Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Physical Vapour Deposition of Zr-Based Nano Films on Various Substrates: A Review

Author(s): Ahmad Hafiz Jafarul Tarek, Chin Wei Lai, Bushroa Abd Razak and Yew Hoong Wong*

Volume 18, Issue 3, 2022

Published on: 04 January, 2022

Page: [347 - 366] Pages: 20

DOI: 10.2174/1573413717666210809105952

Price: $65

Abstract

Physical vapor deposition (PVD) is a thin film fabrication process in the semiconductor industry. This review paper discusses the different types of PVD methods such as sputtering, cathodic arc deposition, pulsed laser deposition, and ion plating that could be employed in order to fabricate nanoscale thin films. This paper focuses on reviewing Zr-based nanoscale thin film properties, including the transformation of Zr to ZrO2 based nanofilms as high-k gate dielectrics. Additionally, its corrosion, mechanical and degradation resistance were thoroughly analysed. These properties are affected by gas flow rate changes, temperature, and crystallinity and are further discussed in each section. Thus, this review paper informs researchers of the thin films progress to date. Understanding the influence of PVD process parameters in fabricating Zr-based nanoscale thin film is vital for its long-term continuous improvement.

Keywords: PVD, sputtering, corrosion, zirconium oxynitride, dielectric, nanofilms.

Graphical Abstract

[1]
Wang, Z.; Xiong, X.; Li, J.; Dong, M. Screening fermi-level pinning effect through van der waals contacts to monolayer MoS2. Materials Today Phys., 2020, 16100290
[http://dx.doi.org/10.1016/j.mtphys.2020.100290]
[2]
Jiang, J.; Bitla, Y.; Huang, C.W.; Do, T.H.; Liu, H.J.; Hsieh, Y.H.; Ma, C.H.; Jang, C.Y.; Lai, Y.H.; Chiu, P.W.; Wu, W.W.; Chen, Y.C.; Zhou, Y.C.; Chu, Y.H. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv., 2017, 3(6)e1700121
[http://dx.doi.org/10.1126/sciadv.1700121] [PMID: 28630922]
[3]
Lee, S.; Lee, S.H.; On, N.; Jeong, J.K. A solution-processed La-Zr-O dielectric at a low temperature for high-performance In-Ga-O transistors: Engineering a precursor solution. Ceram. Int., 2021, 47(5), 6918-6927.
[http://dx.doi.org/10.1016/j.ceramint.2020.11.038]
[4]
Wang, H.; Sun, P.; Yin, L.; Sheng, X. 3D electronic and photonic structures as active biological interfaces. InfoMat, 2019, 2(3), 527-552.
[http://dx.doi.org/10.1002/inf2.12054]
[5]
Napari, M. Antiferromagnetism and p‐type conductivity of nonstoichiometric nickel oxide thin films. InfoMat, 2020, 2(4), 769-774.
[http://dx.doi.org/10.1002/inf2.12076]
[6]
Zhang, Z. Memory materials and devices: From concept to application. InfoMat, 2020, 2(2), 261-290.
[http://dx.doi.org/10.1002/inf2.12077]
[8]
Chen, L-Y.; Chen, W-H.; Wang, J-J.; Hong, F.; Su, Y-K. Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering. Appl. Phys. Lett., 2004, 85, 5628-5630.
[http://dx.doi.org/10.1063/1.1835991]
[9]
Mattox, D.M. , 2010.
[10]
Suhail, M.H.; Rao, M. G.; Mohan, S. Effect of substrate temperature on the properties of ZrO2 films prepared by d.c. reactive magnetron sputtering. Mater. Sci. Eng. B, 1992, 12(3), 247-251.
[http://dx.doi.org/10.1016/0921-5107(92)90295-K]
[11]
Nose, M.; Zhou, M.; Nagae, T.; Mae, T.; Yokota, M.; Saji, S. Properties of Zr–Si–N coatings prepared by RF reactive sputtering. Surf. Coat. Tech., 2000, 132(2), 163-168.
[http://dx.doi.org/10.1016/S0257-8972(00)00914-2]
[12]
Vaz, F. Property change in ZrNxOy thin films: effect of the oxygen fraction and bias voltage. Thin Solid Films, 2004, 469-470, 11-17.
[http://dx.doi.org/10.1016/j.tsf.2004.06.191]
[13]
Carvalho, P.; Fernandes, A.C.; Rebouta, L.; Vaz, F.; Cunha, L.; Kreissig, U.; Barradas, N.P.; Ramos, A.R.; Alves, E. Compositional and structural changes in ZrOxNy films depending on growth condition.
[14]
Rizzo, A. Sputtering deposition and characterization of zirconium nitride and oxynitride films. Thin Solid Films, 2012, 520(9), 3532-3538.
[http://dx.doi.org/10.1016/j.tsf.2012.01.005]
[15]
Atuchin, V.V.; Kruchinin, V.N.; Hoong, W.Y.; Yew Cheong, K. Microstructural and optical properties of ZrON/Si thin films. Mater. Lett., 2013, 105, 72-75.
[http://dx.doi.org/10.1016/j.matlet.2013.03.100]
[16]
Cubillos, G.I.; Bethencourt, M.; Olaya, J.J.; Alfonso, J.E.; Marco, J.F. The influence of deposition temperature on microstructure and corrosion resistance of ZrOxNy/ZrO2 coatings deposited using RF sputtering. Appl. Surf. Sci., 2014, 309, 181-187.
[http://dx.doi.org/10.1016/j.apsusc.2014.04.215]
[17]
Cubillos, G.I.; Bethencourt, M.; Olaya, J.J. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding. Appl. Surf. Sci., 2015, 327, 288-295.
[http://dx.doi.org/10.1016/j.apsusc.2014.11.168]
[18]
Walkowicz, J. Corrosion properties of zirconium-based ceramic coatings for micro-bearing and biomedical applications. J. Phys. Conf. Ser., 2016, 700012026
[http://dx.doi.org/10.1088/1742-6596/700/1/012026]
[19]
Cubillos, G.I.; Mendoza, M.E.; Alfonso, J.E.; Blanco, G.; Bethencourt, M. Chemical composition and microstructure of zirconium oxynitride thin layers from the surface to the substrate-coating interface. Mater. Charact., 2017, 131, 450-458.
[http://dx.doi.org/10.1016/j.matchar.2017.07.035]
[20]
Bakhsheshi-Rad, H.R.; Hamzah, E.; Daroonparvar, M.; Saud, S.N.; Abdul-kadir, M.R. Bi-layer nano-TiO2/FHA composite coatings on Mg–Zn–Ce alloy prepared by combined physical vapour deposition and electrochemical deposition methods. Vacuum, 2014, 110, 127-135.
[http://dx.doi.org/10.1016/j.vacuum.2014.08.013]
[21]
Pratiwi, R.Y.; Trinanda, A.F.; Ghani Fahmi, M.W.; Astutiningsih, S.; Zakiyuddin, A. The effect of zirconium addition on corrosion behavior of Zn-Zr Alloys as biodegradable orthopedic implant application. IOP Conf. Series Mater. Sci. Eng., 2020, 833012085
[http://dx.doi.org/10.1088/1757-899X/833/1/012085]
[22]
Perez, A.; Billard, A.; Rébéré, C.; Berziou, C.; Touzain, S.; Creus, J. Influence of metallurgical states on the corrosion behaviour of Al–Zn PVD coatings in saline solution. Corros. Sci., 2013, 74, 240-249.
[http://dx.doi.org/10.1016/j.corsci.2013.04.048]
[23]
Daroonparvar, M. Modification of surface hardness, wear resistance and corrosion resistance of cold spray Al coated AZ31B Mg alloy using cold spray double layered Ta/Ti coating in 3.5 wt % NaCl solution. Corros. Sci., 2020, 176109029
[http://dx.doi.org/10.1016/j.corsci.2020.109029]]
[24]
Zhang, D.; Wei, B.; Wu, Z.; Qi, Z.; Wang, Z. A comparative study on the corrosion behaviour of Al, Ti, Zr and Hf metallic coatings deposited on AZ91D magnesium alloys. Surf. Coat. Tech., 2016, 303, 94-102.
[http://dx.doi.org/10.1016/j.surfcoat.2016.03.079]
[25]
Liu, C.; Bi, Q.; Leyland, A.; Matthews, A. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour. Corros. Sci., 2003, 45(6), 1257-1273.
[http://dx.doi.org/10.1016/S0010-938X(02)00214-7]
[26]
Purandare, Y.; Ehiasarian, A.; Santana, A.; Hovsepian, P. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques. J. Vac. Sci. Technol. A, 2014, 32(3)031507
[http://dx.doi.org/10.1116/1.4869975]
[27]
Yi, P.; Zhu, L.; Dong, C.; Xiao, K. Corrosion and interfacial contact resistance of 316L stainless steel coated with magnetron sputtered ZrN and TiN in the simulated cathodic environment of a proton-exchange membrane fuel cell. Surf. Coat. Tech., 2019, 363, 198-202.
[http://dx.doi.org/10.1016/j.surfcoat.2019.02.027]
[28]
Kuznetsova, T.; Lapitskaya, V.; Khabarava, A.; Chizhik, S.; Warcholinski, B.; Gilewicz, A. The influence of nitrogen on the morphology of ZrN coatings deposited by magnetron sputtering. Appl. Surf. Sci., 2020, 522146508
[http://dx.doi.org/10.1016/j.apsusc.2020.146508]
[29]
Ramoul, C.; Beliardouh, N.E.; Bahi, R.; Nouveau, C.; Djahoudi, A.; Walock, M.J. Surface performances of PVD ZrN coatings in biological environments. Tribology – Mat. Surf. Interfaces, 2018, 13(1), 12-19.
[http://dx.doi.org/10.1080/17515831.2018.1553820]
[30]
Randhawa, H. , 2006.
[31]
Takikawa, H. Review of cathodic arc deposition for preparing droplet-free thin films. 2006International Symposium on Discharges and Electrical Insulation in Vacuum, Matsue, Japan25-29 Sept., pp. 525-530.
[32]
Sun, P.L.; Hsu, C.H.; Liu, S.H.; Su, C.Y.; Lin, C.K. Analysis on microstructure and characteristics of TiAlN/CrN nano-multilayer films deposited by cathodic arc deposition. Thin Solid Films, 2010, 518(24), 7519-7522.
[http://dx.doi.org/10.1016/j.tsf.2010.05.037]
[33]
Laurikaitis, M.; Dudonis, J.; Milčius, D. Deposition of zirconium oxynitride films by reactive cathodic arc evaporation and investigation of physical properties. Thin Solid Films, 2008, 516(7), 1549-1552.
[http://dx.doi.org/10.1016/j.tsf.2007.03.063]
[34]
Chen, Y-M.; Liao, B.; Wu, X-Y.; Zhang, H-X.; Zhang, X. Synthesis and characterization of zirconium oxynitride coatings deposited by filtered cathodic vacuum arc technology. Surf. Coat. Tech., 2012, 228, S210-S213.
[http://dx.doi.org/10.1016/j.surfcoat.2012.06.015]
[35]
Huang, A.P. Plasma nitridation and microstructure of high-k ZrO2 thin films fabricated by cathodic arc deposition. J. Cryst. Growth, 2005, 277(1-4), 422-427.
[http://dx.doi.org/10.1016/j.jcrysgro.2005.01.088]
[36]
Huang, A.P.; Di, Z.F.; Fu, R.K.Y.; Chu, P.K. Improvement of interfacial and microstructure properties of high-k ZrO2 thin films fabricated by filtered cathodic arc deposition using nitrogen incorporation. Surf. Coat. Tech., 2006, 201(19-20), 8282-8285.
[http://dx.doi.org/10.1016/j.surfcoat.2006.09.330]
[37]
Huang, K.; Li, H.; Luo, Y.; Li, L. An effort towards hard and tough coatings by cathodic arc deposition of Zr-Cr-O coating system. Surf. Coat. Tech., 2004, 400126177
[38]
Houssa, M.; Heyns, M.M. High-k gate dielectrics: Why do we need them?; CRC Press: Boca Raton, 2003, pp. 3-14.
[http://dx.doi.org/10.1201/9781420034141]
[39]
Huang, A.P.; Chu, P.K. Microstructural improvement of sputtered ZrO2 thin films by substrate biasing. Mater. Sci. Eng. B, 2005, 121(3), 244-247.
[http://dx.doi.org/10.1016/j.mseb.2005.04.002]
[40]
Vasylyev, M.A. Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy. Surf. Coat. Tech., 2019, 361, 413-424.
[http://dx.doi.org/10.1016/j.surfcoat.2018.12.010]
[41]
Mattox, D.M. , 2010.
[42]
Ashfold, M.N.R.; Claeyssens, F.; Fuge, G.M.; Henley, S.J. Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev., 2004, 33(1), 23-31.
[http://dx.doi.org/10.1039/b207644f] [PMID: 14737506]
[43]
Willmott, P.R.; Huber, J.R. Pulsed laser vaporization and deposition. Rev. Mod. Phys., 2000, 72, 315-328.
[http://dx.doi.org/10.1103/RevModPhys.72.315]
[44]
Ismail, R.A.; Rasheed, B.G.; Salm, E.T.; Al-Hadethy, M. Transparent and conducting ZnO films prepared by reactive pulsed laser deposition. J. Mater. Sci. Mater. Electron., 2007, 18(4), 397-400.
[http://dx.doi.org/10.1007/s10854-006-9046-y]
[45]
Zhu, J.; Liu, Z.G. Structure and dielectric properties of ultra-thin ZrO2 films for high-k gate dielectric application prepared by pulsed laser deposition. Appl. Phys., A Mater. Sci. Process., 2003, 78(5), 741-744.
[http://dx.doi.org/10.1007/s00339-002-2025-0]
[46]
Gu, C. The growth of the metallic ZrN x thin films on P-GaN substrate by pulsed laser deposition. Appl. Surf. Sci., 2017, 433, 306-311.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.262]
[47]
Liu, W.; Wan, J-P.; Cai, W-P.; Liang, J-H.; Zhou, X-S.; Long, X-G. Characterization of zirconium thin films deposited by pulsed laser deposition. Chin. Phys. B, 2014, 23(9)098103
[http://dx.doi.org/10.1088/1674-1056/23/9/098103]
[48]
Yamaguchi, T.; Satake, H.; Fukushima, N.; Toriumi, A. 2000.
[49]
Yamaguchi, T.; Satake, H.; Fukushima, N. Band diagram and carrier conduction mechanisms in ZrO2 MIS structures. Electron Dev. IEEE Transact. on, 2004, 51(5), 774-779.
[50]
Vrejoiu, I. Properties of ZrO2 thin films prepared by laser ablation. Mater. Sci. Semicond. Process., 2002, 5(2-3), 253-257.
[http://dx.doi.org/10.1016/S1369-8001(02)00083-5]
[51]
Mattox, D.M. , 2010.
[52]
Sano, H. Transparent organic light-emitting diodes with top electrode using ion-plating method., 2015.
[53]
Xian, L.; Zhao, H.; Xian, G.; Fan, H.; Xiong, J. Oxidation resistance and thermal insulation performance of thin nano-multilayered (Al,Cr)2O3/ZrO2 coating prepared by arc ion plating technique. Mater. Lett., 2020, 281128649
[54]
Lei, Z. Corrosion performance of ZrN/ZrO 2 multilayer coatings deposited on 304 stainless steel using multi-arc ion plating. Appl. Surf. Sci., 2017, 431, 170-176.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.273]
[55]
Huang, J-H.; Chang, K-H.; Yu, G-P. Synthesis and characterization of nanocrystalline ZrNxOy thin films on Si by ion plating. Surf. Coat. Tech., 2006, 201(14), 6404-6413.
[http://dx.doi.org/10.1016/j.surfcoat.2006.12.007]
[56]
Huang, J-H.; Ho, C-H.; Yu, G-P. Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates. Mater. Chem. Phys., 2006, 102(1), 31-38.
[http://dx.doi.org/10.1016/j.matchemphys.2006.10.007]
[57]
Chou, W-J.; Sun, C-H.; Yu, G-P.; Huang, J-H. Optimization of the deposition process of ZrN and TiN thin films on Si(1 0 0) using design of experiment method. Mater. Chem. Phys., 2003, 82(1), 228-236.
[http://dx.doi.org/10.1016/S0254-0584(03)00209-8]
[58]
McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci., 2005, 47(12), 3202-3215.
[http://dx.doi.org/10.1016/j.corsci.2005.05.046]
[59]
Amrutha, M.S.; Ramanathan, S. Comparison of corrosion behavior of Ti and Zr in HF media. ECS Trans., 2017, 77(11), 723-739.
[http://dx.doi.org/10.1149/07711.0723ecst]
[60]
Bakhsheshi-Rad, H.R. Characterization and corrosion behavior evaluation of nanostructured TiO2 and Al2O3-13 wt.% TiO2 coatings on aluminum alloy prepared via high-velocity oxy-fuel spray. J. Mater. Eng. Perform., 2021, 30(2), 1356-1370.
[http://dx.doi.org/10.1007/s11665-020-05333-4]
[61]
Chipatecua, Y.L.; Olaya, J.J.; Arias, D.F. Corrosion behaviour of CrN/Cr multilayers on stainless steel deposited by unbalanced magnetron sputtering. Vacuum, •••, 86(9), 1393-1401.
[http://dx.doi.org/10.1016/j.vacuum.2012.01.016]
[62]
Er, D.; Taghavi Pourian Azar, G.; Kazmanlı, K.; Ürgen, M. The corrosion protection ability of TiAlN coatings produced with CA-PVD under superimposed pulse bias. Surf. Coat. Tech., 2018, 346, 1-8.
[http://dx.doi.org/10.1016/j.surfcoat.2018.04.034]
[63]
Chou, W-J.; Yu, G-P.; Huang, J-H. Corrosion resistance of ZrN films on AISI 304 stainless steel substrate. Surf. Coat. Tech., 2003, 167(1), 59-67.
[http://dx.doi.org/10.1016/S0257-8972(02)00882-4]
[64]
Purushotham, K.P. The effect of MEVVA ion implantation of Zr on the corrosion behaviour of PVD TiN coatings. Corros. Sci., 2008, 50(1), 8-14.
[http://dx.doi.org/10.1016/j.corsci.2007.06.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy