Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Identification of Key Histone Modifications and Hub Genes for Colorectal Cancer Metastasis

Author(s): Yuan-Yuan Zhai, Qian-Zhong Li*, Ying-Li Chen and Lu-Qiang Zhang

Volume 17, Issue 2, 2022

Published on: 05 August, 2021

Page: [206 - 216] Pages: 11

DOI: 10.2174/1574893616999210805164414

Abstract

Background: Epithelial-Mesenchymal Transition (EMT) and its reverse Mesenchymal- Epithelial Transition (MET) are essential for tumor cells metastasis. However, the effect of epigenetic modifications on this transition is unclear.

Objective: We aimed to explore the key histone modifications and hub genes of EMT/MET during Colorectal Cancer (CRC) metastasis.

Methods: The differentially expressed genes and differentially histone modified genes were identified. Based on the histone modification features, the up- and down-regulated genes were predicted by Random Forest algorithm. Through protein-protein interaction network and Cytoscape analysis, the hub genes with histone modification changes were selected. GO, KEGG and survival analyses were performed to confirm the importance of the hub genes.

Results: It was found that H3K79me3 plays an important role in EMT/MET. And the 200-300bp and 400-500bp downstream of TSS may be the key regulatory regions of H3K79me3. Moreover, we found that the expression of the hub genes was down-regulated in EMT and then up-regulated in MET. And the changes of the hub genes expression were consistent with the changes of H3K79me3 signal in the specific regions of the genome. Finally, the hub genes KRT8 and KRT18 were involved in the metastasis process and were significantly related to the survival time.

Conclusion: H3K79me3 may be crucial for EMT/MET, and the hub genes KRT8 and KRT18 may be the key genes in this process.

Keywords: EMT, MET, random forest, H3K79me3, hub genes, colorectal cancer.

« Previous
Graphical Abstract

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Guan X. Cancer metastases: Challenges and opportunities. Acta Pharm Sin B 2015; 5(5): 402-18.
[http://dx.doi.org/10.1016/j.apsb.2015.07.005] [PMID: 26579471]
[3]
Chatterjee A, Rodger EJ, Eccles MR. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 2018; 51: 149-59.
[http://dx.doi.org/10.1016/j.semcancer.2017.08.004] [PMID: 28807546]
[4]
Han TS, Ban HS, Hur K, Cho HS. The epigenetic regulation of HCC metastasis. Int J Mol Sci 2018; 19(12): 3978.
[http://dx.doi.org/10.3390/ijms19123978] [PMID: 30544763]
[5]
Xiu B, Chi Y, Liu L, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer 2019; 18(1): 187.
[http://dx.doi.org/10.1186/s12943-019-1115-y] [PMID: 31856843]
[6]
Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19(11): 1438-49.
[http://dx.doi.org/10.1038/nm.3336] [PMID: 24202396]
[7]
Zhang LQ, Li QZ, Jin W, Zuo Y, Guo SC. Genome-wide analysis of H3K36me3 and its regulations to cancer-related genes expression in human cell lines. Biosystems 2018; 171: 59-65.
[http://dx.doi.org/10.1016/j.biosystems.2018.07.004] [PMID: 30030162]
[8]
Stillman B. Histone modifications: Insights into their influence on gene expression. Cell 2018; 175(1): 6-9.
[http://dx.doi.org/10.1016/j.cell.2018.08.032] [PMID: 30217360]
[9]
Lawrence M, Daujat S, Schneider R. Lateral thinking: How histone modifications regulate gene expression. Trends Genet 2016; 32(1): 42-56.
[http://dx.doi.org/10.1016/j.tig.2015.10.007] [PMID: 26704082]
[10]
Su WX, Li QZ, Zuo YC, Zhang LQ. Association analysis between the distributions of histone modifications and gene expression in the human embryonic stem cell. Gene 2016; 575(1): 90-100.
[http://dx.doi.org/10.1016/j.gene.2015.08.041] [PMID: 26302750]
[11]
Jin W, Li QZ, Liu Y, Zuo YC. Effect of the key histone modifications on the expression of genes related to breast cancer. Genomics 2020; 112(1): 853-8.
[http://dx.doi.org/10.1016/j.ygeno.2019.05.026] [PMID: 31170440]
[12]
Huang C, Zhu B. Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity. Biophys Rep 2018; 4(4): 170-7.
[http://dx.doi.org/10.1007/s41048-018-0063-1] [PMID: 30310854]
[13]
Dawson MA, Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell 2012; 150(1): 12-27.
[http://dx.doi.org/10.1016/j.cell.2012.06.013] [PMID: 22770212]
[14]
Li Q, Chen H. Epigenetic modifications of metastasis suppressor genes in colon cancer metastasis. Epigenetics 2011; 6(7): 849-52.
[http://dx.doi.org/10.4161/epi.6.7.16314] [PMID: 21758003]
[15]
El Bairi K, Tariq K, Himri I, et al. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220: 49-76.
[http://dx.doi.org/10.1016/j.cancergen.2017.11.001] [PMID: 29310839]
[16]
Vaiopoulos AG, Athanasoula KCh, Papavassiliou AG. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. Biochim Biophys Acta 2014; 1842(7): 971-80.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.006] [PMID: 24561654]
[17]
Shen C, Yan T, Tong T, et al. ALKBH4 functions as a suppressor of colorectal cancer metastasis via competitively binding to WDR5. Front Cell Dev Biol 2020; 8: 293.
[http://dx.doi.org/10.3389/fcell.2020.00293] [PMID: 32478065]
[18]
Ding J, Zhang ZM, Xia Y, et al. LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer. Br J Cancer 2013; 109(4): 994-1003.
[http://dx.doi.org/10.1038/bjc.2013.364] [PMID: 23900215]
[19]
Zhou Z, Zhang HS, Liu Y, et al. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin. J Cell Physiol 2018; 233(2): 1359-69.
[http://dx.doi.org/10.1002/jcp.26012] [PMID: 28513825]
[20]
Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer 2020; 19(1): 106.
[http://dx.doi.org/10.1186/s12943-020-01220-7] [PMID: 32552762]
[21]
Li Q, Chen H. Silencing of Wnt5a during colon cancer metastasis involves histone modifications. Epigenetics 2012; 7(6): 551-8.
[http://dx.doi.org/10.4161/epi.20050] [PMID: 22522911]
[22]
Yokoyama Y, Hieda M, Nishioka Y, et al. Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci 2013; 104(7): 889-95.
[http://dx.doi.org/10.1111/cas.12166] [PMID: 23557258]
[23]
Shen T, Cai LD, Liu YH, et al. Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy. J Hematol Oncol 2018; 11(1): 95.
[http://dx.doi.org/10.1186/s13045-018-0638-9] [PMID: 30016968]
[24]
Patnaik S. Anupriya. Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front Pharmacol 2019; 10: 588-602.
[http://dx.doi.org/10.3389/fphar.2019.00588] [PMID: 31244652]
[25]
Rokavec M, Horst D, Hermeking H. Cellular model of colon cancer progression reveals signatures of mRNAs, miRNA, lncRNAs, and epigenetic modifications associated with metastasis. Cancer Res 2017; 77(8): 1854-67.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3236] [PMID: 28130225]
[26]
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17: 10-2.
[http://dx.doi.org/10.14806/ej.17.1.200]
[27]
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10(3): R25.
[http://dx.doi.org/10.1186/gb-2009-10-3-r25] [PMID: 19261174]
[28]
Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841-2.
[http://dx.doi.org/10.1093/bioinformatics/btq033] [PMID: 20110278]
[29]
Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010; 26(1): 136-8.
[http://dx.doi.org/10.1093/bioinformatics/btp612] [PMID: 19855105]
[30]
Farrelly LA, Maze I. An emerging perspective on ‘histone code’ mediated regulation of neural plasticity and disease. Curr Opin Neurobiol 2019; 59: 157-63.
[http://dx.doi.org/10.1016/j.conb.2019.07.001] [PMID: 31382083]
[31]
Zeng Z, Zhang W, Marand AP, Zhu B, Buell CR, Jiang J. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biol 2019; 20(1): 123.
[http://dx.doi.org/10.1186/s13059-019-1731-2] [PMID: 31208436]
[32]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[33]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[34]
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8(4)(Suppl. 4): S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[35]
Yu G, Wang LG, Han Y, He QY. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: J Integrative Biol 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[36]
Smith JJ, Deane NG, Wu F, et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 2010; 138(3): 958-68.
[http://dx.doi.org/10.1053/j.gastro.2009.11.005] [PMID: 19914252]
[37]
Dong L, Wang F, Yin X, et al. Overexpression of S100P promotes colorectal cancer metastasis and decreases chemosensitivity to 5-FU in vitro. Mol Cell Biochem 2014; 389(1-2): 257-64.
[http://dx.doi.org/10.1007/s11010-013-1947-5] [PMID: 24381058]
[38]
Zhu X, Long X, Luo X, Song Z, Li S, Wang H. Abrogation of MUC5AC expression contributes to the apoptosis and cell cycle arrest of colon cancer cells. Cancer Biother Radiopharm 2016; 31(7): 261-7.
[http://dx.doi.org/10.1089/cbr.2016.2054] [PMID: 27610469]
[39]
Yu S, Xie H, Zhang J, et al. MicroRNA 663 suppresses the proliferation and invasion of colorectal cancer cells by directly targeting FSCN1. Mol Med Rep 2017; 16(6): 9707-14.
[http://dx.doi.org/10.3892/mmr.2017.7794] [PMID: 29039557]
[40]
Alajez NM. Significance of BMI1 and FSCN1 expression in colorectal cancer. Saudi J Gastroenterol 2016; 22(4): 288-93.
[http://dx.doi.org/10.4103/1319-3767.187602] [PMID: 27488323]
[41]
Zeng ZL, Wu WJ, Yang J, et al. Prognostic relevance of melanoma antigen D1 expression in colorectal carcinoma. J Transl Med 2012; 10(1): 181.
[http://dx.doi.org/10.1186/1479-5876-10-181] [PMID: 22935435]
[42]
Vakoc CR, Sachdeva MM, Wang H, Blobel GA. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 2006; 26(24): 9185-95.
[http://dx.doi.org/10.1128/MCB.01529-06] [PMID: 17030614]
[43]
Chen X, Liu X, Zhang Y, et al. Methyltransferase Dot1l preferentially promotes innate IL-6 and IFN-β production by mediating H3K79me2/3 methylation in macrophages. Cell Mol Immunol 2020; 17(1): 76-84.
[http://dx.doi.org/10.1038/s41423-018-0170-4] [PMID: 30275539]
[44]
Zhang B, Wang J, Liu W, et al. Cytokeratin 18 knockdown decreases cell migration and increases chemosensitivity in non-small cell lung cancer. J Cancer Res Clin Oncol 2016; 142(12): 2479-87.
[http://dx.doi.org/10.1007/s00432-016-2253-x] [PMID: 27601168]
[45]
Fang J, Wang H, Liu Y, Ding F, Ni Y, Shao S. High KRT8 expression promotes tumor progression and metastasis of gastric cancer. Cancer Sci 2017; 108(2): 178-86.
[http://dx.doi.org/10.1111/cas.13120] [PMID: 27865045]
[46]
Fillies T, Werkmeister R, Packeisen J, et al. Cytokeratin 8/18 expression indicates a poor prognosis in squamous cell carcinomas of the oral cavity. BMC Cancer 2006; 6: 10.
[http://dx.doi.org/10.1186/1471-2407-6-10] [PMID: 16412231]
[47]
Zhang J, Hu S, Li Y. KRT18 is correlated with the malignant status and acts as an oncogene in colorectal cancer. Biosci Rep 2019; 39(8): BSR20190884.
[http://dx.doi.org/10.1042/BSR20190884] [PMID: 31345960]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy