Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Ionic Channels as Potential Targets for the Treatment of Autism Spectrum Disorder: A Review

Author(s): Pablo Rayff da Silva, Thallita Karla Silva do Nascimento Gonzaga, Rayana Elias Maia and Bagnólia Araújo da Silva*

Volume 20, Issue 10, 2022

Published on: 21 April, 2022

Page: [1834 - 1849] Pages: 16

DOI: 10.2174/1570159X19666210809102547

Price: $65

Abstract

Autism spectrum disorder (ASD) is a neurological condition that directly affects brain functions and can culminate in delayed intellectual development, problems in verbal communication, difficulties in social interaction, and stereotyped behaviors. Its etiology reveals a genetic basis that can be strongly influenced by socio-environmental factors. Ion channels controlled by ligand voltage-activated calcium, sodium, and potassium channels may play important roles in modulating sensory and cognitive responses, and their dysfunctions may be closely associated with neurodevelopmental disorders such as ASD. This is due to ionic flow, which is of paramount importance to maintaining physiological conditions in the central nervous system and triggers action potentials, gene expression, and cell signaling. However, since ASD is a multifactorial disease, treatment is directed only to secondary symptoms. Therefore, this research aims to gather evidence concerning the principal pathophysiological mechanisms involving ion channels in order to recognize their importance as therapeutic targets for the treatment of central and secondary ASD symptoms.

Keywords: Channelopathies, ion channels controlled by ligands, ion channels controlled by voltage, neurodevelopmental disorders, autism, spectrum disorder, brain function.

Graphical Abstract

[1]
Breitenkamp, A.F.; Matthes, J.; Herzig, S. Voltage-gated calcium channels and autism spectrum disorders. Curr. Mol. Pharmacol., 2015, 8(2), 123-132.
[http://dx.doi.org/10.2174/1874467208666150507105235] [PMID: 25966693]
[2]
Palmieri, L.; Persico, A.M. Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim. Biophys. Acta, 2010, 1797(6-7), 1130-1137.
[http://dx.doi.org/10.1016/j.bbabio.2010.04.018] [PMID: 20441769]
[3]
Ha, S.; Sohn, I-J.; Kim, N.; Sim, H.J.; Cheon, K-A. Characteristics of brains in autism spectrum disorder: structure, function and connectivity across the lifespan. Exp. Neurobiol., 2015, 24(4), 273-284.
[http://dx.doi.org/10.5607/en.2015.24.4.273] [PMID: 26713076]
[4]
Cooper, R.A.; Richter, F.R.; Bays, P.M.; Plaisted-Grant, K.C.; Baron-Cohen, S.; Simons, J.S. Reduced hippocampal functional connectivity during episodic memory retrieval in autism. Cereb. Cortex, 2017, 27(2), 888-902.
[http://dx.doi.org/10.1093/cercor/bhw417] [PMID: 28057726]
[5]
Richards, R.; Greimel, E.; Kliemann, D.; Koerte, I.K.; Schulte-Körne, G.; Reuter, M.; Wachinger, C. Increased hippocampal shape asymmetry and volumetric ventricular asymmetry in autism spectrum disorder. Neuroimage Clin., 2020, 26, 102207.
[http://dx.doi.org/10.1016/j.nicl.2020.102207] [PMID: 32092683]
[6]
Li, D.; Karnath, H.O.; Xu, X. Candidate biomarkers in children with autism spectrum disorder: a review of MRI studies. Neurosci. Bull., 2017, 33(2), 219-237.
[http://dx.doi.org/10.1007/s12264-017-0118-1] [PMID: 28283808]
[7]
Zikopoulos, B.; Barbas, H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front. Hum. Neurosci., 2013, 7(SEP), 609.
[http://dx.doi.org/10.3389/fnhum.2013.00609] [PMID: 24098278]
[8]
Dodds, L.; Fell, D.B.; Shea, S.; Armson, B.A.; Allen, A.C.; Bryson, S. The role of prenatal, obstetric and neonatal factors in the development of autism. J. Autism Dev. Disord., 2011, 41(7), 891-902.
[http://dx.doi.org/10.1007/s10803-010-1114-8] [PMID: 20922473]
[9]
Schmunk, G.; Gargus, J.J. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet., 2013, 4, 222.
[http://dx.doi.org/10.3389/fgene.2013.00222] [PMID: 24204377]
[10]
Sealey, L.A.; Hughes, B.W.; Sriskanda, A.N.; Guest, J.R.; Gibson, A.D.; Johnson-Williams, L.; Pace, D.G.; Bagasra, O. Environmental factors in the development of autism spectrum disorders. Environ. Int., 2016, 88, 288-298.
[http://dx.doi.org/10.1016/j.envint.2015.12.021] [PMID: 26826339]
[11]
Rossi, J.; Newschaffer, C.; Yudell, M. Autism spectrum disorders, risk communication, and the problem of inadvertent harm. Kennedy Inst. Ethics J., 2013, 23(2), 105-138.
[http://dx.doi.org/10.1353/ken.2013.0006] [PMID: 23888834]
[12]
Fusar-Poli, L.; Bisso, E.; Concas, I.; Surace, T.; Tinacci, S.; Vanella, A.; Furnari, R.; Signorelli, M.S.; Nylander, L.; Aguglia, E. Psychometric properties of the autism spectrum disorder in adults screening questionnaire (ASDASQ) in a sample of italian psychiatric outpatients. Res. Autism Spectr. Disord., 2020, 78, 101668.
[http://dx.doi.org/10.1016/j.rasd.2020.101668]
[13]
Baxter, A.J.; Brugha, T.S.; Erskine, H.E.; Scheurer, R.W.; Vos, T.; Scott, J.G. The epidemiology and global burden of autism spectrum disorders. Psychol. Med., 2015, 45(3), 601-613.
[http://dx.doi.org/10.1017/S003329171400172X] [PMID: 25108395]
[14]
Brugha, T.S.; Spiers, N.; Bankart, J.; Cooper, S.A.; McManus, S.; Scott, F.J.; Smith, J.; Tyrer, F. Epidemiology of autism in adults across age groups and ability levels. Br. J. Psychiatry, 2016, 209(6), 498-503.
[http://dx.doi.org/10.1192/bjp.bp.115.174649] [PMID: 27388569]
[15]
Blumberg, S.J.; Bramlett, M.D.; Kogan, M.D.; Schieve, L.A.; Jones, J.R.; Lu, M.C. Natl. Health Stat. Rep., 2012, 2013(65)
[16]
Hull, L.; Petrides, K.V.; Mandy, W. The female autism phenotype and camouflaging: a narrative review. Rev. J. Autism Dev. Disord., 2020, 7, 306-317.
[http://dx.doi.org/10.1007/s40489-020-00197-9]
[17]
Rogge, N.; Janssen, J. The economic costs of autism spectrum disorder: a literature review. J. Autism Dev. Disord., 2019, 49(7), 2873-2900.
[http://dx.doi.org/10.1007/s10803-019-04014-z] [PMID: 30976961]
[18]
Gargus, J.J.; Schmunk, G. Comprehensive guide to autism; Compr. Guid. to Autism, 2014.
[http://dx.doi.org/10.1007/978-1-4614-4788-7]
[19]
Vismara, L.A.; Rogers, S.J.; Ogletree, B.T.; Oren, T.; Mcphilemy, C.; Dillenburger, K.; Hilton, J.C.; Seal, B.C.; Dekker, V.; Nauta, M.H. Havioral. J. Autism Dev. Disord., 2010, 40(1), 18-41.
[20]
Lai, M.C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet, 2014, 383(9920), 896-910.
[http://dx.doi.org/10.1016/S0140-6736(13)61539-1] [PMID: 24074734]
[21]
Kim, S.K. Recent update of autism spectrum disorders. Korean J. Pediatr., 2015, 58(1), 8-14.
[http://dx.doi.org/10.3345/kjp.2015.58.1.8] [PMID: 25729393]
[22]
Yang, C.; Zhao, W.; Deng, K.; Zhou, V.; Zhou, X.; Hou, Y. The association between air pollutants and autism spectrum disorders. Environ. Sci. Pollut. Res. Int., 2017, 24(19), 15949-15958.
[http://dx.doi.org/10.1007/s11356-017-8928-2] [PMID: 28540549]
[23]
Mandic-Maravic, V.; Pejovic-Milovancevic, M.; Pekmezovic, T.; Pljesa-Ercegovac, M.; Mitkovic-Voncina, M.; Lecic-Tosevski, D. Perinatal complications, environmental factors and autism spectrum disorders. Med. Podml., 2016, 67(4), 20-25.
[http://dx.doi.org/10.5937/mp67-12844]
[24]
Daghsni, M.; Rima, M.; Fajloun, Z.; Ronjat, M.; Brusés, J.L.; M’rad, R.; De Waard, M. Autism throughout genetics: Perusal of the implication of ion channels. Brain Behav., 2018, 8(8), e00978.
[http://dx.doi.org/10.1002/brb3.978] [PMID: 29934975]
[25]
Speaks, A. Autism and health: advances in understanding and treating the health conditions that frequently accompany autism; Autism Speak, 2017, pp. 1-35.
[26]
Zhang, Y.; Li, N.; Li, C.; Zhang, Z.; Teng, H.; Wang, Y.; Zhao, T.; Shi, L.; Zhang, K.; Xia, K.; Li, J.; Sun, Z. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl. Psychiatry, 2020, 10(1), 4.
[http://dx.doi.org/10.1038/s41398-020-0699-8] [PMID: 32066658]
[27]
Ratto, A.B.; Kenworthy, L.; Yerys, B.E.; Bascom, J.; Wieckowski, A.T.; White, S.W.; Wallace, G.L.; Pugliese, C.; Schultz, R.T.; Ollendick, T.H.; Scarpa, A.; Seese, S.; Register-Brown, K.; Martin, A.; Anthony, L.G. What about the girls? sex-based differences in autistic traits and adaptive skills. J. Autism Dev. Disord., 2018, 48(5), 1698-1711.
[http://dx.doi.org/10.1007/s10803-017-3413-9] [PMID: 29204929]
[28]
Halladay, A.K.; Bishop, S.; Constantino, J.N.; Daniels, A.M.; Koenig, K.; Palmer, K.; Messinger, D.; Pelphrey, K.; Sanders, S.J.; Singer, A.T.; Taylor, J.L.; Szatmari, P. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol. Autism, 2015, 6(1), 36.
[http://dx.doi.org/10.1186/s13229-015-0019-y] [PMID: 26075049]
[29]
Memari, A.H.; Ziaee, V.; Shayestehfar, M.; Ghanouni, P.; Mansournia, M.A.; Moshayedi, P. Cognitive flexibility impairments in children with autism spectrum disorders: links to age, gender and child outcomes. Res. Dev. Disabil., 2013, 34(10), 3218-3225.
[http://dx.doi.org/10.1016/j.ridd.2013.06.033] [PMID: 23886763]
[30]
Lowenthal, R. Silva, L. C. e; Miranda, C. T. de; Coelho, J. A. P. de M.; Paula, C. S. de. Autistic spectrum disorders in brazilian primary care: telehealth and face-to-face training method. Psicol. Teor. Prat., 2019, 21(3), 501-516.
[http://dx.doi.org/10.5935/1980-6906/psicologia.v21n3p501-516]
[31]
Vorstman, J.A.S.; Parr, J.R.; Moreno-De-Luca, D.; Anney, R.J.L.; Nurnberger, J.I., Jr; Hallmayer, J.F. Autism genetics: opportunities and challenges for clinical translation. Nat. Rev. Genet., 2017, 18(6), 362-376.
[http://dx.doi.org/10.1038/nrg.2017.4] [PMID: 28260791]
[32]
Hallmayer, J.; Cleveland, S.; Torres, A.; Phillips, J.; Cohen, B.; Torigoe, T.; Miller, J.; Fedele, A.; Collins, J.; Smith, K.; Lotspeich, L.; Croen, L.A.; Ozonoff, S.; Lajonchere, C.; Grether, J.K.; Risch, N. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry, 2011, 68(11), 1095-1102.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.76] [PMID: 21727249]
[33]
Kang, S. Research round-up. Lancet Psychiatry, 2014, 1(1), 14.
[http://dx.doi.org/10.1016/S2215-0366(14)70266-4]
[34]
Bölte, S.; Girdler, S.; Marschik, P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci., 2019, 76(7), 1275-1297.
[http://dx.doi.org/10.1007/s00018-018-2988-4] [PMID: 30570672]
[35]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[36]
Beversdorf, D.Q.; Stevens, H.E.; Jones, K.L. Prenatal stress, maternal immune dysregulation, and their association with autism spectrum disorders. Curr. Psychiatry Rep., 2018, 20(9), 76.
[http://dx.doi.org/10.1007/s11920-018-0945-4] [PMID: 30094645]
[37]
Daskalakis, N.P.; Bagot, R.C.; Parker, K.J.; Vinkers, C.H.; de Kloet, E.R. The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 2013, 38(9), 1858-1873.
[http://dx.doi.org/10.1016/j.psyneuen.2013.06.008] [PMID: 23838101]
[38]
Mottron, L.; Belleville, S.; Rouleau, G.A.; Collignon, O. Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model. Neurosci. Biobehav. Rev., 2014, 47, 735-752.
[http://dx.doi.org/10.1016/j.neubiorev.2014.07.012] [PMID: 25155242]
[39]
Wong, C.C.Y.; Meaburn, E.L.; Ronald, A.; Price, T.S.; Jeffries, A.R.; Schalkwyk, L.C.; Plomin, R.; Mill, J. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol. Psychiatry, 2014, 19(4), 495-503.
[http://dx.doi.org/10.1038/mp.2013.41] [PMID: 23608919]
[40]
Siu, M.T.; Weksberg, R. Epigenetics of autism spectrum disorder. Adv. Exp. Med. Biol., 2017, 978, 63-90.
[http://dx.doi.org/10.1007/978-3-319-53889-1_4] [PMID: 28523541]
[41]
Grafodatskaya, D.; Chung, B.; Szatmari, P.; Weksberg, R. Autism spectrum disorders and epigenetics. J. Am. Acad. Child Adolesc. Psychiatry, 2010, 49(8), 794-809.
[http://dx.doi.org/10.1016/j.jaac.2010.05.005] [PMID: 20643313]
[42]
Atsem, S.; Reichenbach, J.; Potabattula, R.; Dittrich, M.; Nava, C.; Depienne, C.; Böhm, L.; Rost, S.; Hahn, T.; Schorsch, M.; Haaf, T.; El Hajj, N. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum. Mol. Genet., 2016, 25(22), 4996-5005.
[http://dx.doi.org/10.1093/hmg/ddw328] [PMID: 28171595]
[43]
Chakrabarti, B.; Dudbridge, F.; Kent, L.; Wheelwright, S.; Hill-Cawthorne, G.; Allison, C.; Banerjee-Basu, S.; Baron-Cohen, S. Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res., 2009, 2(3), 157-177.
[http://dx.doi.org/10.1002/aur.80] [PMID: 19598235]
[44]
Edlow, A.G. Disorders in Offspring., 2018, 37(1), 95-110.
[http://dx.doi.org/10.1002/pd.4932.Maternal]
[45]
Godfrey, K.M.; Reynolds, R.M.; Prescott, S.L.; Nyirenda, M.; Jaddoe, V.W.V.; Eriksson, J.G.; Broekman, B.F.P. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol., 2017, 5(1), 53-64.
[http://dx.doi.org/10.1016/S2213-8587(16)30107-3] [PMID: 27743978]
[46]
Kondratskyi, A.; Kondratska, K.; Skryma, R.; Klionsky, D.J.; Prevarskaya, N. Ion channels in the regulation of autophagy. Autophagy, 2018, 14(1), 3-21.
[http://dx.doi.org/10.1080/15548627.2017.1384887] [PMID: 28980859]
[47]
Kumar, P.; Kumar, D.; Jha, S.K.; Jha, N.K.; Ambasta, R.K. Ion channels in neurological disorders, 1st ed; Elsevier Inc., 2016, Vol. 103, .
[http://dx.doi.org/10.1016/bs.apcsb.2015.10.006]
[48]
Liao, X.; Li, Y.; Li, Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol. Brain, 2020, 13(1), 96.
[http://dx.doi.org/10.1186/s13041-020-00634-0] [PMID: 32571372]
[49]
Lu, A.T-H.; Dai, X.; Martinez-Agosto, J.A.; Cantor, R.M. Support for calcium channel gene defects in autism spectrum disorders. Mol. Autism, 2012, 3(1), 18.
[http://dx.doi.org/10.1186/2040-2392-3-18] [PMID: 23241247]
[50]
Nanou, E.; Catterall, W.A. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron, 2018, 98(3), 466-481.
[http://dx.doi.org/10.1016/j.neuron.2018.03.017] [PMID: 29723500]
[51]
Nguyen, R.L.; Medvedeva, Y.V.; Ayyagari, T.E.; Schmunk, G.; Gargus, J.J. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11 Pt B), 1718-1732.
[http://dx.doi.org/10.1016/j.bbamcr.2018.08.003] [PMID: 30992134]
[52]
Bohnen, M.S.; Peng, G.; Robey, S.H.; Terrenoire, C.; Iyer, V.; Sampson, K.J.; Kass, R.S. Molecular pathophysiology of congenital long qt syndrome. Physiol. Rev., 2017, 97(1), 89-134.
[http://dx.doi.org/10.1152/physrev.00008.2016] [PMID: 27807201]
[53]
Eijkelkamp, N.; Linley, J.E.; Baker, M.D.; Minett, M.S.; Cregg, R.; Werdehausen, R.; Rugiero, F.; Wood, J.N. Neurological perspectives on voltage-gated sodium channels. Brain, 2012, 135(Pt 9), 2585-2612.
[http://dx.doi.org/10.1093/brain/aws225] [PMID: 22961543]
[54]
Yamakawa, K. Mutations of Voltage-Gated Sodium Channel Genes SCN1A and SCN2A in Epilepsy, Intellectual Disability, and Autism; Elsevier Inc., 2016.
[http://dx.doi.org/10.1016/B978-0-12-800109-7.00015-7]
[55]
DeCaen, P.G.; George, A.L.; Thompson, C.H.; DeCaen, P.G.; George, A.L.; Thompson, C.H. Sodium channelopathies of the central nervous system; Neurosci. Mol. Cell. Sys, 2019.
[http://dx.doi.org/10.1093/oxfordhb/9780190669164.013.21]
[56]
Ben-Shalom, R.; Keeshen, C.M.; Berrios, K.N.; An, J.Y.; Sanders, S.J.; Bender, K.J. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol. Psychiatry, 2017, 82(3), 224-232.
[http://dx.doi.org/10.1016/j.biopsych.2017.01.009] [PMID: 28256214]
[57]
Spratt, P.W.E.; Ben-Shalom, R.; Keeshen, C.M.; Burke, K.J., Jr; Clarkson, R.L.; Sanders, S.J.; Bender, K.J. The autism-associated gene scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron, 2019, 103(4), 673-685.e5.
[http://dx.doi.org/10.1016/j.neuron.2019.05.037] [PMID: 31230762]
[58]
Kaczmarek, L.K. Loss of NaV1.2-dependent backpropagating action potentials in dendrites contributes to autism and intellectual disability. Neuron, 2019, 103(4), 551-553.
[http://dx.doi.org/10.1016/j.neuron.2019.07.032] [PMID: 31437449]
[59]
Lorca, R.A.; Prabagaran, M.; England, S.K. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Front. Physiol., 2014, 5, 289.
[http://dx.doi.org/10.3389/fphys.2014.00289] [PMID: 25132821]
[60]
Hill, M.A.; Yang, Y.; Ella, S.R.; Davis, M.J.; Braun, A.P. Large conductance, Ca2+-activated K+ channels (BKCa) and arteriolar myogenic signaling. FEBS Lett., 2010, 584(10), 2033-2042.
[http://dx.doi.org/10.1016/j.febslet.2010.02.045] [PMID: 20178789]
[61]
Carrasquel-Ursulaez, W.; Lorenzo, Y.; Echeverria, F.; Latorre, R.; Carrasquel-Ursulaez, W.; Lorenzo, Y.; Echeverria, F.; Latorre, R. Large conductance potassium channels in the nervous system. Neuroscience, Molecular and Cellular Systems; Bhattacharjee, A; Ed.; Oxford Handbooks Online, 2018.
[http://dx.doi.org/10.1093/oxfordhb/9780190669164.013.11]
[62]
Vetri, F.; Choudhury, M.S.R.; Pelligrino, D.A.; Sundivakkam, P. BKca channels as physiological regulators: a focused review. J. Receptor Ligand Channel Res., 2014, 7, 3-13.
[http://dx.doi.org/10.2147/JRLCR.S36065]
[63]
Deng, P.Y.; Klyachko, V.A. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome. J. Physiol., 2016, 594(1), 83-97.
[http://dx.doi.org/10.1113/JP271031] [PMID: 26427907]
[64]
Kshatri, A.S.; Gonzalez-Hernandez, A.; Giraldez, T. Physiological roles and therapeutic potential of Ca2+ activated potassium channels in the nervous system. Front. Mol. Neurosci., 2018, 11(July), 258.
[http://dx.doi.org/10.3389/fnmol.2018.00258] [PMID: 30104956]
[65]
Hébert, B.; Pietropaolo, S.; Même, S.; Laudier, B.; Laugeray, A.; Doisne, N.; Quartier, A.; Lefeuvre, S.; Got, L.; Cahard, D.; Laumonnier, F.; Crusio, W.E.; Pichon, J.; Menuet, A.; Perche, O.; Briault, S. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule. Orphanet J. Rare Dis., 2014, 9(1), 124.
[http://dx.doi.org/10.1186/s13023-014-0124-6] [PMID: 25079250]
[66]
Brager, D.H.; Johnston, D. Channelopathies and dendritic dysfunction in fragile X syndrome. Brain Res. Bull., 2014, 103, 11-17.
[http://dx.doi.org/10.1016/j.brainresbull.2014.01.002] [PMID: 24462643]
[67]
Diniz, A.F.A.; Ferreira, R.C.; de Souza, I.L.L.; da Silva, B.A. Ionic channels as potential therapeutic targets for erectile dysfunction: a review. Front. Pharmacol., 2020, 11(July), 1120.
[http://dx.doi.org/10.3389/fphar.2020.01120] [PMID: 32848741]
[68]
Cui, M.; Qin, G.; Yu, K.; Bowers, M.S.; Zhang, M. Targeting the small- and intermediate-conductance Ca-activated potassium channels: the drug-binding pocket at the channel/calmodulin interface. Neurosignals, 2014, 22(2), 65-78.
[http://dx.doi.org/10.1159/000367896] [PMID: 25300231]
[69]
Zhang, M.; Pascal, J.M.; Schumann, M.; Armen, R.S.; Zhang, J.F. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels. Nat. Commun., 2012, 3, 1021.
[http://dx.doi.org/10.1038/ncomms2017] [PMID: 22929778]
[70]
Garcia-Junco-Clemente, P.; Chow, D.K.; Tring, E.; Lazaro, M.T.; Trachtenberg, J.T.; Golshani, P. Overexpression of calcium-activated potassium channels underlies cortical dysfunction in a model of PTEN-associated autism. Proc. Natl. Acad. Sci. USA, 2013, 110(45), 18297-18302.
[http://dx.doi.org/10.1073/pnas.1309207110] [PMID: 24145404]
[71]
Kim, D.M.; Nimigean, C.M. Voltage-gated potassium channels: a structural examination of selectivity and gating. Cold Spring Harb. Perspect. Biol., 2016, 8(5), 1-19.
[http://dx.doi.org/10.1101/cshperspect.a029231] [PMID: 27141052]
[72]
Guglielmi, L.; Servettini, I.; Caramia, M.; Catacuzzeno, L.; Franciolini, F.; D’Adamo, M.C.; Pessia, M. Update on the implication of potassium channels in autism: K(+) channelautism spectrum disorder. Front. Cell. Neurosci., 2015, 9(MAR), 34.
[http://dx.doi.org/10.3389/fncel.2015.00034] [PMID: 25784856]
[73]
Barghaan, J.; Bähring, R. Dynamic coupling of voltage sensor and gate involved in closed-state inactivation of kv4.2 channels. J. Gen. Physiol., 2009, 133(2), 205-224.
[http://dx.doi.org/10.1085/jgp.200810073] [PMID: 19171772]
[74]
Bähring, R.; Covarrubias, M. Mechanisms of closed-state inactivation in voltage-gated ion channels. J. Physiol., 2011, 589(Pt 3), 461-479.
[http://dx.doi.org/10.1113/jphysiol.2010.191965] [PMID: 21098008]
[75]
Michalon, A.; Sidorov, M.; Ballard, T.M.; Ozmen, L.; Spooren, W.; Wettstein, J.G.; Jaeschke, G.; Bear, M.F.; Lindemann, L. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron, 2012, 74(1), 49-56.
[http://dx.doi.org/10.1016/j.neuron.2012.03.009] [PMID: 22500629]
[76]
Jung, S.C.; Kim, J.; Hoffman, D.A. Rapid, bidirectional remodeling of synaptic NMDA receptor subunit composition by A-type K+ channel activity in hippocampal CA1 pyramidal neurons. Neuron, 2008, 60(4), 657-671.
[http://dx.doi.org/10.1016/j.neuron.2008.08.029] [PMID: 19038222]
[77]
Barnwell, L.F.S.; Lugo, J.N.; Lee, W.L.; Willis, S.E.; Gertz, S.J.; Hrachovy, R.A.; Anderson, A.E. Kv4.2 knockout mice demonstrate increased susceptibility to convulsant stimulation. Epilepsia, 2009, 50(7), 1741-1751.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02086.x] [PMID: 19453702]
[78]
Lee, H.Y.; Ge, W.P.; Huang, W.; He, Y.; Wang, G.X.; Rowson-Baldwin, A.; Smith, S.J.; Jan, Y.N.; Jan, L.Y. Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein. Neuron, 2011, 72(4), 630-642.
[http://dx.doi.org/10.1016/j.neuron.2011.09.033] [PMID: 22099464]
[79]
Martin, B.S.; Huntsman, M.M. Pathological plasticity in fragile X syndrome. Neural Plast., 2012, 2012, 275630.
[http://dx.doi.org/10.1155/2012/275630] [PMID: 22811939]
[80]
Montell, C. Drosophila TRP channels. Pflugers Arch., 2005, 451(1), 19-28.
[http://dx.doi.org/10.1007/s00424-005-1426-2] [PMID: 15952038]
[81]
Thapak, P.; Vaidya, B.; Joshi, H.C.; Singh, J.N.; Sharma, S.S. Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol. Res., 2020, 159, 105026.
[http://dx.doi.org/10.1016/j.phrs.2020.105026] [PMID: 32562815]
[82]
Meseguer, V.; Alpizar, Y.A.; Luis, E.; Tajada, S.; Denlinger, B.; Fajardo, O.; Manenschijn, J.A.; Fernández-Peña, C.; Talavera, A.; Kichko, T.; Navia, B.; Sánchez, A.; Señarís, R.; Reeh, P.; Pérez-García, M.T.; López-López, J.R.; Voets, T.; Belmonte, C.; Talavera, K.; Viana, F. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun., 2014, 5, 3125.
[http://dx.doi.org/10.1038/ncomms4125] [PMID: 24445575]
[83]
Caterina, M.J. TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation. ACS Chem. Neurosci., 2014, 5(11), 1107-1116.
[http://dx.doi.org/10.1021/cn5000919] [PMID: 24915599]
[84]
Falcón, D.; Galeano-Otero, I.; Calderón-Sánchez, E.; Del Toro, R.; Martín-Bórnez, M.; Rosado, J.A.; Hmadcha, A.; Smani, T. TRP channels: current perspectives in the adverse cardiac remodeling. Front. Physiol., 2019, 10(MAR), 159.
[http://dx.doi.org/10.3389/fphys.2019.00159] [PMID: 30881310]
[85]
Peng, G.; Shi, X.; Kadowaki, T. Evolution of TRP channels inferred by their classification in diverse animal species. Mol. Phylogenet. Evol., 2015, 84(June), 145-157.
[http://dx.doi.org/10.1016/j.ympev.2014.06.016] [PMID: 24981559]
[86]
Jung, J.H.; Kim, B.J.; Chae, M.R.; Kam, S.C.; Jeon, J.H.; So, I.; Chung, K.H.; Lee, S.W. Gene transfer of TRPC6 (dominant negative) restores erectile function in diabetic rats. J. Sex. Med., 2010, 7(3), 1126-1138.
[http://dx.doi.org/10.1111/j.1743-6109.2009.01634.x] [PMID: 20059667]
[87]
Cantero, Mdel R.; Velázquez, I.F.; Streets, A.J.; Ong, A.C.M.; Cantiello, H.F. The cAMP signaling pathway and direct protein kinase a phosphorylation regulate polycystin-2 (TRPP2) channel function. J. Biol. Chem., 2015, 290(39), 23888-23896.
[http://dx.doi.org/10.1074/jbc.M115.661082] [PMID: 26269590]
[88]
Griesi-Oliveira, K.; Acab, A.; Gupta, A.R.; Sunaga, D.Y.; Chailangkarn, T.; Nicol, X.; Nunez, Y.; Walker, M.F.; Murdoch, J.D.; Sanders, S.J.; Fernandez, T.V.; Ji, W.; Lifton, R.P.; Vadasz, E.; Dietrich, A.; Pradhan, D.; Song, H.; Ming, G.L.; Gu, X.; Haddad, G.; Marchetto, M.C.; Spitzer, N.; Passos-Bueno, M.R.; State, M.W.; Muotri, A.R. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol. Psychiatry, 2015, 20(11), 1350-1365.
[http://dx.doi.org/10.1038/mp.2014.141] [PMID: 25385366]
[89]
Luo, Y.; Kuang, S.; Li, H.; Ran, D.; Yang, J. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress. Oncotarget, 2017, 8(22), 35558-35572.
[http://dx.doi.org/10.18632/oncotarget.16009] [PMID: 28415673]
[90]
Saxena, M.; Saxena, K. Synaptic plasticity in autism spectrum disorders. Synaptic Plast. Roles. Res. Insights, 2018, 101-132.
[91]
Deweerdt, S. Spectrum memory hub could underlie social. Cognitive Quirks of Autism, 2016, 1-5.
[92]
Dulneva, A.; Lee, S.; Oliver, P.L.; Di Gleria, K.; Kessler, B.M.; Davies, K.E.; Becker, E.B.E. The mutant Moonwalker TRPC3 channel links calcium signaling to lipid metabolism in the developing cerebellum. Hum. Mol. Genet., 2015, 24(14), 4114-4125.
[http://dx.doi.org/10.1093/hmg/ddv150] [PMID: 25908616]
[93]
Clifford, H.; Dulneva, A.; Ponting, C.P.; Haerty, W.; Becker, E.B.E. A gene expression signature in developing Purkinje cells predicts autism and intellectual disability co-morbidity status. Sci. Rep., 2019, 9(1), 485.
[http://dx.doi.org/10.1038/s41598-018-37284-1] [PMID: 30679692]
[94]
Becker, E.B.E.; Stoodley, C.J. Autism Spectrum Disorder and the Cerebellum, 1st ed; Elsevier Inc., 2013, Vol. 113, .
[http://dx.doi.org/10.1016/B978-0-12-418700-9.00001-0]
[95]
Manto, M.; Gruol, D.L.; Schmahmann, J.D.; Koibuchi, N.; Rossi, F. Handbook of the cerebellum and cerebellar disorders; , 2013, pp. 1-2424.
[http://dx.doi.org/10.1007/978-94-007-1333-8]
[96]
Peter, S.; Ten Brinke, M.M.; Stedehouder, J.; Reinelt, C.M.; Wu, B.; Zhou, H.; Zhou, K.; Boele, H.J.; Kushner, S.A.; Lee, M.G.; Schmeisser, M.J.; Boeckers, T.M.; Schonewille, M.; Hoebeek, F.E.; De Zeeuw, C.I. Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat. Commun., 2016, 7, 12627.
[http://dx.doi.org/10.1038/ncomms12627] [PMID: 27581745]
[97]
Al Mahmuda, N.; Yokoyama, S.; Munesue, T.; Hayashi, K.; Yagi, K.; Tsuji, C.; Higashida, H. One single nucleotide polymorphism of the TRPM2 channel gene identified as a risk factor in bipolar disorder associates with autism spectrum disorder in a japanese population. Diseases, 2020, 8(1), 4.
[http://dx.doi.org/10.3390/diseases8010004] [PMID: 33396495]
[98]
Zhong, J.; Amina, S.; Liang, M.; Akther, S.; Yuhi, T.; Nishimura, T.; Tsuji, C.; Tsuji, T.; Liu, H.X.; Hashii, M.; Furuhara, K.; Yokoyama, S.; Yamamoto, Y.; Okamoto, H.; Zhao, Y.J.; Lee, H.C.; Tominaga, M.; Lopatina, O.; Higashida, H. Cyclic ADP-Ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Front. Neurosci., 2016, 10(JUL), 304.
[http://dx.doi.org/10.3389/fnins.2016.00304] [PMID: 27499729]
[99]
Mehler, M.F.; Purpura, D.P. Autism, fever, epigenetics and the locus coeruleus. Brain Res. Brain Res. Rev., 2009, 59(2), 388-392.
[http://dx.doi.org/10.1016/j.brainresrev.2008.11.001] [PMID: 19059284]
[100]
Singh, R.; Bansal, Y.; Parhar, I.; Kuhad, A.; Soga, T. Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system. Neurochem. Int., 2019, 131, 104545.
[http://dx.doi.org/10.1016/j.neuint.2019.104545] [PMID: 31494132]
[101]
Ho, K.W.; Ward, N.J.; Calkins, D.J. TRPV1: a stress response protein in the central nervous system. Am. J. Neurodegener. Dis., 2012, 1(1), 1-14.
[PMID: 22737633]
[102]
Eguchi, N.; Hishimoto, A.; Sora, I.; Mori, M. Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus. Neurosci. Lett., 2016, 616, 170-176.
[http://dx.doi.org/10.1016/j.neulet.2015.12.065] [PMID: 26836139]
[103]
Indelicato, E.; Boesch, S. From genotype to phenotype: expanding the clinical spectrum of CACNA1A variants in the era of next generation sequencing. Front. Neurol., 2021, 12, 639994.
[http://dx.doi.org/10.3389/fneur.2021.639994] [PMID: 33737904]
[104]
Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; Smith, J.D.; Paeper, B.; Nickerson, D.A.; Dea, J.; Dong, S.; Gonzalez, L.E.; Mandell, J.D.; Mane, S.M.; Murtha, M.T.; Sullivan, C.A.; Walker, M.F.; Waqar, Z.; Wei, L.; Willsey, A.J.; Yamrom, B.; Lee, Y.H.; Grabowska, E.; Dalkic, E.; Wang, Z.; Marks, S.; Andrews, P.; Leotta, A.; Kendall, J.; Hakker, I.; Rosenbaum, J.; Ma, B.; Rodgers, L.; Troge, J.; Narzisi, G.; Yoon, S.; Schatz, M.C.; Ye, K.; McCombie, W.R.; Shendure, J.; Eichler, E.E.; State, M.W.; Wigler, M. The contribution of de novo coding mutations to autism spectrum disorder. Nature, 2014, 515(7526), 216-221.
[http://dx.doi.org/10.1038/nature13908] [PMID: 25363768]
[105]
Ortner, N.J.; Kaserer, T.; Copeland, J.N.; Striessnig, J. De novo CACNA1D Ca2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch., 2020, 472(7), 755-773.
[http://dx.doi.org/10.1007/s00424-020-02418-w] [PMID: 32583268]
[106]
Peng, J.; Zhou, Y.; Wang, K. Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism. Sci. Rep., 2021, 11(1), 952.
[http://dx.doi.org/10.1038/s41598-020-78654-y] [PMID: 33441621]
[107]
Myers, R.A.; Casals, F.; Gauthier, J.; Hamdan, F.F.; Keebler, J.; Boyko, A.R.; Bustamante, C.D.; Piton, A.M.; Spiegelman, D.; Henrion, E.; Zilversmit, M.; Hussin, J.; Quinlan, J.; Yang, Y.; Lafrenière, R.G.; Griffing, A.R.; Stone, E.A.; Rouleau, G.A.; Awadalla, P. A population genetic approach to mapping neurological disorder genes using deep resequencing. PLoS Genet., 2011, 7(2), e1001318.
[http://dx.doi.org/10.1371/journal.pgen.1001318] [PMID: 21383861]
[108]
Chemin, J.; Siquier-Pernet, K.; Nicouleau, M.; Barcia, G.; Ahmad, A.; Medina-Cano, D.; Hanein, S.; Altin, N.; Hubert, L.; Bole-Feysot, C.; Fourage, C.; Nitschké, P.; Thevenon, J.; Rio, M.; Blanc, P.; Vidal, C.; Bahi-Buisson, N.; Desguerre, I.; Munnich, A.; Lyonnet, S.; Boddaert, N.; Fassi, E.; Shinawi, M.; Zimmerman, H.; Amiel, J.; Faivre, L.; Colleaux, L.; Lory, P.; Cantagrel, V. De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. Brain, 2018, 141(7), 1998-2013.
[http://dx.doi.org/10.1093/brain/awy145] [PMID: 29878067]
[109]
Smith, M.; Flodman, P.L.; Gargus, J.J.; Simon, M.T.; Verrell, K.; Haas, R.; Reiner, G.E.; Naviaux, R.; Osann, K.; Spence, M.A.; Wallace, D.C. Mitochondrial and ion channel gene alterations in autism. Biochim. Biophys. Acta, 2012, 1817(10), 1796-1802.
[http://dx.doi.org/10.1016/j.bbabio.2012.04.004] [PMID: 22538295]
[110]
Graziano, C.; Despang, P.; Palombo, F.; Severi, G.; Posar, A.; Cassio, A.; Pippucci, T.; Isidori, F.; Matthes, J.; Bonora, E. A new homozygous CACNB2 mutation has functional relevance and supports a role for calcium channels in autism spectrum disorder. J. Autism Dev. Disord., 2021, 51(1), 377-381.
[http://dx.doi.org/10.1007/s10803-020-04551-y] [PMID: 32506348]
[111]
Scheffer, I.E.; Nabbout, R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia, 2019, 60(S3)(Suppl. 3), S17-S24.
[http://dx.doi.org/10.1111/epi.16386] [PMID: 31904117]
[112]
Han, S.; Tai, C.; Westenbroek, R.E.; Yu, F.H.; Cheah, C.S.; Potter, G.B.; Rubenstein, J.L.; Scheuer, T.; De La Iglesia, H.O.; Catterall, W.A. Autistic behavior in Scn1a +/- mice and rescue by enhanced GABAergic transmission. Nature, 2012, 489(7416), 385-390.
[http://dx.doi.org/10.1038/nature11356] [PMID: 22914087]
[113]
Wang, H-G.; Bavley, C.C.; Li, A.; Jones, R.M.; Hackett, J.E.; Bayleyen, Y.; Lee, F.S.; Rajadhyaksha, A.M.; Pitt, G.S. Scn2a severe hypomorphic mutation decreases excitatory synaptic input and causes autism-associated behaviors. JCI Insight, 2021, 6(15), e150698.
[http://dx.doi.org/10.1172/jci.insight.150698] [PMID: 34156984]
[114]
Chong, P.F.; Saitsu, H.; Sakai, Y.; Imagi, T.; Nakamura, R.; Matsukura, M.; Matsumoto, N.; Kira, R. Deletions of SCN2A and SCN3A genes in a patient with West syndrome and autistic spectrum disorder. Seizure, 2018, 60, 91-93.
[http://dx.doi.org/10.1016/j.seizure.2018.06.012] [PMID: 29929112]
[115]
Inuzuka, L.M.; Macedo-Souza, L.I.; Della-Ripa, B.; Cabral, K.S.S.; Monteiro, F.; Kitajima, J.P.; de Souza Godoy, L.F.; de Souza Delgado, D.; Kok, F.; Garzon, E. Neurodevelopmental disorder associated with de novo SCN3A pathogenic variants: two new cases and review of the literature. Brain Dev., 2020, 42(2), 211-216.
[http://dx.doi.org/10.1016/j.braindev.2019.09.004] [PMID: 31677917]
[116]
Schmitz-Abe, K.; Sanchez-Schmitz, G.; Doan, R.N.; Hill, R.S.; Chahrour, M.H.; Mehta, B.K.; Servattalab, S.; Ataman, B.; Lam, A.N.; Morrow, E.M.; Greenberg, M.E.; Yu, T.W.; Walsh, C.A.; Markianos, K. Homozygous deletions implicate non-coding epigenetic marks in Autism spectrum disorder. Sci. Rep., 2020, 10(1), 14045.
[http://dx.doi.org/10.1038/s41598-020-70656-0] [PMID: 32820185]
[117]
Gardella, E.; Møller, R.S. Phenotypic and genetic spectrum of SCN8A-related disorders, treatment options, and outcomes. Epilepsia, 2019, 60(S3)(Suppl. 3), S77-S85.
[http://dx.doi.org/10.1111/epi.16319] [PMID: 31904124]
[118]
Wu, H.; Li, H.; Bai, T.; Han, L.; Ou, J.; Xun, G.; Zhang, Y.; Wang, Y.; Duan, G.; Zhao, N.; Chen, B.; Du, X.; Yao, M.; Zou, X.; Zhao, J.; Hu, Z.; Eichler, E.E.; Guo, H.; Xia, K. Phenotype-to-genotype approach reveals head-circumference-associated genes in an autism spectrum disorder cohort. Clin. Genet., 2020, 97(2), 338-346.
[http://dx.doi.org/10.1111/cge.13665] [PMID: 31674007]
[119]
Kessi, M.; Chen, B.; Peng, J.; Tang, Y.; Olatoutou, E.; He, F.; Yang, L.; Yin, F. Intellectual disability and potassium channelopathies: a systematic review. Front. Genet., 2020, 11, 614.
[http://dx.doi.org/10.3389/fgene.2020.00614] [PMID: 32655623]
[120]
Lee, H.; Lin, M.A.; Kornblum, H.I.; Papazian, D.M.; Nelson, S.F. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum. Mol. Genet., 2014, 23(13), 3481-3489.
[http://dx.doi.org/10.1093/hmg/ddu056] [PMID: 24501278]
[121]
Turlova, E.; Bae, C.Y.J.; Deurloo, M.; Chen, W.; Barszczyk, A.; Horgen, F.D.; Fleig, A.; Feng, Z.; Sun, H. TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons. Mol. Neurobiol., 2016, 53(1), 595-610.
[http://dx.doi.org/10.1007/s12035-014-9032-y] [PMID: 25502295]
[122]
Deurloo, M.H.S.; Turlova, E.; Chen, W.; Lin, Y.W.; Tam, E.; Tassew, N.G.; Wu, M.; Huang, Y.; Crawley, J.N.; Monnier, P.P. Transcription factor 2I regulates neuronal development via TRPC3 in 7q11.23 disorder models. Mol. Neurobiol., 2019, 56(5), 3313-3325.
[http://dx.doi.org/10.1007/s12035-018-1290-7] [PMID: 30120731]
[123]
Han, Q.; Kim, Y.H.; Wang, X.; Liu, D.; Zhang, Z.J.; Bey, A.L.; Lay, M.; Chang, W.; Berta, T.; Zhang, Y.; Jiang, Y.H.; Ji, R.R. SHANK3 deficiency impairs heat hyperalgesia and TRPV1 signaling in primary sensory neurons. Neuron, 2016, 92(6), 1279-1293.
[http://dx.doi.org/10.1016/j.neuron.2016.11.007] [PMID: 27916453]
[124]
Lamy, M.; Erickson, C.A. Pharmacological management of behavioral disturbances in children and adolescents with autism spectrum disorders. Curr. Probl. Pediatr. Adolesc. Health Care, 2018, 48(10), 250-264.
[http://dx.doi.org/10.1016/j.cppeds.2018.08.015] [PMID: 30262163]
[125]
Posey, D.J.; Stigler, K.A.; Erickson, C.A.; McDougle, C.J. Antipsychotics in the treatment of autism. J. Clin. Invest., 2008, 118(1), 6-14.
[http://dx.doi.org/10.1172/JCI32483] [PMID: 18172517]
[126]
Sturman, N.; Deckx, L.; van Driel, M.L. Methylphenidate for children and adolescents with autism spectrum disorder. Cochrane Database Syst. Rev., 2017, 11(11), CD011144.
[http://dx.doi.org/10.1002/14651858.CD011144.pub2] [PMID: 29159857]
[127]
Van der Aa, N.; Kooy, R.F. GABAergic abnormalities in the fragile X syndrome. Eur. J. Paediatr. Neurol., 2020, 24, 100-104.
[http://dx.doi.org/10.1016/j.ejpn.2019.12.022] [PMID: 31926845]
[128]
Hagerman, R.; Lauterborn, J.; Au, J.; Berry-Kravis, E. Fragile X Syndrome and Targeted Treatment Trials; , 2012, Vol. 54, .
[http://dx.doi.org/10.1007/978-3-642-21649-7_17]
[129]
LeClerc, S.; Easley, D. Pharmacological therapies for autism spectrum disorder: a review. P&T, 2015, 40(6), 389-397.
[PMID: 26045648]
[130]
Propper, L. Psychopharmacology for the clinician call for submissions have expertise treating patients with psychiatric disorders? JPN Is the Highest Ranking Biological Psychiatry Clinician Columns Are the Most., 2018, 43(5), 359-360.
[http://dx.doi.org/10.1503/jpn.180039]
[131]
Nebhinani, N.; Viswanathan, A.; Kirubakaran, R. Atomoxetine for attention defict hyperactivity disorder in children and adolescents with autism: a systematic review and meta-analysis. Autism Res., 2019, 12, 542-552.
[http://dx.doi.org/10.1002/aur.2059]
[132]
Gagnon, K.; Godbout, R. Melatonin and comorbidities in children with autism spectrum disorder. Curr. Dev. Disord. Rep., 2018, 5(3), 197-206.
[http://dx.doi.org/10.1007/s40474-018-0147-0] [PMID: 30148039]
[133]
Zhou, M.S.; Nasir, M.; Farhat, L.C.; Kook, M.; Artukoglu, B.B.; Bloch, M.H. Meta-analysis: pharmacologic treatment of restricted and repetitive behaviors in autism spectrum disorders. J. Am. Acad. Child Adolesc. Psychiatry, 2021, 60(1), 35-45.
[http://dx.doi.org/10.1016/j.jaac.2020.03.007] [PMID: 32387445]
[134]
Yu, Y.; Chaulagain, A.; Pedersen, S.A.; Lydersen, S.; Leventhal, B.L.; Szatmari, P.; Aleksic, B.; Ozaki, N.; Skokauskas, N. Pharmacotherapy of restricted/repetitive behavior in autism spectrum disorder: a systematic review and meta-analysis. BMC Psychiatry, 2020, 20(1), 121.
[http://dx.doi.org/10.1186/s12888-020-2477-9] [PMID: 32164636]
[135]
King, B.H. Fluoxetine and repetitive behaviors in children and adolescents with autism spectrum disorder cervical cancer as a global concern contributions of the dual epidemics of HPV and HIV. 2019, 322(16), 2019-2020.
[http://dx.doi.org/10.1001/jama.2019.14685]
[136]
Mehta, M.V.; Gandal, M.J.; Siegel, S.J. mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS One, 2011, 6(10), e26077.
[http://dx.doi.org/10.1371/journal.pone.0026077] [PMID: 22016815]
[137]
Fatemi, S.H.; Folsom, T.D.; Kneeland, R.E.; Liesch, S.B. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat. Rec. (Hoboken), 2011, 294(10), 1635-1645.
[http://dx.doi.org/10.1002/ar.21299] [PMID: 21901840]
[138]
Wang, X.; Bey, A.L.; Katz, B.M.; Badea, A.; Kim, N.; David, L.K.; Duffney, L.J.; Kumar, S.; Mague, S.D.; Hulbert, S.W.; Dutta, N.; Hayrapetyan, V.; Yu, C.; Gaidis, E.; Zhao, S.; Ding, J.D.; Xu, Q.; Chung, L.; Rodriguiz, R.M.; Wang, F.; Weinberg, R.J.; Wetsel, W.C.; Dzirasa, K.; Yin, H.; Jiang, Y.H. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat. Commun., 2016, 7, 11459.
[http://dx.doi.org/10.1038/ncomms11459] [PMID: 27161151]
[139]
Shaltout, E.; Al-Dewik, N.; Samara, M.; Morsi, H.; Khattab, A. Psychological comorbidities in autism spectrum disorder. Adv. Neurobiol., 2020, 24, 163-191.
[http://dx.doi.org/10.1007/978-3-030-30402-7_6] [PMID: 32006360]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy