Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Potent Anticancer Activities of Beauvericin Against KB Cells In Vitro by Inhibiting the Expression of ACAT1 and Exploring Binding Affinity

Author(s): Haiming Zhou, Jing Zhang, Xiaoqing Chen, Shili Guo, Huimei Lin, Bo Ding, Hongbo Huang* and Yiwen Tao*

Volume 22, Issue 5, 2022

Published on: 05 August, 2021

Page: [897 - 904] Pages: 8

DOI: 10.2174/1871520621666210805123739

Price: $65

Abstract

Background and Objective: Beauvericin (BEA), a cyclic hexadepsipeptide mycotoxin, is a potent inhibitor of the acyl-CoA: cholesterol acyltransferase enzyme 1 (ACAT1), involved in multiple tumor-correlated pathways. However, the binding mechanisms between BEA and ACAT1 were not elucidated.

Methods: BEA was purified from a mangrove entophytic Fusarium sp. KL11. Single-crystal X-ray diffraction was used to determine the structure of BEA. Wound healing assays of BEA against KB cell line and MDA-MB-231 cell line were evaluated. Inhibitory potency of BEA against ACAT1 was determined by ELISA assays. Molecular docking was carried out to illuminate the bonding mechanism between BEA and ACAT1.

Results: The structure of BEA was confirmed by X-ray diffraction, indicating a monoclinic crystal system with P21 space group (α = 90°, β = 92.2216(9)°, γ= 90°). BEA displayed migration-inhibitory activities against KB cells and MDA-MB-231 cells In Vitro. ELISA assays revealed that the protein expression level of ACAT1 in KB cells was significantly decreased after BEA treatment (P <0.05). Molecular docking demonstrated that BEA formed hydrogen bond with His425 and pi-pi staking with Tyr429 in ACAT1.

Conclusion: BEA sufficiently inhibited the proliferation and migration of KB cells and MDA-MB-231 cells by downregulating ACAT1 expression. In addition, BEA potentially possessed a strong binding affinity with ACAT1. BEA may serve as a potential lead compound for the development of a new ACAT1-targeted anticancer drug.

Keywords: Beauvericin, crystal structure, migration, ELISA, molecular docking, ACAT1.

Graphical Abstract

[1]
Yang, W.; Bai, Y.; Xiong, Y.; Zhang, J.; Chen, S.; Zheng, X.; Meng, X.; Li, L.; Wang, J.; Xu, C.; Yan, C.; Wang, L.; Chang, C.C.Y.; Chang, T.Y.; Zhang, T.; Zhou, P.; Song, B.L.; Liu, W.; Sun, S.C.; Liu, X.; Li, B.L.; Xu, C. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature, 2016, 531(7596), 651-655.
[http://dx.doi.org/10.1038/nature17412] [PMID: 26982734]
[2]
Abdelkreem, E.; Otsuka, H.; Sasai, H.; Aoyama, Y.; Hori, T.; Aal, M.A.E.; Mahmoud, S.; Fukao, T. Beta-Ketothiolase Deficiency: Resolving Challenges in Diagnosis. J. Inborn Errors Metab. Screen., 2016, 4, e150011.
[http://dx.doi.org/10.1177/2326409816636644]
[3]
Goudarzi, A. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci., 2019, 232, 116592.
[http://dx.doi.org/10.1016/j.lfs.2019.116592] [PMID: 31228515]
[4]
Faubert, B.; Boily, G.; Izreig, S.; Griss, T.; Samborska, B.; Dong, Z.; Dupuy, F.; Chambers, C.; Fuerth, B.J.; Viollet, B.; Mamer, O.A.; Avizonis, D.; DeBerardinis, R.J.; Siegel, P.M.; Jones, R.G. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab., 2013, 17(1), 113-124.
[http://dx.doi.org/10.1016/j.cmet.2012.12.001] [PMID: 23274086]
[5]
Attias-Geva, Z.; Bentov, I.; Fishman, A.; Werner, H.; Bruchim, I. Insulin-like growth factor-I receptor inhibition by specific tyrosine kinase inhibitor NVP-AEW541 in endometrioid and serous papillary endometrial cancer cell lines. Gynecol. Oncol., 2011, 121(2), 383-389.
[http://dx.doi.org/10.1016/j.ygyno.2011.01.008] [PMID: 21295335]
[6]
Gu, L.; Zhu, Y.; Lin, X.; Tan, X.; Lu, B.; Li, Y. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene, 2020, 39(11), 2437-2449.
[http://dx.doi.org/10.1038/s41388-020-1156-0] [PMID: 31974474]
[7]
Jiang, Y.; Sun, A.; Zhao, Y.; Ying, W.; Sun, H.; Yang, X.; Xing, B.; Sun, W.; Ren, L.; Hu, B.; Li, C.; Zhang, L.; Qin, G.; Zhang, M.; Chen, N.; Zhang, M.; Huang, Y.; Zhou, J.; Zhao, Y.; Liu, M.; Zhu, X.; Qiu, Y.; Sun, Y.; Huang, C.; Yan, M.; Wang, M.; Liu, W.; Tian, F.; Xu, H.; Zhou, J.; Wu, Z.; Shi, T.; Zhu, W.; Qin, J.; Xie, L.; Fan, J.; Qian, X.; He, F.; Zhu, Y.P.; Wang, Y.; Yang, D.; Liu, W.L.; Liu, Q.M.; Yang, X.M.; Zhen, B.; Wu, Z.Y.; Fan, J.; Sun, H.C.; Qian, J.Y.; Hong, T.; Shen, L.; Xing, B.C.; Yang, P.Y.; Shen, H.L.; Zhang, L.J.; Cheng, S.J.; Cai, J.Q.; Zhao, X.H.; Sun, Y.L.; Xiao, T.; Mao, Y.S.; Chen, X.M.; Wu, D.; Chen, L.; Dong, J.; Deng, H.T.; Tan, M.J.; Wu, Z.X.; Zhao, Q.C.; Shen, Z.Y.; Chen, X.G.; Gao, Y.H.; Sun, W.; Wang, T.; Liu, S.Q.; Lin, L.; Zi, J.; Lou, X.M.; Zeng, R.; Wu, Y.; Cai, S.J.; Jiang, B.; Chen, A.Q.; Li, Z.J.; Yang, F.Q.; Chen, X.L.; Sun, Y.N.; Wang, Q.L.; Zhang, Y.; Wang, G.S.; Chen, Z.C.; Qin, W.S.; Li, Z.S. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature, 2019, 567(7747), 257-261.
[http://dx.doi.org/10.1038/s41586-019-0987-8] [PMID: 30814741]
[8]
Li, J.; Gu, D.; Lee, S.S.; Song, B.; Bandyopadhyay, S.; Chen, S.; Konieczny, S.F.; Ratliff, T.L.; Liu, X.; Xie, J.; Cheng, J.X. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene, 2016, 35(50), 6378-6388.
[http://dx.doi.org/10.1038/onc.2016.168] [PMID: 27132508]
[9]
Shibuya, Y.; Chang, C.C.; Chang, T.Y. ACAT1/SOAT1 as a therapeutic target for Alzheimer’s disease. Future Med. Chem., 2015, 7(18), 2451-2467.
[http://dx.doi.org/10.4155/fmc.15.161] [PMID: 26669800]
[10]
Li, J.; Qu, X.; Tian, J.; Zhang, J.T.; Cheng, J.X. Cholesterol esterification inhibition and gemcitabine synergistically suppress pancreatic ductal adenocarcinoma proliferation. PLoS One, 2018, 13(2), e0193318.
[http://dx.doi.org/10.1371/journal.pone.0193318] [PMID: 29489864]
[11]
Antalis, C.J.; Uchida, A.; Buhman, K.K.; Siddiqui, R.A. Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clin. Exp. Metastasis, 2011, 28(8), 733-741.
[http://dx.doi.org/10.1007/s10585-011-9405-9] [PMID: 21744083]
[12]
Lee, S.S.Y.; Li, J.; Tai, J.N.; Ratliff, T.L.; Park, K.; Cheng, J.X. Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment. ACS Nano, 2015, 9(3), 2420-2432.
[http://dx.doi.org/10.1021/nn504025a] [PMID: 25662106]
[13]
Rüegger, A.; Kuhn, M.; Lichti, H.; Loosli, H.R.; Huguenin, R.; Quiquerez, C.; von Wartburg, A. Cyclosporin A, a Peptide Metabolite from Trichoderma polysporum (Link ex Pers.) Rifai, with a remarkable immunosuppressive activity. Helv. Chim. Acta, 1976, 59(4), 1075-1092.
[http://dx.doi.org/10.1002/hlca.19760590412] [PMID: 950308]
[14]
Jain, S.; Zain, J. Romidepsin in the treatment of cutaneous T-cell lymphoma. J. Blood Med., 2011, 2, 37-47.
[PMID: 22287862]
[15]
Aguilar-Zapata, D.; Petraitiene, R.; Petraitis, V. Echinocandins: The Expanding Antifungal Armamentarium. Clin. Infect. Dis., 2015, 61(Suppl. 6), S604-S611.
[http://dx.doi.org/10.1093/cid/civ814] [PMID: 26567277]
[16]
Hallock, Y.F.; Sowder, R.C., II; Pannell, L.K.; Hughes, C.B.; Johnson, D.G.; Gulakowski, R.; Cardellina, J.H., II; Boyd, M.R. Cycloviolins A-D, anti-HIV macrocyclic peptides from Leonia cymosa. J. Org. Chem., 2000, 65(1), 124-128.
[http://dx.doi.org/10.1021/jo990952r] [PMID: 10813905]
[17]
Borel, J.F.; Feurer, C.; Gubler, H.U.; Stähelin, H. Biological effects of cyclosporin A: a new antilymphocytic agent. 1976. Agents Actions, 1994, 43(3-4), 179-186.
[http://dx.doi.org/10.1007/BF01986686] [PMID: 7725970]
[18]
Tao, Y.W.; Lin, Y.C.; She, Z.G.; Lin, M.T.; Chen, P.X.; Zhang, J.Y. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anticancer. Agents Med. Chem., 2015, 15(2), 258-266.
[http://dx.doi.org/10.2174/1871520614666140825112255] [PMID: 25641103]
[19]
Ohshiro, T.; Rudel, L.L.; Ōmura, S.; Tomoda, H. Selectivity of microbial acyl-CoA: cholesterol acyltransferase inhibitors toward isozymes. J. Antibiot. (Tokyo), 2007, 60(1), 43-51.
[http://dx.doi.org/10.1038/ja.2007.6] [PMID: 17390588]
[20]
Tomoda, H.; Huang, X.H.; Cao, J.; Nishida, H.; Nagao, R.; Okuda, S.; Tanaka, H.; Omura, S.; Arai, H.; Inoue, K. Inhibition of acyl-CoA: cholesterol acyltransferase activity by cyclodepsipeptide antibiotics. J. Antibiot. (Tokyo), 1992, 45(10), 1626-1632.
[http://dx.doi.org/10.7164/antibiotics.45.1626] [PMID: 1473990]
[21]
Mallebrera, B.; Prosperini, A.; Font, G.; Ruiz, M.J. In vitro mechanisms of Beauvericin toxicity: A review. Food Chem. Toxicol., 2018, 111, 537-545.
[http://dx.doi.org/10.1016/j.fct.2017.11.019] [PMID: 29154952]
[22]
Lim, H.N.; Jang, J.P.; Shin, H.J.; Jang, J.H.; Ahn, J.S.; Jung, H.J. Cytotoxic activities and molecular mechanisms of the beauvericin and beauvericin G(1) microbial products against melanoma cells. Molecules, 2020, 25(8), 1974.
[http://dx.doi.org/10.3390/molecules25081974]
[23]
Yahagi, H.; Yahagi, T.; Furukawa, M.; Matsuzaki, K. Antiproliferative and antimigration activities of beauvericin isolated from isaria sp. on pancreatic cancer cells. Molecules, 2020, 25(19), 4586.
[http://dx.doi.org/10.3390/molecules25194586] [PMID: 33050002]
[24]
Ayyagari, V.N.; Wang, X.; Diaz-Sylvester, P.L.; Groesch, K.; Brard, L. Assessment of acyl-CoA cholesterol acyltransferase (ACAT-1) role in ovarian cancer progression-An in vitro study. PLoS One, 2020, 15(1), e0228024.
[http://dx.doi.org/10.1371/journal.pone.0228024] [PMID: 31978092]
[25]
Leblanc, Y.; Black, W.C.; Chan, C.C.; Charleson, S.; Delorme, D.; Denis, D.; Gauthier, J.Y.; Grimm, E.L.; Gordon, R.; Guay, D.; Hamel, P.; Kargman, S.; Lau, C.K.; Mancini, J.; Ouellet, M.; Percival, D.; Roy, P.; Skorey, K.; Tagari, P.; Vickers, P.; Wong, E.; Xu, L.; Prasit, P. Synthesis and biological evaluation of both enantiomers of L-761,000 as inhibitors of cyclooxygenase 1 and 2. Bioorg. Med. Chem. Lett., 1996, 6(6), 731-736.
[http://dx.doi.org/10.1016/0960-894X(96)00101-1]
[26]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009, 42, 339-341.
[http://dx.doi.org/10.1107/S0021889808042726]
[27]
Sheldrick, G.M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv., 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053273314026370] [PMID: 25537383]
[28]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem., 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218] [PMID: 25567568]
[29]
Zhang, J.Y.; Wu, H.Y.; Xia, X.K.; Liang, Y.J.; Yan, Y.Y.; She, Z.G.; Lin, Y.C.; Fu, L.W. Anthracenedione derivative 1403P-3 induces apoptosis in KB and KBv200 cells via reactive oxygen species-independent mitochondrial pathway and death receptor pathway. Cancer Biol. Ther., 2007, 6(9), 1413-1421.
[http://dx.doi.org/10.4161/cbt.6.9.4543] [PMID: 17786034]
[30]
Ehlers, J.P.; Worley, L.; Onken, M.D.; Harbour, J.W. DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. Clin. Cancer Res., 2005, 11(10), 3609-3613.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1941] [PMID: 15897555]
[31]
Pal, P.; Gandhi, H.; Giridhar, R.; Yadav, M.R. ACAT inhibitors: the search for novel cholesterol lowering agents. Mini Rev. Med. Chem., 2013, 13(8), 1195-1219.
[http://dx.doi.org/10.2174/1389557511313080007] [PMID: 23198718]
[32]
Chang, T.Y.; Li, B.L.; Chang, C.C.; Urano, Y. Acyl-coenzyme A:cholesterol acyltransferases. Am. J. Physiol. Endocrinol. Metab., 2009, 297(1), E1-E9.
[http://dx.doi.org/10.1152/ajpendo.90926.2008] [PMID: 19141679]
[33]
Lu, C.L.; Lin, H.I.; Chen, B.F.; Jow, G.M. Beauvericin-induced cell apoptosis through the mitogen-activated protein kinase pathway in human nonsmall cell lung cancer A549 cells. J. Toxicol. Sci., 2016, 41(3), 429-437.
[http://dx.doi.org/10.2131/jts.41.429] [PMID: 27193734]
[34]
Qian, H.; Zhao, X.; Yan, R.; Yao, X.; Gao, S.; Sun, X.; Du, X.; Yang, H.; Wong, C.C.L.; Yan, N. Structural basis for catalysis and substrate specificity of human ACAT1. Nature, 2020, 581(7808), 333-338.
[http://dx.doi.org/10.1038/s41586-020-2290-0] [PMID: 32433614]
[35]
Zabielska, J.; Sledzinski, T.; Stelmanska, E.; Acyl-Coenzyme, A.; Acyl-Coenzyme, A. Cholesterol Acyltransferase Inhibition in Cancer Treatment. Anticancer Res., 2019, 39(7), 3385-3394.
[http://dx.doi.org/10.21873/anticanres.13482] [PMID: 31262860]
[36]
Saraon, P.; Cretu, D.; Musrap, N.; Karagiannis, G.S.; Batruch, I.; Drabovich, A.P.; van der Kwast, T.; Mizokami, A.; Morrissey, C.; Jarvi, K.; Diamandis, E.P. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol. Cell. Proteomics, 2013, 12(6), 1589-1601.
[http://dx.doi.org/10.1074/mcp.M112.023887] [PMID: 23443136]
[37]
Martinez-Outschoorn, U.E.; Lin, Z.; Whitaker-Menezes, D.; Howell, A.; Sotgia, F.; Lisanti, M.P. Ketone body utilization drives tumor growth and metastasis. Cell Cycle, 2012, 11(21), 3964-3971.
[http://dx.doi.org/10.4161/cc.22137] [PMID: 23082722]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy