[16]
Gauthier S, Schlaefke S. Efficacy and tolerability of Ginkgo biloba extract EGb 761® in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging 2014; 9: 2065-77.
[http://dx.doi.org/10.2147/CIA.S72728] [PMID: 25506211]
[17]
Christen Y. Ginkgo biloba and neurodegenerative disorders. Front Biosci 2004; 9: 3091-104.
[http://dx.doi.org/10.2741/1462] [PMID: 15353340]
[18]
Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and antioxidant effect of ginkgo biloba extract against ad and other neurological disorders. Neurotherapeutics 2019; 16(3): 666-74.
[http://dx.doi.org/10.1007/s13311-019-00767-8] [PMID: 31376068]
[19]
Bastianetto S, Zheng W-H, Quirion R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its flavonoid constituents and protein kinase C. J Neurochem 2000; 74(6): 2268-77.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0742268.x] [PMID: 10820186]
[20]
Luo Y. Alzheimer’s disease, the nematode Caenorhabditis elegans, and ginkgo biloba leaf extract. Life Sci 2006; 78(18): 2066-72.
[http://dx.doi.org/10.1016/j.lfs.2005.12.004] [PMID: 16507312]
[21]
Colciaghi F, Borroni B, Zimmermann M, et al. Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiol Dis 2004; 16(2): 454-60.
[http://dx.doi.org/10.1016/j.nbd.2004.03.011] [PMID: 15193301]
[22]
Kuo LC, Song YQ, Yao CA, et al. Ginkgolide A prevents the amyloid-beta-Induced depolarization of cortical neurons. J Agric Food Chem 2019; 67(1): 81-9. PMID: 30541279.
[http://dx.doi.org/10.1021/acs.jafc.8b04514] [PMID: 30541279]
[23]
Zeng K, Li M, Hu J, et al. Ginkgo biloba extract EGb761 attenuates hyperhomocysteinemia-induced AD like tau hyperphosphorylation and cognitive impairment in rats. Curr Alzheimer Res 2018; 15(1): 89-99. PMID: 28847282.
[http://dx.doi.org/10.2174/1567205014666170829102135] [PMID: 28847282]
[24]
Qin Y, Zhang Y, Tomic I, et al. Ginkgo biloba Extract EGb 761 and its specific components elicit protective protein clearance through the autophagy-lysosomal pathway in tau-transgenic mice and cultured neurons. J Alzheimers Dis 2018; 65(1): 243-63. PMID: 30010136.
[http://dx.doi.org/10.3233/JAD-180426] [PMID: 30010136]
[25]
Janssen IM, Sturtz S, Skipka G, Zentner A, Velasco Garrido M, Busse R. Ginkgo biloba in Alzheimer's disease: a systematic review.Wien Med Wochenschr 2010; 160(21-22): 539-46.
[26]
Kaur S, Chhabra R, Nehru B. Ginkgo biloba extract attenuates hippocampal neuronal loss and cognitive dysfunction resulting from trimethyltin in mice. Phytomedicine 2013; 20(2): 178-86.
[http://dx.doi.org/10.1016/j.phymed.2012.10.003] [PMID: 23177260]
[27]
Peng H, Li YF, Sun SG. Effects of Ginkgo biloba extract on acute cerebral ischemia in rats analyzed by magnetic resonance spectroscopy. Acta Pharmacol Sin 2003; 24(5): 467-71.
[PMID: 12740184]
[28]
Ma S, Yin H, Chen L, Liu H, Zhao M, Zhang X. Neuroprotective effect of ginkgolide K against acute ischemic stroke on middle cerebral ischemia occlusion in rats. J Nat Med 2012; 66(1): 25-31.
[http://dx.doi.org/10.1007/s11418-011-0545-7] [PMID: 21611909]
[29]
Nada SE, Shah ZA. Preconditioning with Ginkgo biloba (EGb 761®) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis 2012; 46(1): 180-9.
[http://dx.doi.org/10.1016/j.nbd.2012.01.006] [PMID: 22297164]
[30]
Zhang Z, Peng D, Zhu H, Wang X. Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats. Brain Res Bull 2012; 87(2-3): 193-8.
[http://dx.doi.org/10.1016/j.brainresbull.2011.11.002] [PMID: 22100334]
[31]
Das A, Shanker G, Nath C, Pal R, Singh S, Singh H. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav 2002; 73(4): 893-900.
[http://dx.doi.org/10.1016/S0091-3057(02)00940-1] [PMID: 12213536]
[32]
Wesnes K. A double-blind placebo-controlled trial of Tanakan in the treatment of idiopathic cognitive impairment in the elderly. Hum Psychopharmacol 1987; 2: 159.
[http://dx.doi.org/10.1002/hup.470020305]
[33]
Rai GS, Shovlin C, Wesnes KA. A double-blind, placebo controlled study of Ginkgo biloba extract (‘tanakan’) in elderly outpatients with mild to moderate memory impairment. Curr Med Res Opin 1991; 12(6): 350-5.
[http://dx.doi.org/10.1185/03007999109111504] [PMID: 2044394]
[34]
Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA 1997; 278(16): 1327-32.
[http://dx.doi.org/10.1001/jama.1997.03550160047037] [PMID: 9343463]
[35]
Schneider LS, DeKosky ST, Farlow MR, Tariot PN, Hoerr R, Kieser M. A randomized, double-blind, placebo-controlled trial of two doses of Ginkgo biloba extract in dementia of the Alzheimer’s type. Curr Alzheimer Res 2005; 2(5): 541-51.
[http://dx.doi.org/10.2174/156720505774932287] [PMID: 16375657]
[36]
Snitz BE, O’Meara ES, Carlson MC, et al. Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA 2009; 302(24): 2663-70.
[http://dx.doi.org/10.1001/jama.2009.1913] [PMID: 20040554]
[37]
DeKosky ST, Williamson JD, Fitzpatrick AL, et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 2008; 300(19): 2253-62.
[http://dx.doi.org/10.1001/jama.2008.683] [PMID: 19017911]
[38]
Dodge HH, Zitzelberger T, Oken BS, Howieson D, Kaye J. A randomized placebo-controlled trial of Ginkgo biloba for the prevention of cognitive decline. Neurology 2008; 70(19 Pt 2): 1809-17.
[http://dx.doi.org/10.1212/01.wnl.0000303814.13509.db] [PMID: 18305231]
[39]
Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study. Eur J Neurol 2006; 13(9): 981-5.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01409.x] [PMID: 16930364]
[40]
Yancheva S, Ihl R, Nikolova G, Panayotov P, Schlaefke S, Hoerr R. Ginkgo biloba extract EGb 761(R), donepezil or both combined in the treatment of Alzheimer’s disease with neuropsychiatric features: a randomised, double-blind, exploratory trial. Aging Ment Health 2009; 13(2): 183-90.
[http://dx.doi.org/10.1080/13607860902749057] [PMID: 19347685]
[41]
Bachinskaya N, Hoerr R, Ihl R. Alleviating neuropsychiatric symptoms in dementia: the effects of Ginkgo biloba extract EGb 761. Findings from a randomized controlled trial. Neuropsychiatr Dis Treat 2011; 7: 209-15.
[http://dx.doi.org/10.2147/NDT.S18741] [PMID: 21573082]
[42]
Herrschaft H, Nacu A, Likhachev S, Sholomov I, Hoerr R, Schlaefke S. Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: a randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res 2012; 46(6): 716-23.
[http://dx.doi.org/10.1016/j.jpsychires.2012.03.003] [PMID: 22459264]
[43]
Jiang L, Su L, Cui H, Ren J, Li C. Ginkgo biloba extract for dementia: a systematic review. Shanghai Jingshen Yixue 2013; 25(1): 10-21.
[http://dx.doi.org/10.3969/j.issn.1002-0829.2013.01.005] [PMID: 24991128]
[44]
Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr 2010; 10: 14.
[http://dx.doi.org/10.1186/1471-2318-10-14] [PMID: 20236541]
[45]
Tan Meng-Shan, Yu Jin-Tai, Tan Chen-Chen, et al. Efficacy and adverse effects of ginkgo biloba for cognitive impairment and dementia: A systematic review and meta-analysis. J Alzheimer's Disease 2015; 43(2): 589-603. 10.3233/JAD-140837
[46]
Gunten A. Efficacy of Ginkgo biloba extract EGb 761® in dementia with behavioural and psychological symptoms: A systematic review. World J Biol Psychiatry 2015; 1-12.
[PMID: 26223956]
[47]
Zhang H-F, Huang L-B, Zhong Y-B, et al. An overview of systematic reviews of Ginkgo biloba extracts for mild cognitive impairment and dementia. Front Aging Neurosci 2016; 8: 276.
[http://dx.doi.org/10.3389/fnagi.2016.00276] [PMID: 27999539]
[48]
Savaskan E. Treatment effects of Ginkgo biloba extract EGb 761® on the spectrum of behavioral and psychological symptoms of dementia: meta-analysis of randomized controlled trials.International Psychogeriatrics. International Psychogeriatric Association 2017. page 1 of 9
[http://dx.doi.org/10.1017/S1041610217001892]
[49]
Yuan Q, Wang CW, Shi J, Lin ZX. Effects of Ginkgo biloba on dementia: An overview of systematic reviews. J Ethnopharmacol 2017; 195: 1-9.
[http://dx.doi.org/10.1016/j.jep.2016.12.005] [PMID: 27940086]
[50]
Thancharoen O, Limwattananon C, Waleekhachonloet O, Rattanachotphanit T, Limwattananon P, Limpawattana P. Ginkgo biloba extract (egb761), cholinesterase inhibitors, and memantine for the treatment of mild-to-moderate alzheimer’s disease: a network meta-analysis. Drugs Aging 2019; 36(5): 435-52.
[http://dx.doi.org/10.1007/s40266-019-00648-x] [PMID: 30937879]
[51]
Liu H, Ye M, Guo H. An updated review of randomized clinical trials testing the improvement of cognitive function of ginkgo biloba extract in healthy people and alzheimer’s patients. Front Pharmacol 2020; 10: 1688.
[http://dx.doi.org/10.3389/fphar.2019.01688] [PMID: 32153388]
[52]
Butler M, Nelson VA, Davila H, et al. Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical alzheimer-type dementia: a systematic review. Ann Intern Med 2018; 168(1): 52-62.
[http://dx.doi.org/10.7326/M17-1530] [PMID: 29255909]
[53]
Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev 2009; (1): CD003120.
[http://dx.doi.org/10.1002/14651858.CD003120.pub3] [PMID: 19160216]
[55]
Kandiah N, Ong PA, Yuda T, et al. Treatment of dementia and mild cognitive impairment with or without cerebrovascular disease: Expert consensus on the use of Ginkgo biloba extract, EGb 761®. CNS Neurosci Ther 2019; 25(2): 288-98.
[http://dx.doi.org/10.1111/cns.13095] [PMID: 30648358]
[56]
Qian ZM, Ke Y. Huperzine A: Is it an effective disease-modifying drug for alzheimer’s disease? Front Aging Neurosci 2014; 6: 216.
[http://dx.doi.org/10.3389/fnagi.2014.00216] [PMID: 25191267]
[57]
Skolnick AA. Old Chinese herbal medicine used for fever yields possible new Alzheimer disease therapy. JAMA 1997; 277(10): 776.
[http://dx.doi.org/10.1001/jama.1997.03540340010004] [PMID: 9052690]
[58]
Zhu XD, Giacobini E. Second generation cholinesterase inhibitors: effect of (L)-huperzine-A on cortical biogenic amines. J Neurosci Res 1995; 41(6): 828-35.
[http://dx.doi.org/10.1002/jnr.490410613] [PMID: 7500384]
[59]
Liang YQ, Tang XC. Comparative effects of huperzine A, donepezil and rivastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats. Neurosci Lett 2004; 361(1-3): 56-9.
[http://dx.doi.org/10.1016/j.neulet.2003.12.071] [PMID: 15135892]
[60]
Xiao XQ, Wang R, Tang XC. Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J Neurosci Res 2000; 61(5): 564-9.
[http://dx.doi.org/10.1002/1097-4547(20000901)61:5<564::AID-JNR11>3.0.CO;2-X] [PMID: 10956426]
[61]
Xiao XQ, Wang R, Han YF, Tang XC. Protective effects of huperzine A on beta-amyloid(25-35) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett 2000; 286(3): 155-8.
[http://dx.doi.org/10.1016/S0304-3940(00)01088-0] [PMID: 10832008]
[62]
Xiao XQ, Zhang HY, Tang XC. Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res 2002; 67(1): 30-6.
[http://dx.doi.org/10.1002/jnr.10075] [PMID: 11754078]
[63]
Gao X, Tang XC. Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res 2006; 83(6): 1048-57.
[http://dx.doi.org/10.1002/jnr.20791] [PMID: 16493671]
[64]
Huang XT, Qian ZM, He X, et al. Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer’s disease. Neurobiol Aging 2014; 35(5): 1045-54.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.004] [PMID: 24332448]
[65]
Peng Y, Jiang L, Lee DY, Schachter SC, Ma Z, Lemere CA. Effects of huperzine A on amyloid precursor protein processing and beta-amyloid generation in human embryonic kidney 293 APP Swedish mutant cells. J Neurosci Res 2006; 84(4): 903-11.
[http://dx.doi.org/10.1002/jnr.20987] [PMID: 16862548]
[66]
Li J, Wu HM, Zhou RL, Liu GJ, Dong BR. Huperzine A for Alzheimer’s disease. Cochrane Database Syst Rev 2008; (2): CD005592.
[PMID: 18425924]
[67]
Yang G, Wang Y, Tian J, Liu JP. Huperzine A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One 2013; 8(9): e74916.
[http://dx.doi.org/10.1371/journal.pone.0074916] [PMID: 24086396]
[68]
Yue J, Dong BR, Lin X, Yang M, Wu HM, Wu T. Huperzine A for mild cognitive impairment. Cochrane Database Syst Rev 2012; 12(12): CD008827.
[PMID: 23235666]
[69]
Hao Z, Liu M, Liu Z, Lv D. Huperzine A for vascular dementia. Cochrane Database Syst Rev 2009; (2): CD007365.
[PMID: 19370686]
[70]
Xing SH, Zhu CX, Zhang R, An L. Huperzine a in the treatment of Alzheimer’s disease and vascular dementia: a meta-analysis. Evid Based Complement Alternat Med 2014; 2014: 363985.
[http://dx.doi.org/10.1155/2014/363985] [PMID: 24639880]
[71]
Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch Biochem Biophys 2019; 676: 108153.
[http://dx.doi.org/10.1016/j.abb.2019.108153] [PMID: 31622587]
[72]
Singh M, Murthy V, Ramassamy C. Modulation of hydrogen peroxide and acrolein-induced oxidative stress, mitochondrial dysfunctions and redox regulated pathways by the Bacopa monniera extract: potential implication in Alzheimer’s disease. J Alzheimers Dis 2010; 21(1): 229-47.
[http://dx.doi.org/10.3233/JAD-2010-091729] [PMID: 20421692]
[73]
Khan MB, Ahmad M, Ahmad S, et al. Bacopa monniera ameliorates cognitive impairment and neurodegeneration induced by intracerebroventricular-streptozotocin in rat: behavioral, biochemical, immunohistochemical and histopathological evidences. Metab Brain Dis 2015; 30(1): 115-27.
[http://dx.doi.org/10.1007/s11011-014-9593-5] [PMID: 25037167]
[74]
Viji V, Helen A. Inhibition of lipoxygenases and cyclooxygenase-2 enzymes by extracts isolated from Bacopa monniera (L.) Wettst. J Ethnopharmacol 2008; 118(2): 305-11.
[http://dx.doi.org/10.1016/j.jep.2008.04.017] [PMID: 18534796]
[75]
Simpson T, Pase M, Stough C. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain. Evid Based Complement Alternat Med 2015; 2015: 615384.
[http://dx.doi.org/10.1155/2015/615384] [PMID: 26413126]
[76]
Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2010; 2(10): 2428-66.
[http://dx.doi.org/10.3390/toxins2102428] [PMID: 22069560]
[77]
Dhanasekaran M, Tharakan B, Holcomb LA, Hitt AR, Young KA, Manyam BV. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother Res 2007; 21(10): 965-9.
[http://dx.doi.org/10.1002/ptr.2195] [PMID: 17604373]
[78]
Le XT, Pham HT, Do PT, et al. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems. Neurochem Res 2013; 38(10): 2201-15.
[http://dx.doi.org/10.1007/s11064-013-1129-6] [PMID: 23949198]
[79]
Nemetchek MD, Stierle AA, Stierle DB, Lurie DI. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J Ethnopharmacol 2017; 197: 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073] [PMID: 27473605]
[80]
Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol 2008; 120(1): 112-7.
[http://dx.doi.org/10.1016/j.jep.2008.07.039] [PMID: 18755259]
[81]
Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R. Bacoside-A, an indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem Neurosci 2017; 8(4): 884-91.
[http://dx.doi.org/10.1021/acschemneuro.6b00438] [PMID: 28094495]
[82]
Holcomb LA, Dhanasekaran M, Hitt AR, Young KA, Riggs M, Manyam BV. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J Alzheimers Dis 2006; 9(3): 243-51.
[http://dx.doi.org/10.3233/JAD-2006-9303] [PMID: 16914834]
[83]
Planchard MS, Samel MA, Kumar A, Rangachari V. The natural product betulinic acid rapidly promotes amyloid-β fibril formation at the expense of soluble oligomers. ACS Chem Neurosci 2012; 3(11): 900-8.
[http://dx.doi.org/10.1021/cn300030a] [PMID: 23401880]
[84]
Raghav S, Singh H, Dalal PK, Srivastava JS, Asthana OP. Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry 2006; 48(4): 238-42.
[http://dx.doi.org/10.4103/0019-5545.31555] [PMID: 20703343]
[85]
Dimpfel W, Schombert L, Biller A. Psychophysiological effects of Sideritis and Bacopa extract and three combinations thereof—a quantitative EEG study in subjects suffering from mild cognitive impairment. Adv Alzheimer Dis 2016; 5: 1-22.
[http://dx.doi.org/10.4236/aad.2016.51001]
[86]
Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug brahmi (bacopa monnieri) in alzheimer’s disease. Ann Neurosci 2017; 24(2): 111-22.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[87]
Drug Target Insights 2019; 13: 1177392819866412.
[PMID: 31391778]
[88]
Chin D, Huebbe P, Pallauf K, Rimbach G. Neuroprotective properties of curcumin in Alzheimer’s disease-merits and limitations. Curr Med Chem 2013; 20(32): 3955-85.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]
[89]
Hamaguchi T, Ono K, Yamada M. Review: Curcumin and Alzheimer’s disease. CNS Neurosci Ther 2010; 16(5): 285-97.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x] [PMID: 20406252]
[90]
Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 2004; 75(6): 742-50.
[http://dx.doi.org/10.1002/jnr.20025] [PMID: 14994335]
[91]
Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid >in vivo. J Biol Chem 2005; 280(7): 5892-901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[92]
Necula M, Kayed R, Milton S, Glabe CG. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 2007; 282(14): 10311-24.
[http://dx.doi.org/10.1074/jbc.M608207200] [PMID: 17284452]
[93]
Kim DS, Park SY, Kim JK. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neurosci Lett 2001; 303(1): 57-61.
[http://dx.doi.org/10.1016/S0304-3940(01)01677-9] [PMID: 11297823]
[94]
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport 2008; 19(13): 1329-33.
[http://dx.doi.org/10.1097/WNR.0b013e32830b8ae1] [PMID: 18695518]
[95]
Wang Y, Yin H, Lou J, et al. Effects of curcumin on hippocampal Bax and Bcl-2 expression and cognitive function of a rat model of Alzheimer’s disease. Neural Regen 2011; 6(24): 1845-9.
[96]
Nam SM, Choi JH, Yoo DY, et al. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. J Med Food 2014; 17(6): 641-9.
[http://dx.doi.org/10.1089/jmf.2013.2965] [PMID: 24712702]
[97]
Ishrat T, Hoda MN, Khan MB, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 2009; 19(9): 636-47.
[http://dx.doi.org/10.1016/j.euroneuro.2009.02.002] [PMID: 19329286]
[98]
Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res 2019; 1725: 146476.
[http://dx.doi.org/10.1016/j.brainres.2019.146476] [PMID: 31560864]
[99]
Agrawal R, Mishra B, Tyagi E, Nath C, Shukla R. Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol Res 2010; 61(3): 247-52.
[http://dx.doi.org/10.1016/j.phrs.2009.12.008] [PMID: 20026275]
[100]
Awasthi H, Tota S, Hanif K, Nath C, Shukla R. Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. Life Sci 2010; 86(3-4): 87-94.
[http://dx.doi.org/10.1016/j.lfs.2009.11.007] [PMID: 19925811]
[101]
Zhang L, Fang Y, Xu Y, et al. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 2015; 10(6): e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[102]
Wang Y, Yin H, Li J, et al. Amelioration of β-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neurosci Lett 2013; 557(Pt B): 112-7.
[103]
Yin HL, Wang YL, Li JF, et al. Effects of curcumin on hippocampal expression of NgR and axonal regeneration in Aβ-induced cognitive disorder rats. Genet Mol Res 2014; 13(1): 2039-47.
[http://dx.doi.org/10.4238/2014.March.24.8] [PMID: 24737429]
[104]
Frautschy SA, Hu W, Kim P, et al. Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 2001; 22(6): 993-1005.
[http://dx.doi.org/10.1016/S0197-4580(01)00300-1] [PMID: 11755008]
[105]
Yanagisawa D, Ibrahim NF, Taguchi H, et al. Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiol Aging 2015; 36(1): 201-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.041] [PMID: 25179227]
[106]
Ma QL, Zuo X, Yang F, et al. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem 2013; 288(6): 4056-65.
[http://dx.doi.org/10.1074/jbc.M112.393751] [PMID: 23264626]
[107]
Sundaram JR, Poore CP, Sulaimee NHB, et al. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of alzheimer’s disease. J Alzheimers Dis 2017; 60(4): 1429-42.
[http://dx.doi.org/10.3233/JAD-170093] [PMID: 29036814]
[108]
McClure R, Ong H, Janve V, et al. Aerosol delivery of curcumin reduced amyloid-β deposition and improved cognitive performance in a transgenic model of alzheimer’s disease. J Alzheimers Dis 2017; 55(2): 797-811.
[http://dx.doi.org/10.3233/JAD-160289] [PMID: 27802223]
[109]
Baum L, Lam CW, Cheung SK, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008; 28(1): 110-3.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[110]
Ringman JM, Frautschy SA, Teng E, et al. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther 2012; 4(5): 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[111]
Small GW, Siddarth P, Li Z, et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry 2018; 26(3): 266-77.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[112]
Sarker MR, Franks SF. Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. Geroscience 2018; 40(2): 73-95.
[http://dx.doi.org/10.1007/s11357-018-0017-z] [PMID: 29679204]
[113]
VA Office of Research and Development.. Curcumin and yoga therapy for those at risk for alzheimer’s disease (Clinicaltrials.gov Identifier NCT01811381). 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT01811381?term=curcumin&cond=Alzheimer+Disease&rank=4
[114]
Mastinu A, Premoli M, Ferrari-Toninelli G, et al. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm Mol Biol Clin Investig 2018; 36(2): 20180013.
[http://dx.doi.org/10.1515/hmbci-2018-0013] [PMID: 29601300]
[115]
Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on β-amyloid-induced toxicity in PC12 cells. J Neurochem 2004; 89(1): 134-41.
[http://dx.doi.org/10.1111/j.1471-4159.2003.02327.x] [PMID: 15030397]
[116]
Esposito G, De Filippis D, Carnuccio R, Izzo AA, Iuvone T. The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. J Mol Med (Berl) 2006; 84(3): 253-8.
[http://dx.doi.org/10.1007/s00109-005-0025-1] [PMID: 16389547]
[117]
Esposito G, Scuderi C, Savani C, et al. Cannabidiol >in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1β and iNOS expression. Br J Pharmacol 2007; 151(8): 1272-9.
[http://dx.doi.org/10.1038/sj.bjp.0707337] [PMID: 17592514]
[118]
Giuseppe E, Caterina S, Marta V, Giuseppina IT, Valentina L, Daniele DF, et al. Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One 2011; 6(12): 28668.
[http://dx.doi.org/10.1371/journal.pone.0028668]
[119]
Aso E, Sánchez-Pla A, Vegas-Lozano E, Maldonado R, Ferrer I. Cannabis-based medicine reduces multiple pathological processes in AβPP/PS1 mice. J Alzheimers Dis 2015; 43(3): 977-91.
[http://dx.doi.org/10.3233/JAD-141014] [PMID: 25125475]
[120]
Volicer L, Stelly M, Morris J, McLaughlin J, Volicer BJ. Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 1997; 12(9): 913-9.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199709)12:9<913::AID-GPS663>3.0.CO;2-D] [PMID: 9309469]
[121]
Walther S, Schüpbach B, Seifritz E, Homan P, Strik W. Randomized, controlled crossover trial of dronabinol, 2.5 mg, for agitation in 2 patients with dementia. J Clin Psychopharmacol 2011; 31(2): 256-8.
[http://dx.doi.org/10.1097/JCP.0b013e31820e861c] [PMID: 21364345]
[122]
Herrmann N, Ruthirakuhan M, Gallagher D, et al. Randomized placebo-controlled trial of Nabilone for agitation in Alzheimer’s disease. Am J Geriatr Psychiatry 2019; 27(11): 1161-73.
[http://dx.doi.org/10.1016/j.jagp.2019.05.002] [PMID: 31182351]
[123]
van den Elsen GA, Ahmed AI, Verkes RJ, et al. Tetrahydrocannabinol for neuropsychiatric symptoms in dementia: A randomized controlled trial. Neurology 2015; 84(23): 2338-46. a
[http://dx.doi.org/10.1212/WNL.0000000000001675] [PMID: 25972490]
[124]
van den Elsen GAH, Ahmed AIA, Verkes RJ, Feuth T, van der Marck MA, Olde Rikkert MGM. Tetrahydrocannabinol in behavioral disturbances in dementia: A crossover randomized controlled trial. Am J Geriatr Psychiatry 2015; 23(12): 1214-24. b
[http://dx.doi.org/10.1016/j.jagp.2015.07.011] [PMID: 26560511]
[125]
Charernboon T, Lerthattasilp T, Supasitthumrong T. Effectiveness of cannabinoids for treatment of dementia: a systematic review of randomized controlled trials. Clin Gerontol 2020; 1-9.
[http://dx.doi.org/10.1080/07317115.2020.1742832] [PMID: 32186469]
[126]
Ruthirakuhan M, Lanctôt KL, Vieira D, Herrmann N. Natural and synthetic cannabinoids for agitation and aggression in alzheimer's disease: a meta-analysis. J Clin Psychiatry 2019; 80(2): 18r12617.
[127]
Bone K. Clinical applications of ayurvedic and chinese herbs monographs for the western herbal practitioner. Queensland, Australia: Phytotherapy Press 1996; pp. 137-41.
[128]
Chatterjee A, Pakrashi SC. The treatise on indian medicinal plants council for scientific and industrial research. New Delhi, India: Publications & Information Directorate 1995; Vol. 4: pp. 208-12.
[129]
Parihar MS, Chaudhary M, Shetty R, Hemnani T. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci 2004; 11(4): 397-402.
[http://dx.doi.org/10.1016/j.jocn.2003.09.008] [PMID: 15080956]
[130]
Bhattacharya SK, Kumar A, Ghosal S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 1995; 9: 110-3.
[http://dx.doi.org/10.1002/ptr.2650090206]
[131]
Schliebs R, Liebmann A, Bhattacharya SK, Kumar A, Ghosal S, Bigl V. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int 1997; 30(2): 181-90.
[http://dx.doi.org/10.1016/S0197-0186(96)00025-3] [PMID: 9017665]
[132]
Dhuley JN. Nootropic-like effect of ashwagandha (Withania somnifera L.) in mice. Phytother Res 2001; 15(6): 524-8.
[http://dx.doi.org/10.1002/ptr.874] [PMID: 11536383]
[133]
Choudhary MI, et al. Cholinesterase inhibiting withanolides from Withania somnifera. Chem Pharm Bull 2004; 1358-61. (Tokyo)
[134]
Choudhary MI, Nawaz SA, ul-Haq Z, et al. Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem Biophys Res Commun 2005; 334(1): 276-87.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.086] [PMID: 16108094]
[135]
Jain S, Shukla SD, Sharma K, Bhatnagar M. Neuroprotective effects of Withania somnifera Dunn. in hippocampal sub-regions of female albino rat. Phytother Res 2001; 15(6): 544-8.
[http://dx.doi.org/10.1002/ptr.802] [PMID: 11536389]
[136]
Tohda C. Overcoming several neurodegenerative diseases by traditional medicines: the development of therapeutic medicines and unraveling pathophysiological mechanisms. Yakugaku Zasshi 2008; 128(8): 1159-67.
[http://dx.doi.org/10.1248/yakushi.128.1159] [PMID: 18670181]
[137]
Jayaprakasam B, Padmanabhan K, Nair MG. Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer’s disease. Phytother Res 2010; 24(6): 859-63.
[http://dx.doi.org/10.1002/ptr.3033] [PMID: 19957250]
[138]
Sehgal N, Gupta A, Valli RK, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 2012; 109(9): 3510-5.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[139]
Kumar S, Harris RJ, Seal CJ, Okello EJ. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother Res 2012; 26(1): 113-7.
[http://dx.doi.org/10.1002/ptr.3512] [PMID: 21567509]
[140]
Pandey A, Bani S, Dutt P, Kumar Satti N, Avtar Suri K, Nabi Qazi G. Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine 2018; 102: 211-21.
[http://dx.doi.org/10.1016/j.cyto.2017.10.019] [PMID: 29108796]
[141]
Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of ashwagandha (withania somnifera (l.) dunal) root extract in improving memory and cognitive functions. J Diet Suppl 2017; 14(6): 599-612.
[http://dx.doi.org/10.1080/19390211.2017.1284970] [PMID: 28471731]
[142]
Ng QX, Loke W, Foo NX, et al. A systematic review of the clinical use of Withania somnifera (Ashwagandha) to ameliorate cognitive dysfunction. Phytother Res 2020; 34(3): 583-90.
[http://dx.doi.org/10.1002/ptr.6552] [PMID: 31742775]
[143]
Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008; 29(9): 1109-18.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00869.x] [PMID: 18718180]
[144]
Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer’s amyloid beta peptide after oral administration of ginsenosides. FASEB J 2006; 20(8): 1269-71.
[http://dx.doi.org/10.1096/fj.05-5530fje] [PMID: 16636099]
[145]
Shin SJ, Jeon SG, Kim JI, et al. Red ginseng attenuates Aβ-induced mitochondrial dysfunction and aβ-mediated pathology in an animal model of alzheimer’s disease. Int J Mol Sci 2019; 20(12): 3030.
[http://dx.doi.org/10.3390/ijms20123030] [PMID: 31234321]
[146]
Kim J, Kim SH, Lee DS, et al. Effects of fermented ginseng on memory impairment and b-amyloid reduction in Alzheimer’s disease experimental models. J Ginseng Res 2013; 37: 100e.
[http://dx.doi.org/10.5142/jgr.2013.37.100]
[147]
Shin SJ, Park YH, Jeon SG, et al. Red ginseng inhibits tau aggregation and promotes tau dissociation in vitro. Oxid Med Cell Longev 2020; 2020: 7829842.
[http://dx.doi.org/10.1155/2020/7829842] [PMID: 32685100]
[148]
Nah S-Y. Ginseng ginsenoside pharmacology in the nervous system: involvement in the regulation of ion channels and receptors. Front Physiol 2014; 5: 98.
[http://dx.doi.org/10.3389/fphys.2014.00098] [PMID: 24678300]
[149]
Kim J, Shim J, Lee S, Cho W-H, Hong E, Lee J H, et al. Rg3- enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice. BMC Complement Altern Med 2016; 16(1): 1-9.
[150]
Lee MR, Yun BS, In OH, Sung CK. Comparative study of Korean white, red, and black ginseng extract on cholinesterase inhibitory activity and cholinergic function. J Ginseng Res 2011; 35: 421e8.
[151]
Lho SK, Kim TH, Kwak KP, et al. Effects of lifetime cumulative ginseng intake on cognitive function in late life. Alzheimers Res Ther 2018; 10(1): 50.
[http://dx.doi.org/10.1186/s13195-018-0380-0] [PMID: 29793529]
[152]
Heo JH, Lee ST, Chu K, et al. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer’s disease. Eur J Neurol 2008; 15(8): 865-8.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02157.x] [PMID: 18684311]
[153]
Heo JH, Lee ST, Oh MJ, et al. Improvement of cognitive deficit in Alzheimer’s disease patients by long term treatment with korean red ginseng. J Ginseng Res 2011; 35(4): 457-61.
[http://dx.doi.org/10.5142/jgr.2011.35.4.457] [PMID: 23717092]
[154]
Wang Y, Yang G, Gong J, et al. Ginseng for Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Curr Top Med Chem 2016; 16(5): 529-36.
[http://dx.doi.org/10.2174/1568026615666150813143753] [PMID: 26268331]
[155]
Lee MS, Yang EJ, Kim JI, Ernst E. Ginseng for cognitive function in Alzheimer’s disease: a systematic review. J Alzheimers Dis 2009; 18(2): 339-44.
[http://dx.doi.org/10.3233/JAD-2009-1149] [PMID: 19584437]
[156]
Ruxton CHS, Reed SC, Simpson MJA, Millington KJ. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 2004; 17(5): 449-59.
[http://dx.doi.org/10.1111/j.1365-277X.2004.00552.x] [PMID: 15357699]
[157]
Caballer-García J, Jiménez-Treviño L. Ácidos grasos omega-3 en psicogeriatría: implicaciones en depresión y demencia. Psychogeriatrics 2010; 2(2): 83-92. [Omega-3 fatty acids in psychogeriatrics: Implicances in depression and dementia].
[PMID: 20738812]
[158]
Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017; 18(12): 2645.
[http://dx.doi.org/10.3390/ijms18122645] [PMID: 29215589]
[159]
Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol 2018; 9: 345-81.
[http://dx.doi.org/10.1146/annurev-food-111317-095850] [PMID: 29350557]
[160]
Cholewski M, Tomczykowa M, Tomczyk M. A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients 2018; 10(11): 1662.
[http://dx.doi.org/10.3390/nu10111662] [PMID: 30400360]
[161]
Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 2017; 7(1): 11263.
[http://dx.doi.org/10.1038/s41598-017-11766-0] [PMID: 28900242]
[162]
Minami M, Kimura S, Endo T, et al. Dietary docosahexaenoic acid increases cerebral acetylcholine levels and improves passive avoidance performance in stroke-prone spontaneously hypertensive rats. Pharmacol Biochem Behav 1997; 58(4): 1123-9.
[http://dx.doi.org/10.1016/S0091-3057(97)00300-6] [PMID: 9408223]
[163]
Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 1999; 66(2): 137-47.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[164]
Morris MC, Evans DA, Bienias JL, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 2003; 60(7): 940-6.
[http://dx.doi.org/10.1001/archneur.60.7.940] [PMID: 12873849]
[165]
Schaefer EJ, Bongard V, Beiser AS, et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 2006; 63(11): 1545-50.
[http://dx.doi.org/10.1001/archneur.63.11.1545] [PMID: 17101822]
[166]
Yurko-Mauro K. Memory improvement with docosahexaenoic acid Study (MIDAS)-brief review. Curr Alzheimer Res 2007; 4(5): 553-5.
[http://dx.doi.org/10.2174/156720507783018244] [PMID: 18220521]
[167]
Lee LK, Shahar S, Chin AV, Yusoff NA. Docosahexaenoic acid- concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013; 225(3): 605-12.
[http://dx.doi.org/10.1007/s00213-012-2848-0] [PMID: 22932777]
[168]
Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev 2016; 4(4): CD009002.
[http://dx.doi.org/10.1002/14651858.CD009002.pub3] [PMID: 27063583]
[169]
Rangel-Huerta OD, Gil A. Effect of omega-3 fatty acids on cognition: an updated systematic review of randomized clinical trials. Nutr Rev 2018; 76(1): 1-20.
[http://dx.doi.org/10.1093/nutrit/nux064] [PMID: 29240924]
[170]
Zhang YY, Yang LQ, Guo LM. Effect of phosphatidylserine on memory in patients and rats with Alzheimer’s disease. Genet Mol Res 2015; 14(3): 9325-33.
[http://dx.doi.org/10.4238/2015.August.10.13] [PMID: 26345866]
[171]
Dominguez LJ, Barbagallo M. Nutritional prevention of cognitive decline and dementia. Acta Biomed 2018; 89(2): 276-90.
[PMID: 29957766]
[172]
Kim HY, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res 2014; 56: 1-18.
[http://dx.doi.org/10.1016/j.plipres.2014.06.002] [PMID: 24992464]
[173]
Klinkhammer P, Szelies B, Heiss WD. Effect of phosphadidylserine on cerebral glucose metabolism in Alzheimer’s disease. Dementia 1990; 1: 197-201.
[174]
Maggioni M, Picotti GB, Bondiolotti GP, et al. Effects of phosphatidylserine therapy in geriatric patients with depressive disorders. Acta Psychiatr Scand 1990; 81(3): 265-70.
[http://dx.doi.org/10.1111/j.1600-0447.1990.tb06494.x] [PMID: 1693032]
[176]
Poly C, Massaro JM, Seshadri S, et al. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am J Clin Nutr 2011; 94(6): 1584-91.
[http://dx.doi.org/10.3945/ajcn.110.008938] [PMID: 22071706]
[177]
de Wilde MC, Vellas B, Girault E, Yavuz AC, Sijben JW. Lower brain and blood nutrient status in Alzheimer’s disease: Results from meta-analyses. Alzheimers Dement (N Y) 2017; 3(3): 416-31.
[http://dx.doi.org/10.1016/j.trci.2017.06.002] [PMID: 29067348]
[178]
Ylilauri MPT, Voutilainen S, Lönnroos E, et al. Associations of dietary choline intake with risk of incident dementia and with cognitive performance: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 2019; 110(6): 1416-23.
[http://dx.doi.org/10.1093/ajcn/nqz148] [PMID: 31360988]
[179]
Shea TB. Choline and phosphatidylcholine may maintain cognitive performance by multiple mechanisms. Am J Clin Nutr 2019; 110(6): 1268-9.
[http://dx.doi.org/10.1093/ajcn/nqz244] [PMID: 31536123]
[180]
Abad-Santos F, Novalbos-Reina J, Gallego-Sandín S, García AG. Tratamiento del deterioro cognitivo leve: utilidad de la citicolina. Rev Neurol 2002; 35(7): 675-82. [Treatment of mild cognitive impairment: Value of citocoline].
[http://dx.doi.org/10.33588/rn.3507.2002390] [PMID: 12389156]
[181]
Fioravanti M, Yanagi M. Cytidinediphosphocholine (CDP-choline) for cognitive and behavioural disturbances associated with chronic cerebral disorders in the elderly. Cochrane Database Syst Rev 2005; 18(2): CD000269.
[http://dx.doi.org/10.1002/14651858.CD000269.pub3] [PMID: 15846601]
[182]
Gareri P, Castagna A, Cotroneo AM, Putignano S, De Sarro G, Bruni AC. The role of citicoline in cognitive impairment: pharmacological characteristics, possible advantages, and doubts for an old drug with new perspectives. Clinical interventions in aging 2015; 10: 1421.
[183]
Gareri P, Castagna A, Cotroneo AM, et al. The citicholinage study: citicoline plus cholinesterase inhibitors in aged patients affected with alzheimer’s disease study. J Alzheimers Dis 2017; 56(2): 557-65.
[http://dx.doi.org/10.3233/JAD-160808] [PMID: 28035929]
[184]
Pocernich CB, La Fontaine M, Butterfield DA. In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int 2000; 36(3): 185-91.
[http://dx.doi.org/10.1016/S0197-0186(99)00126-6] [PMID: 10676851]
[185]
Montine TJ, Neely MD, Quinn JF, et al. Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 2002; 33(5): 620-6.
[http://dx.doi.org/10.1016/S0891-5849(02)00807-9] [PMID: 12208348]
[186]
Fu AL, Dong ZH, Sun MJ. Protective effect of N-acetyl-L-cysteine on amyloid beta-peptide-induced learning and memory deficits in mice. Brain Res 2006; 1109(1): 201-6.
[http://dx.doi.org/10.1016/j.brainres.2006.06.042] [PMID: 16872586]
[187]
Hara Y, McKeehan N, Dacks PA, Fillit HM. Evaluation of the neuroprotective potential of n-acetylcysteine for prevention and treatment of cognitive aging and dementia. J Prev Alzheimers Dis 2017; 4(3): 201-6.
[PMID: 29182711]
[188]
Pandya JD, Readnower RD, Patel SP, et al. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol 2014; 257: 106-13.
[http://dx.doi.org/10.1016/j.expneurol.2014.04.020] [PMID: 24792639]
[189]
Adair JC, Knoefel JE, Morgan N. Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology 2001; 57(8): 1515-7.
[http://dx.doi.org/10.1212/WNL.57.8.1515] [PMID: 11673605]
[190]
Remington R, Lortie JJ, Hoffmann H, Page R, Morrell C, Shea TB. A nutritional formulation for cognitive performance in mild cognitive impairment: a placebo-controlled trial with an open-label extension. J Alzheimers Dis 2015; 48(3): 591-5.
[http://dx.doi.org/10.3233/JAD-150057] [PMID: 26402075]
[191]
Chan A, Remington R, Kotyla E, Lepore A, Zemianek J, Shea TB. A vitamin/nutriceutical formulation improves memory and cognitive performance in community-dwelling adults without dementia. J Nutr Health Aging 2010; 14(3): 224-30.
[http://dx.doi.org/10.1007/s12603-010-0054-5] [PMID: 20191258]
[192]
Acetyl-L-carnitine. Monograph. Altern Med Rev 2010; 8: 76-83.
[193]
Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci 2004; 1033: 30-41.
[http://dx.doi.org/10.1196/annals.1320.003] [PMID: 15591001]
[194]
Pettegrew JW, Levine J, McClure RJ. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry 2000; 5(6): 616-32.
[http://dx.doi.org/10.1038/sj.mp.4000805] [PMID: 11126392]
[195]
Hudson S, Tabet N. Acetyl-L-carnitine for dementia. Cochrane Database Syst Rev 2003; 2003(2): CD003158.
[PMID: 12804452]
[196]
Montgomery SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 2003; 18(2): 61-71.
[http://dx.doi.org/10.1097/00004850-200303000-00001] [PMID: 12598816]
[197]
Pennisi M, Lanza G, Cantone M, et al. Acetyl-L-carnitine in dementia and other cognitive disorders: a critical update. Nutrients 2020; 12(5): E1389.
[http://dx.doi.org/10.3390/nu12051389] [PMID: 32408706]
[198]
Liu YM, Wang HS. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets. Biomed J 2013; 36(1): 9-15.
[http://dx.doi.org/10.4103/2319-4170.107154] [PMID: 23515148]
[199]
Neal E. “Alternative” ketogenic diets.Ketogenic diet and metabolic therapies. New York: Oxford University Press 2017; pp. 5-15.
[200]
Augustin K, Khabbush A, Williams S, et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 2018; 17(1): 84-93.
[http://dx.doi.org/10.1016/S1474-4422(17)30408-8] [PMID: 29263011]
[201]
Thevenet J, De Marchi U, Domingo JS, et al. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB J 2016; 30(5): 1913-26.
[http://dx.doi.org/10.1096/fj.201500182] [PMID: 26839375]
[202]
Hughes SD, Kanabus M, Anderson G, et al. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J Neurochem 2014; 129(3): 426-33.
[http://dx.doi.org/10.1111/jnc.12646] [PMID: 24383952]
[203]
Nafar F, Mearow KM. Coconut oil attenuates the effects of amyloid-beta on cortical neurons in vitro. J Alzheimers Dis 2014; 39: 233-7. 81
[204]
Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL. D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(10): 5440-4.
[http://dx.doi.org/10.1073/pnas.97.10.5440] [PMID: 10805800]
[205]
Fortier M, Castellano C-A, Croteau E, et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement 2019; 15(5): 625-34.
[http://dx.doi.org/10.1016/j.jalz.2018.12.017] [PMID: 31027873]
[206]
Reger MA, Henderson ST, Hale C, et al. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging 2004; 25(3): 311-4.
[http://dx.doi.org/10.1016/S0197-4580(03)00087-3] [PMID: 15123336]
[207]
Ohnuma T, Toda A, Kimoto A, et al. Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study. Clin Interv Aging 2016; 11: 29-36.
[http://dx.doi.org/10.2147/CIA.S95362] [PMID: 26811674]
[208]
Cunningham E. Is there science to support claims for coconut oil? J Am Diet Assoc 2011; 111(5): 786.
[http://dx.doi.org/10.1016/j.jada.2011.03.033] [PMID: 21515127]
[209]
Arunima S, Rajamohan T. Effect of virgin coconut oil enriched diet on the antioxidant status and paraoxonase 1 activity in ameliorating the oxidative stress in rats - a comparative study. Food Funct 2013; 4(9): 1402-9.
[http://dx.doi.org/10.1039/c3fo60085h] [PMID: 23892389]
[210]
Nafar F, Clarke JP, Mearow KM. Coconut oil protects cortical neurons from amyloid beta toxicity by enhancing signaling of cell survival pathways. Neurochem Int 2017; 105: 64-79.
[http://dx.doi.org/10.1016/j.neuint.2017.01.008] [PMID: 28126466]
[211]
Bansal A, Kirschner M, Zu L, Cai D, Zhang L. Coconut oil decreases expression of amyloid precursor protein (APP) and secretion of amyloid peptides through inhibition of ADP-ribosylation factor 1 (ARF1). Brain Res 2019; 1704: 78-84.
[http://dx.doi.org/10.1016/j.brainres.2018.10.001] [PMID: 30287345]
[212]
de la Rubia Ortí JE, García-Pardo MP, Drehmer E, et al. Improvement of main cognitive functions in patients with alzheimer’s disease after treatment with coconut oil enriched mediterranean diet: a pilot study. J Alzheimers Dis 2018; 65(2): 577-87.
[http://dx.doi.org/10.3233/JAD-180184] [PMID: 30056419]
[213]
De la Rubia Ortí JE, Sánchez Álvarez C, Selvi Sabater P, et al. How does coconut oil affect cognitive performance in alzheimer patients? Nutr Hosp 2017; 34(2): 352-6.
[PMID: 28421789]
[214]
Gandotra SKJ, Van der Waag A. Efficacy of adjunctive extra virgin coconut oil use in moderate to severe Alzheimer’s disease. Int J Sch Cog Psychol 2014; 12; 1(108): 2.
[215]
Chatterjee P, Fernando M, Fernando B, et al. Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease. Mech Ageing Dev 2020; 186: 111209.
[http://dx.doi.org/10.1016/j.mad.2020.111209] [PMID: 31953123]
[216]
Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed Pharmacother 2019; 109: 1488-97.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[217]
Rothwell JA, Perez-Jimenez J, Neveu V, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford) 2013; 2013: bat070.
[http://dx.doi.org/10.1093/database/bat070] [PMID: 24103452]
[218]
Grassi D, Ferri C, Desideri G. Brain protection and cognitive function: cocoa flavonoids as nutraceuticals. Curr Pharm Des 2016; 22(2): 145-51.
[http://dx.doi.org/10.2174/1381612822666151112145730] [PMID: 26561075]
[219]
Nurk E, Refsum H, Drevon CA, et al. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr 2009; 139(1): 120-7.
[http://dx.doi.org/10.3945/jn.108.095182] [PMID: 19056649]
[220]
Williams CM, El Mohsen MA, Vauzour D, et al. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 2008; 45(3): 295-305.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.008] [PMID: 18457678]
[221]
Goyarzu P, Malin DH, Lau FC, et al. Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci 2004; 7(2): 75-83.
[http://dx.doi.org/10.1080/10284150410001710410] [PMID: 15279493]
[222]
van Praag H, Lucero MJ, Yeo GW, et al. Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 2007; 27(22): 5869-78.
[http://dx.doi.org/10.1523/JNEUROSCI.0914-07.2007] [PMID: 17537957]
[223]
Li Q, Zhao HF, Zhang ZF, et al. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 2009; 159(4): 1208-15.
[http://dx.doi.org/10.1016/j.neuroscience.2009.02.008] [PMID: 19409206]
[224]
Ates G, Goldberg J, Currais A, Maher P. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer’s disease. Redox Biol 2020; 36: 101648.
[http://dx.doi.org/10.1016/j.redox.2020.101648] [PMID: 32863221]
[225]
Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 2012; 72(1): 135-43.
[http://dx.doi.org/10.1002/ana.23594] [PMID: 22535616]
[226]
Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF. Intake of flavonoids and risk of dementia. Eur J Epidemiol 2000; 16(4): 357-63.
[http://dx.doi.org/10.1023/A:1007614613771] [PMID: 10959944]
[227]
Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 2006; 119(9): 751-9.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.045] [PMID: 16945610]
[228]
Field DT, Williams CM, Butler LT. Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav 2011; 103(3-4): 255-60.
[http://dx.doi.org/10.1016/j.physbeh.2011.02.013] [PMID: 21324330]
[229]
Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr 2010; 103(5): 730-4.
[http://dx.doi.org/10.1017/S0007114509992364] [PMID: 20028599]
[230]
Krikorian R, Shidler MD, Nash TA, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem 2010; 58(7): 3996-4000.
[http://dx.doi.org/10.1021/jf9029332] [PMID: 20047325]
[231]
Flanagan E, Müller M, Hornberger M, Vauzour D. Impact of flavonoids on cellular and molecular mechanisms underlying age-related cognitive decline and neurodegeneration. Curr Nutr Rep 2018; 7(2): 49-57.
[http://dx.doi.org/10.1007/s13668-018-0226-1] [PMID: 29892788]
[232]
Mohammadzadeh Honarvar N, Saedisomeolia A, Abdolahi M, et al. Molecular anti-inflammatory mechanisms of retinoids and carotenoids in alzheimer's disease: a review of current evidence. Journal of molecular neuroscience: MN 2017; 61(3): 289-304.
[http://dx.doi.org/10.1007/s12031-016-0857-x]
[233]
Mariani MM, Malm T, Lamb R, et al. Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease. Sci Rep 2017; 7: 42270.
[http://dx.doi.org/10.1038/srep42270] [PMID: 28205585]
[234]
Kawahara K, Suenobu M, Ohtsuka H, et al. Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2014; 42(2): 587-605.
[http://dx.doi.org/10.3233/JAD-132720] [PMID: 24916544]
[235]
Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 2008; 8(11): 1703-18.
[http://dx.doi.org/10.1586/14737175.8.11.1703] [PMID: 18986241]
[236]
Das BC, Dasgupta S, Ray SK. Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer’s disease. Neural Regen Res 2019; 14(11): 1880-92.
[http://dx.doi.org/10.4103/1673-5374.259604] [PMID: 31290437]
[237]
Sodhi RK, Singh N. Retinoids as potential targets for Alzheimer’s disease. Pharmacol Biochem Behav 2014; 120: 117-23.
[http://dx.doi.org/10.1016/j.pbb.2014.02.016] [PMID: 24582848]
[238]
Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp Neurol 2004; 189(2): 380-92.
[http://dx.doi.org/10.1016/j.expneurol.2004.05.035] [PMID: 15380488]
[239]
Takasaki J, Ono K, Yoshiike Y, et al. Vitamin A has anti-oligomerization effects on amyloid-β in vitro. J Alzheimers Dis 2011; 27(2): 271-80.
[http://dx.doi.org/10.3233/JAD-2011-110455] [PMID: 21811022]
[240]
Zeng J, Chen L, Wang Z, et al. Marginal vitamin A deficiency facilitates Alzheimer’s pathogenesis. Acta Neuropathol 2017; 133(6): 967-82.
[http://dx.doi.org/10.1007/s00401-017-1669-y] [PMID: 28130638]
[241]
Lopes da Silva S, Vellas B, Elemans S, et al. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimers Dement 2014; 10(4): 485-502.
[http://dx.doi.org/10.1016/j.jalz.2013.05.1771] [PMID: 24144963]
[242]
Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol 2018; 17(11): 1006-15.
[http://dx.doi.org/10.1016/S1474-4422(18)30338-7] [PMID: 30244829]
[243]
Feart C, Letenneur L, Helmer C, et al. Plasma carotenoids are inversely associated with dementia risk in an elderly french cohort. J Gerontol A Biol Sci Med Sci 2016; 71(5): 683-8.
[http://dx.doi.org/10.1093/gerona/glv135] [PMID: 26286605]
[244]
Osiezagha K, Ali S, Freeman C, et al. Thiamine deficiency and delirium. Innov Clin Neurosci 2013; 10(4): 26-32.
[PMID: 23696956]
[245]
Langlais PJ, Savage LM. Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behav Brain Res 1995; 68(1): 75-89.
[http://dx.doi.org/10.1016/0166-4328(94)00162-9] [PMID: 7619308]
[246]
Scott TM, Tucker KL. Low plasma vitamin B6 predicts cognitive decline and depression in at-risk individuals. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 2013; 27: 346.
[247]
Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 2003; 26(3): 137-46.
[http://dx.doi.org/10.1016/S0166-2236(03)00032-8] [PMID: 12591216]
[248]
Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr 2014; 68(5): 541-8.
[http://dx.doi.org/10.1038/ejcn.2014.46] [PMID: 24667752]
[249]
Clarke R, Birks J, Nexo E, et al. Low vitamin B-12 status and risk of cognitive decline in older adults. Am J Clin Nutr 2007; 86(5): 1384-91.
[http://dx.doi.org/10.1093/ajcn/86.5.1384] [PMID: 17991650]
[250]
O’Leary F, Allman-Farinelli M, Samman S. Vitamin B12 status, cognitive decline and dementia: A systematic review of prospective cohort studies. Br J Nutr 2012; 108(11): 1948-61.
[http://dx.doi.org/10.1017/S0007114512004175] [PMID: 23084026]
[251]
Lefèvre-Arbogast S, Féart C, Dartigues JF, et al. Dietary B Vitamins and a 10-Year Risk of Dementia in Older Persons. Nutrients 2016; 8(12): 761.
[http://dx.doi.org/10.3390/nu8120761] [PMID: 27898035]
[252]
McCleery J, Abraham RP, Denton DA, et al. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev 2018; 11(11): CD011905.
[http://dx.doi.org/10.1002/14651858.CD011905.pub2] [PMID: 30383288]
[253]
Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci USA 2013; 110(23): 9523-8.
[http://dx.doi.org/10.1073/pnas.1301816110] [PMID: 23690582]
[254]
de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry 2012; 27(6): 592-600.
[http://dx.doi.org/10.1002/gps.2758] [PMID: 21780182]
[255]
Oulhaj A, Jernerén F, Refsum H, Smith AD, de Jager CA. Omega-3 fatty acid status enhances the prevention of cognitive decline by b vitamins in mild cognitive impairment. J Alzheimers Dis 2016; 50(2): 547-57.
[http://dx.doi.org/10.3233/JAD-150777] [PMID: 26757190]
[256]
Monacelli F, Acquarone E, Giannotti C, Borghi R, Nencioni A. Vitamin C, aging and alzheimer's disease. Nutrients 2017; 9(7): 670.
[257]
Travica N, Ried K, Sali A, Scholey A, Hudson I, Pipingas A. Vitamin C status and cognitive function: a systematic review. Nutrients 2017; 9(9): 960.
[258]
Basambombo LL, Carmichael PH, Côté S, Laurin D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann Pharmacother 2017; 51(2): 118-24.
[http://dx.doi.org/10.1177/1060028016673072] [PMID: 27708183]
[259]
Ide K, Yamada H, Kawasaki Y, et al. Peripheral vitamin C levels in alzheimer’s disease: a cross-sectional study. J Nutr Sci Vitaminol (Tokyo) 2016; 62(6): 432-6.
[http://dx.doi.org/10.3177/jnsv.62.432] [PMID: 28202849]
[260]
Arlt S, Müller-Thomsen T, Beisiegel U, Kontush A. Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer’s disease. Neurochem Res 2012; 37(12): 2706-14.
[http://dx.doi.org/10.1007/s11064-012-0860-8] [PMID: 22878647]
[261]
Kubis AM, Piwowar A. The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev 2015; 24(Pt B): 126-37.
[http://dx.doi.org/10.1016/j.arr.2015.07.008]
[262]
Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing “D”ecline? Mol Aspects Med 2008; 29(6): 415-22.
[http://dx.doi.org/10.1016/j.mam.2008.05.001] [PMID: 18579197]
[263]
Yang K, Chen J, Li X, Zhou Y. Vitamin D concentration and risk of Alzheimer disease: A meta-analysis of prospective cohort studies. Medicine (Baltimore) 2019; 98(35): e16804.
[http://dx.doi.org/10.1097/MD.0000000000016804] [PMID: 31464906]
[264]
Mehrabadi S, Sadr SS. Administration of vitamin D3 and E supplements reduces neuronal loss‏ and oxidative stress in a model of rats with Alzheimer’s disease. Neurol Res 2020; 42(10): 862-8.
[http://dx.doi.org/10.1080/01616412.2020.1787624] [PMID: 32627720]
[265]
Balion C, Griffith LE, Strifler L, et al. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology 2012; 79(13): 1397-405.
[http://dx.doi.org/10.1212/WNL.0b013e31826c197f] [PMID: 23008220]
[266]
Annweiler C, Llewellyn DJ, Beauchet O. Low serum vitamin D concentrations in Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 2013; 33(3): 659-74.
[http://dx.doi.org/10.3233/JAD-2012-121432] [PMID: 23042216]
[267]
Etgen T, Sander D, Bickel H, Sander K, Förstl H. Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord 2012; 33(5): 297-305.
[http://dx.doi.org/10.1159/000339702] [PMID: 22759681]
[268]
Chaves M, Toral A, Bisonni A, et al. Tratamiento con vitamina D y enlentecimiento de la progresión a estadio severo en enfermedad de Alzheimer. Vertex 2014; 25(114): 85-91.
[PMID: 25153973]
[269]
Rutjes AWS, Denton DA, Di Nisio M, et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev 2018; 12(12): CD011906.
[http://dx.doi.org/10.1002/14651858.CD011906.pub2] [PMID: 30556597]
[270]
Dursun E, Gezen-Ak D. Vitamin D basis of Alzheimer’s disease: from genetics to biomarkers. Hormones (Athens) 2019; 18(1): 7-15.
[http://dx.doi.org/10.1007/s42000-018-0086-5] [PMID: 30484096]
[271]
Landel V, Annweiler C, Millet P, Morello M, Féron F, Vitamin D. Vitamin D, cognition and alzheimer’s disease: the therapeutic benefit is in the D-tails. J Alzheimers Dis 2016; 53(2): 419-44.
[http://dx.doi.org/10.3233/JAD-150943] [PMID: 27176073]
[272]
Ricciarelli R, Argellati F, Pronzato MA, Domenicotti C. Vitamin E and neurodegenerative diseases. Mol Aspects Med 2007; 28(5-6): 591-606.
[http://dx.doi.org/10.1016/j.mam.2007.01.004] [PMID: 17306357]
[273]
Wang X, Quinn PJ. The location and function of vitamin E in membranes (review). Mol Membr Biol 2000; 17(3): 143-56. [review.
[http://dx.doi.org/10.1080/09687680010000311] [PMID: 11128973]
[274]
Behl C, Davis J, Cole GM, Schubert D. Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem Biophys Res Commun 1992; 186(2): 944-50.
[http://dx.doi.org/10.1016/0006-291X(92)90837-B] [PMID: 1497677]
[275]
Li FJ, Shen L, Ji HF. Dietary intakes of vitamin E, vitamin C, and β-carotene and risk of Alzheimer’s disease: a meta-analysis. J Alzheimers Dis 2012; 31(2): 253-8.
[http://dx.doi.org/10.3233/JAD-2012-120349] [PMID: 22543848]
[276]
Petersen R C, Thomas R G, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. New England Journal of Medicine 2005; 352(23): 2379-88.
[277]
Farina N, Llewellyn D, Isaac MGEKN, Tabet N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev 2017; (4): CD002854.
[http://dx.doi.org/10.1002/14651858.CD002854.pub4]
[278]
Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 2014; 311(1): 33-44. [published correction appears in JAMA. 2014 Mar 19;311(11):1161.
[http://dx.doi.org/10.1001/jama.2013.282834] [PMID: 24381967]
[279]
Joe E, Ringman JM. Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ 2019; 367: l6217.
[http://dx.doi.org/10.1136/bmj.l6217] [PMID: 31810978]
[280]
Braun L, Cohen M. Herbs and Natural Supplements. An Evidence-Based Guide. 4th ed. Elsevier 2014.
[281]
Catanzaro R, Anzalone M, Calabrese F, et al. The gut microbiota and its correlations with the central nervous system disorders. Panminerva Med 2015; 57(3): 127-43.
[PMID: 25390799]
[282]
Chen X, D’Souza R, Hong S-T. The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein Cell 2013; 4(6): 403-14.
[http://dx.doi.org/10.1007/s13238-013-3017-x] [PMID: 23686721]
[283]
Shen L, Liu L, Ji HF. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimers Dis 2017; 56(1): 385-90.
[http://dx.doi.org/10.3233/JAD-160884] [PMID: 27911317]
[284]
Leblhuber F, Strasser B, Steiner K, Gostner J, Schuetz B, Fuchs D. On the role of intestinal microbiota in patients with cognitive decline. J Pharm Pharmacol 2017; 5: 648-53.
[285]
Chyn Boon Wong, Yodai Kobayashi, Jin-zhong Xiao. Probiotics for preventing cognitive impairment in alzheimer’s disease. 2018.
[286]
Mancusoa C, Rosaria Santangelo. Alzheimer’s disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence.Elsevier Science 2018; 129: pp. 239-336.
[287]
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[288]
Bäuerl C, Collado MC, Diaz Cuevas A, Viña J, Pérez Martínez G. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan. Lett Appl Microbiol 2018; 66(6): 464-71.
[http://dx.doi.org/10.1111/lam.12882] [PMID: 29575030]
[289]
Kobayashi Y, Sugahara H, Shimada K, et al. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 2017; 7(1): 13510.
[http://dx.doi.org/10.1038/s41598-017-13368-2] [PMID: 29044140]
[290]
Bonfili L, Cecarini V, Berardi S, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 2017; 7(1): 2426.
[http://dx.doi.org/10.1038/s41598-017-02587-2] [PMID: 28546539]
[291]
Abraham D, Feher J, Scuderi GL, et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp Gerontol 2019; 115: 122-31.
[http://dx.doi.org/10.1016/j.exger.2018.12.005] [PMID: 30529024]
[292]
Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front Aging Neurosci 2016; 8: 256.
[http://dx.doi.org/10.3389/fnagi.2016.00256] [PMID: 27891089]
[293]
Den H, Dong X, Chen M, Zou Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment - a meta-analysis of randomized controlled trials. Aging (Albany NY) 2020; 12(4): 4010-39.
[http://dx.doi.org/10.18632/aging.102810] [PMID: 32062613]
[294]
Jenifer F Krüger, Elaine Hillesheim, Amanda C S N Pereira, Carolina Q Camargo, Estela I Rabito.. Probiotics for dementia: a systematic review and meta-analysis of randomized controlled trials. Nutrition reviews 2020; nuaa037.
[295]
Shi-fu X, Chin J. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer disease. Pharmacol Toxicol 2019; 6(6): 403. [abstract.
[296]
Seo DO, Boros BD, Holtzman DM. The microbiome: A target for Alzheimer disease? Cell Res 2019; 29(10): 779-80.
[http://dx.doi.org/10.1038/s41422-019-0227-7] [PMID: 31488883]
[297]
Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 2019; 29(10): 787-803.
[http://dx.doi.org/10.1038/s41422-019-0216-x] [PMID: 31488882]
[298]
Yahiya Y. Syed. Sodium Oligomannate: First Approval Published online: 4 February 2020 © Springer Nature Switzerland AG 2020, corrected publication 2020. Drugs 2020; 80: 441-4.
[http://dx.doi.org/10.1007/s40265-020-01268-1]
[299]
Shanghai Green Valley Pharmaceuticals. Milestones of oligomannat (GV-971) development. 2019. Available from: https ://www.green valle yphar ma.com [Accessed 28 Nov 2019]
[300]
Shanghai Green Valley Pharmaceuticals. Green Valley announces NMPA approval of oligomannate for mild to moderate Alzheimer’s disease [media release]. 2019. Available from: https ://www.prnew swire.com

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy