Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Pharmacological Basis of Breast Cancer Resistance to Therapies - An Overview

Author(s): Stefania Crucitta, Federico Cucchiara, Francesca Sciandra, Annalisa Cerbioni, Lucrezia Diodati, Concetta Rafaniello, Annalisa Capuano, Andrea Fontana, Stefano Fogli, Romano Danesi* and Marzia Del Re

Volume 22, Issue 4, 2022

Published on: 06 January, 2022

Page: [760 - 774] Pages: 15

DOI: 10.2174/1871520621666210804100547

Price: $65

Abstract

Breast Cancer (BC) is a molecular heterogeneous disease and patients with similar clinico-pathological characteristics often display different response to treatment. Cellular processes, including uncontrolled cell-cycle, constitutive activation of signalling pathways and alterations in DNA-repair mechanisms are the main altered features in breast cancer. These cellular processes play significant roles in the emergence of resistance to therapies. The introduction of target therapies and immunotherapy significantly improved the survival of breast cancer patients. The incorporation of novel biomarkers together with the introduction of new therapeutic options may help to overcome treatment resistance. Molecular profiling promises to help in refine personalized treatment decisions and catalyse the development of further strategies when resistances inevitably occurs. This review provides a summary of genetic and molecular aspects of resistance mechanisms to available treatments for BC patients, and its clinical implications.

Keywords: Breast cancer, target therapy, mechanisms of resistance, chemotherapy, immunotherapy, hormone receptors, human epidermal growth factor receptor 2, triple-negative breast cancer.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Hagemeister, F.B., Jr; Buzdar, A.U.; Luna, M.A.; Blumenschein, G.R. Causes of death in breast cancer: a clinicopathologic study. Cancer, 1980, 46(1), 162-167.
[http://dx.doi.org/10.1002/1097-0142(19800701)46:1<162:AID-CNCR2820460127>3.0.CO;2-B] [PMID: 7388758]
[4]
Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: a view of metastasis. J. Intern. Med., 2013, 274(2), 113-126.
[http://dx.doi.org/10.1111/joim.12084] [PMID: 23844915]
[5]
Gupta, G.P. Massagué, J. Cancer metastasis: building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[6]
Allison, K.H. Molecular pathology of breast cancer: what a pathologist needs to know. Am. J. Clin. Pathol., 2012, 138(6), 770-780.
[http://dx.doi.org/10.1309/AJCPIV9IQ1MRQMOO] [PMID: 23161709]
[7]
Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer, 2016, 16(4), 201-218.
[http://dx.doi.org/10.1038/nrc.2016.25] [PMID: 27009393]
[8]
Tevaarwerk, A.J.; Gray, R.J.; Schneider, B.P.; Smith, M.L.; Wagner, L.I.; Fetting, J.H.; Davidson, N.; Goldstein, L.J.; Miller, K.D.; Sparano, J.A. Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years. Cancer, 2013, 119(6), 1140-1148.
[http://dx.doi.org/10.1002/cncr.27819] [PMID: 23065954]
[9]
Tendl, K.A.; Bago-Horvath, Z. Molecular profiling in breast cancer-ready for clinical routine? Mag. Eur. Med. Oncol., 2020, 13, 445-449.
[http://dx.doi.org/10.1007/s12254-020-00578-0]
[10]
Rinaldi, J.; Sokol, E.S.; Hartmaier, R.J.; Trabucco, S.E.; Frampton, G.M.; Goldberg, M.E.; Albacker, L.A.; Daemen, A.; Manning, G. The genomic landscape of metastatic breast cancer: insights from 11,000 tumors. PLoS One, 2020, 15(5),e0231999.
[http://dx.doi.org/10.1371/journal.pone.0231999] [PMID: 32374727]
[11]
Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; Gräf, S.; Ha, G.; Haffari, G.; Bashashati, A.; Russell, R.; McKinney, S.; Langerød, A.; Green, A.; Provenzano, E.; Wishart, G.; Pinder, S.; Watson, P.; Markowetz, F.; Murphy, L.; Ellis, I.; Purushotham, A.; Børresen-Dale, A.L.; Brenton, J.D.; Tavaré, S.; Caldas, C.; Aparicio, S.; Aparicio, S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403), 346-352.
[http://dx.doi.org/10.1038/nature10983] [PMID: 22522925]
[12]
Meisel, J.L.; Venur, V.A.; Gnant, M.; Carey, L. evolution of targeted therapy in breast cancer: where precision medicine began. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38, 78-86.
[http://dx.doi.org/10.1200/EDBK_201037] [PMID: 30231395]
[13]
Abubakar, M.; Figueroa, J.; Ali, H.R.; Blows, F.; Lissowska, J.; Caldas, C.; Easton, D.F.; Sherman, M.E.; Garcia-Closas, M.; Dowsett, M.; Pharoah, P.D. Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer. Mod. Pathol., 2019, 32(9), 1244-1256.
[http://dx.doi.org/10.1038/s41379-019-0270-4] [PMID: 30976105]
[14]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[15]
Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[16]
Rozeboom, B.; Dey, N.; De, P.ER. + metastatic breast cancer: past, present, and a prescription for an apoptosis-targeted future. Am. J. Cancer Res., 2019, 9(12), 2821-2831.
[PMID: 31911865]
[17]
Smith, I.; Procter, M.; Gelber, R.D.; Guillaume, S.; Feyereislova, A.; Dowsett, M.; Goldhirsch, A.; Untch, M.; Mariani, G.; Baselga, J.; Kaufmann, M.; Cameron, D.; Bell, R.; Bergh, J.; Coleman, R.; Wardley, A.; Harbeck, N.; Lopez, R.I.; Mallmann, P.; Gelmon, K.; Wilcken, N.; Wist, E.; Sánchez Rovira, P.; Piccart-Gebhart, M.J. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet, 2007, 369(9555), 29-36.
[http://dx.doi.org/10.1016/S0140-6736(07)60028-2] [PMID: 17208639]
[18]
Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E., Jr; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; Swain, S.M.; Pisansky, T.M.; Fehrenbacher, L.; Kutteh, L.A.; Vogel, V.G.; Visscher, D.W.; Yothers, G.; Jenkins, R.B.; Brown, A.M.; Dakhil, S.R.; Mamounas, E.P.; Lingle, W.L.; Klein, P.M.; Ingle, J.N.; Wolmark, N. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1673-1684.
[http://dx.doi.org/10.1056/NEJMoa052122] [PMID: 16236738]
[19]
Swain, S.M.; Baselga, J.; Kim, S.B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.M.; Schneeweiss, A.; Heeson, S.; Clark, E.; Ross, G.; Benyunes, M.C.; Cortés, J.; Group, C.S. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med., 2015, 372(8), 724-734.
[http://dx.doi.org/10.1056/NEJMoa1413513] [PMID: 25693012]
[20]
Xuhong, J.C.; Qi, X.W.; Zhang, Y.; Jiang, J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am. J. Cancer Res., 2019, 9(10), 2103-2119.
[PMID: 31720077]
[21]
Collignon, J.; Lousberg, L.; Schroeder, H.; Jerusalem, G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer (Dove Med. Press), 2016, 8, 93-107.
[PMID: 27284266]
[22]
Lee, J.M.; Ledermann, J.A.; Kohn, E.C. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann. Oncol., 2014, 25(1), 32-40.
[http://dx.doi.org/10.1093/annonc/mdt384] [PMID: 24225019]
[23]
Gonzalez-Angulo, A.M.; Morales-Vasquez, F.; Hortobagyi, G.N. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol., 2007, 608, 1-22.
[http://dx.doi.org/10.1007/978-0-387-74039-3_1] [PMID: 17993229]
[24]
Malmgren, J.; Hurlbert, M.; Atwood, M.; Kaplan, H.G. Examination of a paradox: recurrent metastatic breast cancer incidence decline without improved distant disease survival: 1990-2011. Breast Cancer Res. Treat., 2019, 174(2), 505-514.
[http://dx.doi.org/10.1007/s10549-018-05090-y] [PMID: 30560462]
[25]
Higginson, J. Multifactorial carcinogenesis: implications for regulatory practice. Environ. Health Perspect., 1983, 50, 23-26.
[PMID: 6873016]
[26]
Hu, Z.; Li, Z.; Ma, Z.; Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet., 2020, 52(7), 701-708.
[http://dx.doi.org/10.1038/s41588-020-0628-z] [PMID: 32424352]
[27]
Schubert, M.; Klinger, B.; Klünemann, M.; Sieber, A.; Uhlitz, F.; Sauer, S.; Garnett, M.J.; Blüthgen, N.; Saez-Rodriguez, J. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun., 2018, 9(1), 20.
[http://dx.doi.org/10.1038/s41467-017-02391-6] [PMID: 29295995]
[28]
Rugo, H.S.; Rumble, R.B.; Macrae, E.; Barton, D.L.; Connolly, H.K.; Dickler, M.N.; Fallowfield, L.; Fowble, B.; Ingle, J.N.; Jahanzeb, M.; Johnston, S.R.; Korde, L.A.; Khatcheressian, J.L.; Mehta, R.S.; Muss, H.B.; Burstein, H.J. Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology Guideline. J. Clin. Oncol., 2016, 34(25), 3069-3103.
[http://dx.doi.org/10.1200/JCO.2016.67.1487] [PMID: 27217461]
[29]
Fan, W.; Chang, J.; Fu, P. Endocrine therapy resistance in breast cancer: current status, possible mechanisms and overcoming strategies. Future Med. Chem., 2015, 7(12), 1511-1519.
[http://dx.doi.org/10.4155/fmc.15.93] [PMID: 26306654]
[30]
Schiavon, G.; Hrebien, S.; Garcia-Murillas, I.; Cutts, R.J.; Pearson, A.; Tarazona, N.; Fenwick, K.; Kozarewa, I.; Lopez-Knowles, E.; Ribas, R.; Nerurkar, A.; Osin, P.; Chandarlapaty, S.; Martin, L.A.; Dowsett, M.; Smith, I.E.; Turner, N.C. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med., 2015, 7(313),313ra182.
[http://dx.doi.org/10.1126/scitranslmed.aac7551] [PMID: 26560360]
[31]
Jeselsohn, R.; Yelensky, R.; Buchwalter, G.; Frampton, G.; Meric-Bernstam, F.; Gonzalez-Angulo, A.M.; Ferrer-Lozano, J.; Perez-Fidalgo, J.A.; Cristofanilli, M.; Gómez, H.; Arteaga, C.L.; Giltnane, J.; Balko, J.M.; Cronin, M.T.; Jarosz, M.; Sun, J.; Hawryluk, M.; Lipson, D.; Otto, G.; Ross, J.S.; Dvir, A.; Soussan-Gutman, L.; Wolf, I.; Rubinek, T.; Gilmore, L.; Schnitt, S.; Come, S.E.; Pusztai, L.; Stephens, P.; Brown, M.; Miller, V.A. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res., 2014, 20(7), 1757-1767.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2332] [PMID: 24398047]
[32]
Toy, W.; Shen, Y.; Won, H.; Green, B.; Sakr, R.A.; Will, M.; Li, Z.; Gala, K.; Fanning, S.; King, T.A.; Hudis, C.; Chen, D.; Taran, T.; Hortobagyi, G.; Greene, G.; Berger, M.; Baselga, J.; Chandarlapaty, S. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet., 2013, 45(12), 1439-1445.
[http://dx.doi.org/10.1038/ng.2822] [PMID: 24185512]
[33]
Bidard, F.C.; Callens, C.; Dalenc, F.; Pistilli, B.; Rouge, T.D.L.M.; Clatot, F.; D’hondt, V.; Teixeira, L.; Vegas, H.; Everhard, S.; Lemonnier, J.; Bieche, I.; Pradines, A.; Paitel, J.F.; Spaeth, D.; Moullet, I.; Pierga, J-Y.; Berger, F.; Hardy-Bessard, A-C.; Bachelot, T. Prognostic impact of ESR1 mutations in ER+ HER2- MBC patients prior treated with first line AI and palbociclib: an exploratory analysis of the PADA-1 trial. J. Clin. Oncol., 2020, 38(15)(Suppl.), 1010-1010.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.1010]
[34]
Butt, A.J.; McNeil, C.M.; Musgrove, E.A.; Sutherland, R.L. Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr. Relat. Cancer, 2005, 12(Suppl. 1), S47-S59.
[http://dx.doi.org/10.1677/erc.1.00993] [PMID: 16113099]
[35]
Span, P.N.; Tjan-Heijnen, V.C.; Manders, P.; Beex, L.V.; Sweep, C.G. Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene, 2003, 22(31), 4898-4904.
[http://dx.doi.org/10.1038/sj.onc.1206818] [PMID: 12894232]
[36]
Fox, E.M.; Arteaga, C.L.; Miller, T.W. Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer. Front. Oncol., 2012, 2, 145.
[http://dx.doi.org/10.3389/fonc.2012.00145] [PMID: 23087906]
[37]
Yip, C.K.; Murata, K.; Walz, T.; Sabatini, D.M.; Kang, S.A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell, 2010, 38(5), 768-774.
[http://dx.doi.org/10.1016/j.molcel.2010.05.017] [PMID: 20542007]
[38]
Katso, R.; Okkenhaug, K.; Ahmadi, K.; White, S.; Timms, J.; Waterfield, M.D. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol., 2001, 17, 615-675.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.615] [PMID: 11687500]
[39]
Yardley, D.A.; Noguchi, S.; Pritchard, K.I.; Burris, H.A., III; Baselga, J.; Gnant, M.; Hortobagyi, G.N.; Campone, M.; Pistilli, B.; Piccart, M.; Melichar, B.; Petrakova, K.; Arena, F.P.; Erdkamp, F.; Harb, W.A.; Feng, W.; Cahana, A.; Taran, T.; Lebwohl, D.; Rugo, H.S. Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv. Ther., 2013, 30(10), 870-884.
[http://dx.doi.org/10.1007/s12325-013-0060-1] [PMID: 24158787]
[40]
Miller, T.W.; Hennessy, B.T.; González-Angulo, A.M.; Fox, E.M.; Mills, G.B.; Chen, H.; Higham, C.; García-Echeverría, C.; Shyr, Y.; Arteaga, C.L. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J. Clin. Invest., 2010, 120(7), 2406-2413.
[http://dx.doi.org/10.1172/JCI41680] [PMID: 20530877]
[41]
Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., III; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; Beck, J.T.; Ito, Y.; Yardley, D.; Deleu, I.; Perez, A.; Bachelot, T.; Vittori, L.; Xu, Z.; Mukhopadhyay, P.; Lebwohl, D.; Hortobagyi, G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med., 2012, 366(6), 520-529.
[http://dx.doi.org/10.1056/NEJMoa1109653] [PMID: 22149876]
[42]
Bachelot, T.; Bourgier, C.; Cropet, C.; Ray-Coquard, I.; Ferrero, J.M.; Freyer, G.; Abadie-Lacourtoisie, S.; Eymard, J.C.; Debled, M.; Spaëth, D.; Legouffe, E.; Allouache, D.; El Kouri, C.; Pujade-Lauraine, E. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J. Clin. Oncol., 2012, 30(22), 2718-2724.
[http://dx.doi.org/10.1200/JCO.2011.39.0708] [PMID: 22565002]
[43]
Piccart, M.; Hortobagyi, G.N.; Campone, M.; Pritchard, K.I.; Lebrun, F.; Ito, Y.; Noguchi, S.; Perez, A.; Rugo, H.S.; Deleu, I.; Burris, H.A., III; Provencher, L.; Neven, P.; Gnant, M.; Shtivelband, M.; Wu, C.; Fan, J.; Feng, W.; Taran, T.; Baselga, J. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2. Ann. Oncol., 2014, 25(12), 2357-2362.
[http://dx.doi.org/10.1093/annonc/mdu456] [PMID: 25231953]
[44]
Serra, V.; Markman, B.; Scaltriti, M.; Eichhorn, P.J.; Valero, V.; Guzman, M.; Botero, M.L.; Llonch, E.; Atzori, F.; Di Cosimo, S.; Maira, M.; Garcia-Echeverria, C.; Parra, J.L.; Arribas, J.; Baselga, J. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res., 2008, 68(19), 8022-8030.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1385] [PMID: 18829560]
[45]
Gonzalez-Angulo, A.M.; Blumenschein, G.R., Jr Defining biomarkers to predict sensitivity to PI3K/Akt/mTOR pathway inhibitors in breast cancer. Cancer Treat. Rev., 2013, 39(4), 313-320.
[http://dx.doi.org/10.1016/j.ctrv.2012.11.002] [PMID: 23218708]
[46]
Hortobagyi, G.N.; Chen, D.; Piccart, M.; Rugo, H.S.; Burris, H.A., III; Pritchard, K.I.; Campone, M.; Noguchi, S.; Perez, A.T.; Deleu, I.; Shtivelband, M.; Masuda, N.; Dakhil, S.; Anderson, I.; Robinson, D.M.; He, W.; Garg, A.; McDonald, E.R., III; Bitter, H.; Huang, A.; Taran, T.; Bachelot, T.; Lebrun, F.; Lebwohl, D.; Baselga, J. Correlative analysis of genetic alterations and everolimus benefit in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from BOLERO-2. J. Clin. Oncol., 2016, 34(5), 419-426.
[http://dx.doi.org/10.1200/JCO.2014.60.1971] [PMID: 26503204]
[47]
Treilleux, I.; Arnedos, M.; Cropet, C.; Wang, Q.; Ferrero, J.M.; Abadie-Lacourtoisie, S.; Levy, C.; Legouffe, E.; Lortholary, A.; Pujade-Lauraine, E.; Bourcier, A.V.; Eymard, J.C.; Spaeth, D.; Bachelot, T. Translational studies within the TAMRAD randomized GINECO trial: evidence for mTORC1 activation marker as a predictive factor for everolimus efficacy in advanced breast cancer. Ann. Oncol., 2015, 26(1), 120-125.
[http://dx.doi.org/10.1093/annonc/mdu497] [PMID: 25361980]
[48]
Burke, J.E.; Perisic, O.; Masson, G.R.; Vadas, O.; Williams, R.L. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. USA, 2012, 109(38), 15259-15264.
[http://dx.doi.org/10.1073/pnas.1205508109] [PMID: 22949682]
[49]
Moynahan, M.E.; Chen, D.; He, W.; Sung, P.; Samoila, A.; You, D.; Bhatt, T.; Patel, P.; Ringeisen, F.; Hortobagyi, G.N.; Baselga, J.; Chandarlapaty, S. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR+, HER2- advanced breast cancer: results from BOLERO-2. Br. J. Cancer, 2017, 116(6), 726-730.
[http://dx.doi.org/10.1038/bjc.2017.25] [PMID: 28183140]
[50]
Chandarlapaty, S.; Chen, D.; He, W.; Sung, P.; Samoila, A.; You, D.; Bhatt, T.; Patel, P.; Voi, M.; Gnant, M.; Hortobagyi, G.; Baselga, J.; Moynahan, M.E. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol., 2016, 2(10), 1310-1315.
[http://dx.doi.org/10.1001/jamaoncol.2016.1279] [PMID: 27532364]
[51]
Omarini, C.; Filieri, M.E.; Bettelli, S.; Manfredini, S.; Kaleci, S.; Caprera, C.; Nasso, C.; Barbolini, M.; Guaitoli, G.; Moscetti, L.; Maiorana, A.; Conte, P.F.; Cascinu, S.; Piacentini, F. Mutational profile of metastatic breast cancer tissue in patients treated with exemestane plus everolimus. BioMed Res. Int., 2018, 2018,3756981.
[http://dx.doi.org/10.1155/2018/3756981] [PMID: 30140695]
[52]
Van den Bossche, V.; Jadot, G.; Grisay, G.; Pierrard, J.; Honoré, N.; Petit, B.; Augusto, D.; Sauvage, S.; Laes, J.F.; Seront, E. c-MET as a potential resistance mechanism to everolimus in breast cancer: from a case report to patient cohort analysis. Target. Oncol., 2020, 15(1), 139-146.
[http://dx.doi.org/10.1007/s11523-020-00704-2] [PMID: 32020516]
[53]
Engelman, J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer, 2009, 9(8), 550-562.
[http://dx.doi.org/10.1038/nrc2664] [PMID: 19629070]
[54]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[55]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[56]
Hanker, A.B.; Kaklamani, V.; Arteaga, C.L. Challenges for the clinical development of pi3k inhibitors: strategies to improve their impact in solid tumors. Cancer Discov., 2019, 9(4), 482-491.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1175] [PMID: 30867161]
[57]
Vasan, N.; Toska, E.; Scaltriti, M. Overview of the relevance of PI3K pathway in HR-positive breast cancer. Ann. Oncol., 2019, 30(Suppl. 10), x3-x11.
[http://dx.doi.org/10.1093/annonc/mdz281]
[58]
Fritsch, C.; Huang, A.; Chatenay-Rivauday, C.; Schnell, C.; Reddy, A.; Liu, M.; Kauffmann, A.; Guthy, D.; Erdmann, D.; De Pover, A.; Furet, P.; Gao, H.; Ferretti, S.; Wang, Y.; Trappe, J.; Brachmann, S.M.; Maira, S.M.; Wilson, C.; Boehm, M.; Garcia-Echeverria, C.; Chene, P.; Wiesmann, M.; Cozens, R.; Lehar, J.; Schlegel, R.; Caravatti, G.; Hofmann, F.; Sellers, W.R. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol. Cancer Ther., 2014, 13(5), 1117-1129.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0865] [PMID: 24608574]
[59]
Juric, D.; Rodon, J.; Tabernero, J.; Janku, F.; Burris, H.A.; Schellens, J.H.M.; Middleton, M.R.; Berlin, J.; Schuler, M.; Gil-Martin, M.; Rugo, H.S.; Seggewiss-Bernhardt, R.; Huang, A.; Bootle, D.; Demanse, D.; Blumenstein, L.; Coughlin, C.; Quadt, C.; Baselga, J. Phosphatidylinositol 3-kinase α-selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: results from the first-in-human study. J. Clin. Oncol., 2018, 36(13), 1291-1299.
[http://dx.doi.org/10.1200/JCO.2017.72.7107] [PMID: 29401002]
[60]
André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940.
[http://dx.doi.org/10.1056/NEJMoa1813904] [PMID: 31091374]
[61]
Juric, D.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.; Iwata, H.; Conte, P.; Mayer, I.; Kaufman, B.; Yamashita, T.; Lu, Y.-S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.-S.; Mills, D.; Wilke, C.; Sellami, D.; Andre, F. . Abstract GS3-08: Alpelisib + fulvestrant for advanced breast cancer: subgroup analyses from the phase III SOLAR-1 trial. Cancer Res., 2019, 79(4 Supplement), GS3-08-GS3-08.
[62]
Juric, D.; Castel, P.; Griffith, M.; Griffith, O.L.; Won, H.H.; Ellis, H.; Ebbesen, S.H.; Ainscough, B.J.; Ramu, A.; Iyer, G.; Shah, R.H.; Huynh, T.; Mino-Kenudson, M.; Sgroi, D.; Isakoff, S.; Thabet, A.; Elamine, L.; Solit, D.B.; Lowe, S.W.; Quadt, C.; Peters, M.; Derti, A.; Schegel, R.; Huang, A.; Mardis, E.R.; Berger, M.F.; Baselga, J.; Scaltriti, M. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature, 2015, 518(7538), 240-244.
[http://dx.doi.org/10.1038/nature13948] [PMID: 25409150]
[63]
Jia, S.; Liu, Z.; Zhang, S.; Liu, P.; Zhang, L.; Lee, S.H.; Zhang, J.; Signoretti, S.; Loda, M.; Roberts, T.M.; Zhao, J.J. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature, 2008, 454(7205), 776-779.
[http://dx.doi.org/10.1038/nature07091] [PMID: 18594509]
[64]
Wee, S.; Wiederschain, D.; Maira, S.M.; Loo, A.; Miller, C.; deBeaumont, R.; Stegmeier, F.; Yao, Y.M.; Lengauer, C. PTEN-deficient cancers depend on PIK3CB. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13057-13062.
[http://dx.doi.org/10.1073/pnas.0802655105] [PMID: 18755892]
[65]
Schmid, P.; Pinder, S.E.; Wheatley, D.; Macaskill, J.; Zammit, C.; Hu, J.; Price, R.; Bundred, N.; Hadad, S.; Shia, A.; Sarker, S.J.; Lim, L.; Gazinska, P.; Woodman, N.; Korbie, D.; Trau, M.; Mainwaring, P.; Gendreau, S.; Lackner, M.R.; Derynck, M.; Wilson, T.R.; Butler, H.; Earl, G.; Parker, P.; Purushotham, A.; Thompson, A. Phase II randomized preoperative window-of-opportunity study of the PI3K inhibitor pictilisib plus anastrozole compared with anastrozole alone in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol., 2016, 34(17), 1987-1994.
[http://dx.doi.org/10.1200/JCO.2015.63.9179] [PMID: 26976426]
[66]
Schmid, P.; Pinder, S.; Wheatley, D.; Zummit, C.; Macaskill, E.; Hu, J.; Price, R.; Bundred, N.; Hadad, S.; Shia, A.; Sarker, S.-J.; Lim, L.; Mousa, K.; O'Brien, C.; Wilson, T.; Lackner, M.; Gendreau, S.; Gazinska, P.; Korbie, D.; Trau, M.; Mainwaring, P.; Thompson, A.; Purushotham, A. Abstract P2-08-02: Interaction of PIK3CA mutation subclasses with response to preoperative treatment with the PI3K inhibitor pictilisib in patients with estrogen receptor-positive breast cancer. Cancer Res.,, 2019, 79(4 Supplement), P2-08-02-P2-08-02.
[67]
Mayer, I.A.; Abramson, V.G.; Formisano, L.; Balko, J.M.; Estrada, M.V.; Sanders, M.E.; Juric, D.; Solit, D.; Berger, M.F.; Won, H.H.; Li, Y.; Cantley, L.C.; Winer, E.; Arteaga, C.L. A Phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2- metastatic breast cancer. Clin. Cancer Res., 2017, 23(1), 26-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0134] [PMID: 27126994]
[68]
Mosele, F.; Stefanovska, B.; Lusque, A.; Tran Dien, A.; Garberis, I.; Droin, N.; Le Tourneau, C.; Sablin, M.P.; Lacroix, L.; Enrico, D.; Miran, I.; Jovelet, C.; Bièche, I.; Soria, J.C.; Bertucci, F.; Bonnefoi, H.; Campone, M.; Dalenc, F.; Bachelot, T.; Jacquet, A.; Jimenez, M.; André, F. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann. Oncol., 2020, 31(3), 377-386.
[http://dx.doi.org/10.1016/j.annonc.2019.11.006] [PMID: 32067679]
[69]
Avivar-Valderas, A.; McEwen, R.; Taheri-Ghahfarokhi, A.; Carnevalli, L.S.; Hardaker, E.L.; Maresca, M.; Hudson, K.; Harrington, E.A.; Cruzalegui, F. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer. Oncotarget, 2018, 9(30), 21444-21458.
[http://dx.doi.org/10.18632/oncotarget.25118] [PMID: 29765551]
[70]
Herrera-Abreu, M.T.; Palafox, M.; Asghar, U.; Rivas, M.A.; Cutts, R.J.; Garcia-Murillas, I.; Pearson, A.; Guzman, M.; Rodriguez, O.; Grueso, J.; Bellet, M.; Cortés, J.; Elliott, R.; Pancholi, S.; Baselga, J.; Dowsett, M.; Martin, L.A.; Turner, N.C.; Serra, V. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res., 2016, 76(8), 2301-2313.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0728] [PMID: 27020857]
[72]
Hoffmann, J.; Bohlmann, R.; Heinrich, N.; Hofmeister, H.; Kroll, J.; Künzer, H.; Lichtner, R.B.; Nishino, Y.; Parczyk, K.; Sauer, G.; Gieschen, H.; Ulbrich, H.F.; Schneider, M.R. Characterization of new estrogen receptor destabilizing compounds: effects on estrogen-sensitive and tamoxifen-resistant breast cancer. J. Natl. Cancer Inst., 2004, 96(3), 210-218.
[http://dx.doi.org/10.1093/jnci/djh022] [PMID: 14759988]
[73]
Osborne, C.K.; Schiff, R. Mechanisms of endocrine resistance in breast cancer. Annu. Rev. Med., 2011, 62, 233-247.
[http://dx.doi.org/10.1146/annurev-med-070909-182917] [PMID: 20887199]
[74]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[75]
O’Leary, B.; Finn, R.S.; Turner, N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol., 2016, 13(7), 417-430.
[http://dx.doi.org/10.1038/nrclinonc.2016.26] [PMID: 27030077]
[76]
Finn, R.S.; Crown, J.P.; Lang, I.; Boer, K.; Bondarenko, I.M.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; Shparyk, Y.; Thummala, A.R.; Voytko, N.L.; Fowst, C.; Huang, X.; Kim, S.T.; Randolph, S.; Slamon, D.J. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol., 2015, 16(1), 25-35.
[http://dx.doi.org/10.1016/S1470-2045(14)71159-3] [PMID: 25524798]
[77]
Rascon, K.; Flajc, G.; De Angelis, C.; Liu, X.; Trivedi, M.V.; Ekinci, E. Ribociclib in HR+/HER2- advanced or metastatic breast cancer patients. Ann. Pharmacother., 2019, 53(5), 501-509.
[http://dx.doi.org/10.1177/1060028018817904] [PMID: 30522347]
[78]
Grischke, E.M.; Neven, P.; Lin, Y.; Kaufman, P.A.; Sledge, G.W. Abemaciclib with fulvestrant in patients with HR+, HER2- Advanced Breast Cance (ABC) that exhibited primary or secondary resistance to prior Endocrin Therapy (ET). Ann. Oncol., 2018, 29, viii106.
[79]
Condorelli, R.; Spring, L.; O’Shaughnessy, J.; Lacroix, L.; Bailleux, C.; Scott, V.; Dubois, J.; Nagy, R.J.; Lanman, R.B.; Iafrate, A.J.; Andre, F.; Bardia, A. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann. Oncol., 2018, 29(3), 640-645.
[http://dx.doi.org/10.1093/annonc/mdx784] [PMID: 29236940]
[80]
Malorni, L.; Piazza, S.; Ciani, Y.; Guarducci, C.; Bonechi, M.; Biagioni, C.; Hart, C.D.; Verardo, R.; Di Leo, A.; Migliaccio, I. A gene expression signature of retinoblastoma loss-of-function is a predictive biomarker of resistance to palbociclib in breast cancer cell lines and is prognostic in patients with ER positive early breast cancer. Oncotarget, 2016, 7(42), 68012-68022.
[http://dx.doi.org/10.18632/oncotarget.12010] [PMID: 27634906]
[81]
Turner, N.C.; O’Leary, B.; Cutts, R.; Liu, Y.; Hrebien, S.; Huang, X.; Beaney, M.; Fenwick, K.; Andre, F.; Loibl, S.; Loi, S.; Garcia-Murillas, I.; Bartlett, C.H.; Cristofanilli, M. Genetic landscape of resistance to CDK4/6 inhibition in circulating tumor DNA (ctDNA) analysis of the PALOMA3 trial of palbociclib and fulvestrant versus placebo and fulvestrant. J. Clin. Oncol., 2018, 36(15)(Suppl.), 1001-1001.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.1001]
[82]
O’Leary, B.; Cutts, R.J.; Liu, Y.; Hrebien, S.; Huang, X.; Fenwick, K.; André, F.; Loibl, S.; Loi, S.; Garcia-Murillas, I.; Cristofanilli, M.; Huang Bartlett, C.; Turner, N.C. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov., 2018, 8(11), 1390-1403.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0264] [PMID: 30206110]
[83]
Wander, S.A.; Cohen, O.; Gong, X.; Johnson, G.N.; Buendia-Buendia, J.E.; Lloyd, M.R.; Kim, D.; Luo, F.; Mao, P.; Helvie, K.; Kowalski, K.J.; Nayar, U.; Waks, A.G.; Parsons, S.H.; Martinez, R.; Litchfield, L.M.; Ye, X.S.; Yu, C.; Jansen, V.M.; Stille, J.R.; Smith, P.S.; Oakley, G.J.; Chu, Q.S.; Batist, G.; Hughes, M.E.; Kremer, J.D.; Garraway, L.A.; Winer, E.P.; Tolaney, S.M.; Lin, N.U.; Buchanan, S.G.; Wagle, N. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov., 2020, 10(8), 1174-1193.
[http://dx.doi.org/10.1158/2159-8290.CD-19-1390] [PMID: 32404308]
[84]
Pancholi, S.; Ribas, R.; Simigdala, N.; Schuster, E.; Nikitorowicz-Buniak, J.; Ressa, A.; Gao, Q.; Leal, M.F.; Bhamra, A.; Thornhill, A.; Morisset, L.; Montaudon, E.; Sourd, L.; Fitzpatrick, M.; Altelaar, M.; Johnston, S.R.; Marangoni, E.; Dowsett, M.; Martin, L.A. Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities. Oncogene, 2020, 39(25), 4781-4797.
[http://dx.doi.org/10.1038/s41388-020-1284-6] [PMID: 32307447]
[85]
Yang, C.; Li, Z.; Bhatt, T.; Dickler, M.; Giri, D.; Scaltriti, M.; Baselga, J.; Rosen, N.; Chandarlapaty, S. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene, 2017, 36(16), 2255-2264.
[http://dx.doi.org/10.1038/onc.2016.379] [PMID: 27748766]
[86]
Iida, M.; Toyosawa, D.; Nakamura, M.; Tsuboi, K.; Tokuda, E.; Niwa, T.; Ishida, T.; Hayashi, S.I. Decreased ER dependency after acquired resistance to CDK4/6 inhibitors. Breast Cancer, 2020, 27(5), 963-972.
[http://dx.doi.org/10.1007/s12282-020-01090-3] [PMID: 32297248]
[87]
Caligiuri, I.; Toffoli, G.; Giordano, A.; Rizzolio, F. pRb controls estrogen receptor alpha protein stability and activity. Oncotarget, 2013, 4(6), 875-883.
[http://dx.doi.org/10.18632/oncotarget.1036] [PMID: 23900261]
[88]
Bertoli, C.; Skotheim, J.M.; de Bruin, R.A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol., 2013, 14(8), 518-528.
[http://dx.doi.org/10.1038/nrm3629] [PMID: 23877564]
[89]
Donjerkovic, D.; Scott, D.W. Regulation of the G1 phase of the mammalian cell cycle. Cell Res., 2000, 10(1), 1-16.
[http://dx.doi.org/10.1038/sj.cr.7290031] [PMID: 10765979]
[90]
Dean, J.L.; Thangavel, C.; McClendon, A.K.; Reed, C.A.; Knudsen, E.S. Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene, 2010, 29(28), 4018-4032.
[http://dx.doi.org/10.1038/onc.2010.154] [PMID: 20473330]
[91]
Turner, N.C.; Liu, Y.; Zhu, Z.; Loi, S.; Colleoni, M.; Loibl, S.; DeMichele, A.; Harbeck, N.; André, F.; Bayar, M.A.; Michiels, S.; Zhang, Z.; Giorgetti, C.; Arnedos, M.; Huang Bartlett, C.; Cristofanilli, M. Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor-positive metastatic breast cancer. J. Clin. Oncol., 2019, 37(14), 1169-1178.
[http://dx.doi.org/10.1200/JCO.18.00925] [PMID: 30807234]
[92]
Pandey, K.; An, H.J.; Kim, S.K.; Lee, S.A.; Kim, S.; Lim, S.M.; Kim, G.M.; Sohn, J.; Moon, Y.W. Molecular mechanisms of resistance to CDK4/6 inhibitors in breast cancer: a review. Int. J. Cancer, 2019, 145(5), 1179-1188.
[http://dx.doi.org/10.1002/ijc.32020] [PMID: 30478914]
[93]
Del Re, M.; Bertolini, I.; Crucitta, S.; Fontanelli, L.; Rofi, E.; De Angelis, C.; Diodati, L.; Cavallero, D.; Gianfilippo, G.; Salvadori, B.; Fogli, S.; Falcone, A.; Scatena, C.; Naccarato, A.G.; Roncella, M.; Ghilli, M.; Morganti, R.; Fontana, A.; Danesi, R. Overexpression of TK1 and CDK9 in plasma-derived exosomes is associated with clinical resistance to CDK4/6 inhibitors in metastatic breast cancer patients. Breast Cancer Res. Treat., 2019, 178(1), 57-62.
[http://dx.doi.org/10.1007/s10549-019-05365-y] [PMID: 31346846]
[94]
Li, Z.; Razavi, P.; Li, Q.; Toy, W.; Liu, B.; Ping, C.; Hsieh, W.; Sanchez-Vega, F.; Brown, D.N.; Da Cruz Paula, A.F.; Morris, L.; Selenica, P.; Eichenberger, E.; Shen, R.; Schultz, N.; Rosen, N.; Scaltriti, M.; Brogi, E.; Baselga, J.; Reis-Filho, J.S.; Chandarlapaty, S. Loss of the FAT1 Tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell, 2018, 34(6), 893-905.
[http://dx.doi.org/10.1016/j.ccell.2018.11.006] [PMID: 30537512]
[95]
Formisano, L.; Lu, Y.; Servetto, A.; Hanker, A.B.; Jansen, V.M.; Bauer, J.A.; Sudhan, D.R.; Guerrero-Zotano, A.L.; Croessmann, S.; Guo, Y.; Ericsson, P.G.; Lee, K.M.; Nixon, M.J.; Schwarz, L.J.; Sanders, M.E.; Dugger, T.C.; Cruz, M.R.; Behdad, A.; Cristofanilli, M.; Bardia, A.; O’Shaughnessy, J.; Nagy, R.J.; Lanman, R.B.; Solovieff, N.; He, W.; Miller, M.; Su, F.; Shyr, Y.; Mayer, I.A.; Balko, J.M.; Arteaga, C.L. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat. Commun., 2019, 10(1), 1373.
[http://dx.doi.org/10.1038/s41467-019-09068-2] [PMID: 30914635]
[96]
Costa, C.; Wang, Y.; Ly, A.; Hosono, Y.; Murchie, E.; Walmsley, C.S.; Huynh, T.; Healy, C.; Peterson, R.; Yanase, S.; Jakubik, C.T.; Henderson, L.E.; Damon, L.J.; Timonina, D.; Sanidas, I.; Pinto, C.J.; Mino-Kenudson, M.; Stone, J.R.; Dyson, N.J.; Ellisen, L.W.; Bardia, A.; Ebi, H.; Benes, C.H.; Engelman, J.A.; Juric, D. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov., 2020, 10(1), 72-85.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0830] [PMID: 31594766]
[97]
Del Re, M.; Crucitta, S.; Lorenzini, G.; De Angelis, C.; Diodati, L.; Cavallero, D.; Bargagna, I.; Cinacchi, P.; Fratini, B.; Salvadori, B.; Ghilli, M.; Roncella, M.; Fontana, A.; Danesi, R.; Cucchiara, F. PI3K mutations detected in liquid biopsy are associated to reduced sensitivity to CDK4/6 inhibitors in metastatic breast cancer patients. Pharmacol. Res., 2021, 163,105241.
[http://dx.doi.org/10.1016/j.phrs.2020.105241] [PMID: 33049397]
[98]
Portman, N.; Milioli, H.H.; Alexandrou, S.; Coulson, R.; Yong, A.; Fernandez, K.J.; Chia, K.M.; Halilovic, E.; Segara, D.; Parker, A.; Haupt, S.; Haupt, Y.; Tilley, W.D.; Swarbrick, A.; Caldon, C.E.; Lim, E. MDM2 inhibition in combination with endocrine therapy and CDK4/6 inhibition for the treatment of ER-positive breast cancer. Breast Cancer Res., 2020, 22(1), 87.
[http://dx.doi.org/10.1186/s13058-020-01318-2] [PMID: 32787886]
[99]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[100]
Mezni, E.; Vicier, C.; Guerin, M.; Sabatier, R.; Bertucci, F.; Gonçalves, A. New therapeutics in HER2-positive advanced breast cancer: towards a change in clinical practices. Cancers (Basel), 2020, 12(6),E1573.
[http://dx.doi.org/10.3390/cancers12061573] [PMID: 32545895]
[101]
Moasser, M.M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene, 2007, 26(45), 6469-6487.
[http://dx.doi.org/10.1038/sj.onc.1210477] [PMID: 17471238]
[102]
Browne, B.C.; O’Brien, N.; Duffy, M.J.; Crown, J.; O’Donovan, N. HER-2 signaling and inhibition in breast cancer. Curr. Cancer Drug Targets, 2009, 9(3), 419-438.
[http://dx.doi.org/10.2174/156800909788166484] [PMID: 19442060]
[103]
Lee-Hoeflich, S.T.; Crocker, L.; Yao, E.; Pham, T.; Munroe, X.; Hoeflich, K.P.; Sliwkowski, M.X.; Stern, H.M. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res., 2008, 68(14), 5878-5887.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0380] [PMID: 18632642]
[104]
Wang, Z.; Erb, B. Receptors and Cancer. Methods Mol. Biol., 2017, 1652, 3-35.
[http://dx.doi.org/10.1007/978-1-4939-7219-7_1] [PMID: 28791631]
[105]
Le, X.F.; Pruefer, F.; Bast, R.C., Jr HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle, 2005, 4(1), 87-95.
[http://dx.doi.org/10.4161/cc.4.1.1360] [PMID: 15611642]
[106]
Stern, H.M. Improving treatment of HER2-positive cancers: opportunities and challenges. Sci. Transl. Med., 2012, 4(127),127rv2.
[http://dx.doi.org/10.1126/scitranslmed.3001539] [PMID: 22461643]
[107]
Franklin, M.C.; Carey, K.D.; Vajdos, F.F.; Leahy, D.J.; de Vos, A.M.; Sliwkowski, M.X. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell, 2004, 5(4), 317-328.
[http://dx.doi.org/10.1016/S1535-6108(04)00083-2] [PMID: 15093539]
[108]
Carter, P.; Presta, L.; Gorman, C.M.; Ridgway, J.B.; Henner, D.; Wong, W.L.; Rowland, A.M.; Kotts, C.; Carver, M.E.; Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4285-4289.
[http://dx.doi.org/10.1073/pnas.89.10.4285] [PMID: 1350088]
[109]
Siegel, J.P. Herceptin FDA approval letter., Available from: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/1998/trasgen092598L.pdf
[110]
Cuello, M.; Ettenberg, S.A.; Clark, A.S.; Keane, M.M.; Posner, R.H.; Nau, M.M.; Dennis, P.A.; Lipkowitz, S. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress ErbB-2. Cancer Res., 2001, 61(12), 4892-4900.
[PMID: 11406568]
[111]
Junttila, T.T.; Akita, R.W.; Parsons, K.; Fields, C.; Lewis Phillips, G.D.; Friedman, L.S.; Sampath, D.; Sliwkowski, M.X. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell, 2009, 15(5), 429-440.
[http://dx.doi.org/10.1016/j.ccr.2009.03.020] [PMID: 19411071]
[112]
Collins, D.M.; O’Donovan, N.; McGowan, P.M.; O’Sullivan, F.; Duffy, M.J.; Crown, J. Trastuzumab induces Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann. Oncol., 2012, 23(7), 1788-1795.
[http://dx.doi.org/10.1093/annonc/mdr484] [PMID: 22056974]
[113]
Petricevic, B.; Laengle, J.; Singer, J.; Sachet, M.; Fazekas, J.; Steger, G.; Bartsch, R.; Jensen-Jarolim, E.; Bergmann, M. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients. J. Transl. Med., 2013, 11, 307.
[http://dx.doi.org/10.1186/1479-5876-11-307] [PMID: 24330813]
[114]
Zhang, A.; Shen, G.; Zhao, T.; Zhang, G.; Liu, J.; Song, L.; Wei, W.; Bing, L.; Wu, Z.; Wu, Q. Augmented inhibition of angiogenesis by combination of HER2 antibody chA21 and trastuzumab in human ovarian carcinoma xenograft. J. Ovarian Res., 2010, 3, 20.
[http://dx.doi.org/10.1186/1757-2215-3-20] [PMID: 20723224]
[115]
Wang, C.; Wang, L.; Yu, X.; Zhang, Y.; Meng, Y.; Wang, H.; Yang, Y.; Gao, J.; Wei, H.; Zhao, J.; Lu, C.; Chen, H.; Sun, Y.; Li, B. Combating acquired resistance to trastuzumab by an anti-ErbB2 fully human antibody. Oncotarget, 2017, 8(26), 42742-42751.
[http://dx.doi.org/10.18632/oncotarget.17451] [PMID: 28514745]
[116]
Ozkavruk Eliyatkin, N.; Aktas, S.; Ozgur, H.; Ercetin, P.; Kupelioglu, A. The role of p95HER2 in trastuzumab resistance in breast cancer. J. BUON, 2016, 21(2), 382-389.
[PMID: 27273948]
[117]
Vu, T.; Claret, F.X. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front. Oncol., 2012, 2, 62.
[http://dx.doi.org/10.3389/fonc.2012.00062] [PMID: 22720269]
[118]
Maximiano, S.; Magalhães, P.; Guerreiro, M.P.; Morgado, M. Trastuzumab in the treatment of breast cancer. BioDrugs, 2016, 30(2), 75-86.
[http://dx.doi.org/10.1007/s40259-016-0162-9] [PMID: 26892619]
[119]
Lu, Y.; Zi, X.; Zhao, Y.; Mascarenhas, D.; Pollak, M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J. Natl. Cancer Inst., 2001, 93(24), 1852-1857.
[http://dx.doi.org/10.1093/jnci/93.24.1852] [PMID: 11752009]
[120]
Shattuck, D.L.; Miller, J.K.; Carraway, K.L., III; Sweeney, C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res., 2008, 68(5), 1471-1477.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5962] [PMID: 18316611]
[121]
Wang, L.; Zhang, Q.; Zhang, J.; Sun, S.; Guo, H.; Jia, Z.; Wang, B.; Shao, Z.; Wang, Z.; Hu, X. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer, 2011, 11, 248.
[http://dx.doi.org/10.1186/1471-2407-11-248] [PMID: 21676217]
[122]
Nagata, Y.; Lan, K.H.; Zhou, X.; Tan, M.; Esteva, F.J.; Sahin, A.A.; Klos, K.S.; Li, P.; Monia, B.P.; Nguyen, N.T.; Hortobagyi, G.N.; Hung, M.C.; Yu, D. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 2004, 6(2), 117-127.
[http://dx.doi.org/10.1016/j.ccr.2004.06.022] [PMID: 15324695]
[123]
Scheuer, W.; Friess, T.; Burtscher, H.; Bossenmaier, B.; Endl, J.; Hasmann, M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res., 2009, 69(24), 9330-9336.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4597] [PMID: 19934333]
[124]
Cortés, J.; Baselga, J.; Petrella, T.; Gelmon, K.; Fumoleau, P.; Verma, S.; Pivot, X.; Ross, G.; Szado, T.; Gianni, L. Pertuzumab monotherapy following trastuzumab-based treatment: activity and tolerability in patients with advanced HER2- positive breast cancer. J. Clin. Oncol., 2009, 27(15)(Suppl.), 1022-1022.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.1022]
[125]
Hutcheson, I.; Barrow, D.; Hasmann, M.; Nicholson, R. Induction of erbB3/EGFR heterodimers mediates resistance to pertuzumab in a tamoxifen-resistant MCF-7 breast cancer cell line. Mol. Cancer Ther., 2007, 6(11)(Suppl.), A118-A118.
[126]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K.; Group, E.S. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[127]
Hunter, F.W.; Barker, H.R.; Lipert, B.; Rothé, F.; Gebhart, G.; Piccart-Gebhart, M.J.; Sotiriou, C.; Jamieson, S.M.F. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br. J. Cancer, 2020, 122(5), 603-612.
[http://dx.doi.org/10.1038/s41416-019-0635-y] [PMID: 31839676]
[128]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.; Lutz, R.J.; Wong, W.L.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[129]
Filho, O.M.; Viale, G.; Trippa, L.; Li, T.; Yardley, D.A.; Mayer, I.A.; Abramson, V.G.; Arteaga, C.L.; Spring, L.; Waks, A.G.; Janiszewska, M.; Wrabel, E.; Demeo, M.; Bardia, A.; King, T.A.; Polyak, K.; Winer, E.P.; Krop, I.E. HER2 heterogeneity as a predictor of response to neoadjuvant T-DM1 plus pertuzumab: results from a prospective clinical trial. J. Clin. Oncol., 2019, 37(15)(Suppl.), 502-502.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.502]
[130]
Mercogliano, M.F.; De Martino, M.; Venturutti, L.; Rivas, M.A.; Proietti, C.J.; Inurrigarro, G.; Frahm, I.; Allemand, D.H.; Deza, E.G.; Ares, S.; Gercovich, F.G.; Guzmán, P.; Roa, J.C.; Elizalde, P.V.; Schillaci, R. TNFα-induced mucin 4 expression elicits trastuzumab resistance in HER2-positive breast cancer. Clin. Cancer Res., 2017, 23(3), 636-648.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0970] [PMID: 27698002]
[131]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab emtansine: mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer, 2020, 6(2), 130-146.
[http://dx.doi.org/10.1016/j.trecan.2019.12.010] [PMID: 32061303]
[132]
Sauveur, J.; Conilh, L.; Beaumel, S.; Chettab, K.; Jordheim, L.P.; Matera, E.L.; Dumontet, C. Characterization of T-DM1-resistant breast cancer cells. Pharmacol. Res. Perspect., 2020, 8(4),e00617.
[http://dx.doi.org/10.1002/prp2.617] [PMID: 32583565]
[133]
Hamblett, K.J.; Jacob, A.P.; Gurgel, J.L.; Tometsko, M.E.; Rock, B.M.; Patel, S.K.; Milburn, R.R.; Siu, S.; Ragan, S.P.; Rock, D.A.; Borths, C.J.; O’Neill, J.W.; Chang, W.S.; Weidner, M.F.; Bio, M.M.; Quon, K.C.; Fanslow, W.C. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res., 2015, 75(24), 5329-5340.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1610] [PMID: 26631267]
[134]
Saatci, Ö.; Borgoni, S.; Akbulut, Ö.; Durmuş, S.; Raza, U.; Eyüpoğlu, E.; Alkan, C.; Akyol, A.; Kütük, Ö.; Wiemann, S.; Şahin, Ö. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene, 2018, 37(17), 2251-2269.
[http://dx.doi.org/10.1038/s41388-017-0108-9] [PMID: 29391599]
[135]
Gandalovičová, A.; Rosel, D.; Fernandes, M.; Veselý, P.; Heneberg, P.; Čermák, V.; Petruželka, L.; Kumar, S.; Sanz-Moreno, V.; Brábek, J. Migrastatics-anti-metastatic and anti-invasion drugs: promises and challenges. Trends Cancer, 2017, 3(6), 391-406.
[http://dx.doi.org/10.1016/j.trecan.2017.04.008] [PMID: 28670628]
[136]
Tevaarwerk, A.J.; Kolesar, J.M. Lapatinib: a small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer. Clin. Ther., 2009, 31(Pt 2), 2332-2348.
[http://dx.doi.org/10.1016/j.clinthera.2009.11.029] [PMID: 20110044]
[137]
Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; Skarlos, D.; Campone, M.; Davidson, N.; Berger, M.; Oliva, C.; Rubin, S.D.; Stein, S.; Cameron, D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2006, 355(26), 2733-2743.
[http://dx.doi.org/10.1056/NEJMoa064320] [PMID: 17192538]
[138]
Voigtlaender, M.; Schneider-Merck, T.; Trepel, M. Lapatinib. Recent Results Cancer Res., 2018, 211, 19-44.
[http://dx.doi.org/10.1007/978-3-319-91442-8_2] [PMID: 30069757]
[139]
Taskar, K.S.; Rudraraju, V.; Mittapalli, R.K.; Samala, R.; Thorsheim, H.R.; Lockman, J.; Gril, B.; Hua, E.; Palmieri, D.; Polli, J.W.; Castellino, S.; Rubin, S.D.; Lockman, P.R.; Steeg, P.S.; Smith, Q.R. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm. Res., 2012, 29(3), 770-781.
[http://dx.doi.org/10.1007/s11095-011-0601-8] [PMID: 22011930]
[140]
Bian, L.; Wang, T.; Zhang, S.; Jiang, Z. Trastuzumab plus capecitabine vs. lapatinib plus capecitabine in patients with trastuzumab resistance and taxane-pretreated metastatic breast cancer. Tumour Biol., 2013, 34(5), 3153-3158.
[http://dx.doi.org/10.1007/s13277-013-0884-y] [PMID: 23729232]
[141]
D’Amato, V.; Raimondo, L.; Formisano, L.; Giuliano, M.; De Placido, S.; Rosa, R.; Bianco, R. Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat. Rev., 2015, 41(10), 877-883.
[http://dx.doi.org/10.1016/j.ctrv.2015.08.001] [PMID: 26276735]
[142]
Sergina, N.V.; Rausch, M.; Wang, D.; Blair, J.; Hann, B.; Shokat, K.M.; Moasser, M.M. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature, 2007, 445(7126), 437-441.
[http://dx.doi.org/10.1038/nature05474] [PMID: 17206155]
[143]
Hegde, P.S.; Rusnak, D.; Bertiaux, M.; Alligood, K.; Strum, J.; Gagnon, R.; Gilmer, T.M. Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles. Mol. Cancer Ther., 2007, 6(5), 1629-1640.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0399] [PMID: 17513611]
[144]
Elster, N.; Cremona, M.; Morgan, C.; Toomey, S.; Carr, A.; O’Grady, A.; Hennessy, B.T.; Eustace, A.J. A preclinical evaluation of the PI3K alpha/delta dominant inhibitor BAY 80-6946 in HER2-positive breast cancer models with acquired resistance to the HER2-targeted therapies trastuzumab and lapatinib. Breast Cancer Res. Treat., 2015, 149(2), 373-383.
[http://dx.doi.org/10.1007/s10549-014-3239-5] [PMID: 25528022]
[145]
Rexer, B.N.; Ham, A.J.; Rinehart, C.; Hill, S.; Granja-Ingram, N.M.; González-Angulo, A.M.; Mills, G.B.; Dave, B.; Chang, J.C.; Liebler, D.C.; Arteaga, C.L. Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition. Oncogene, 2011, 30(40), 4163-4174.
[http://dx.doi.org/10.1038/onc.2011.130] [PMID: 21499296]
[146]
Roskoski, R., Jr Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol. Res., 2015, 94, 9-25.
[http://dx.doi.org/10.1016/j.phrs.2015.01.003] [PMID: 25662515]
[147]
Elsberger, B. Translational evidence on the role of Src kinase and activated Src kinase in invasive breast cancer. Crit. Rev. Oncol. Hematol., 2014, 89(3), 343-351.
[http://dx.doi.org/10.1016/j.critrevonc.2013.12.009] [PMID: 24388104]
[148]
Liu, L.; Greger, J.; Shi, H.; Liu, Y.; Greshock, J.; Annan, R.; Halsey, W.; Sathe, G.M.; Martin, A.M.; Gilmer, T.M. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res., 2009, 69(17), 6871-6878.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4490] [PMID: 19671800]
[149]
Chen, C.T.; Kim, H.; Liska, D.; Gao, S.; Christensen, J.G.; Weiser, M.R. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol. Cancer Ther., 2012, 11(3), 660-669.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0754] [PMID: 22238368]
[150]
Brady, S.W.; Zhang, J.; Tsai, M.H.; Yu, D. PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition. Cancer Biol. Ther., 2015, 16(3), 402-411.
[http://dx.doi.org/10.1080/15384047.2014.1002693] [PMID: 25692408]
[151]
Trowe, T.; Boukouvala, S.; Calkins, K.; Cutler, R.E., Jr; Fong, R.; Funke, R.; Gendreau, S.B.; Kim, Y.D.; Miller, N.; Woolfrey, J.R.; Vysotskaia, V.; Yang, J.P.; Gerritsen, M.E.; Matthews, D.J.; Lamb, P.; Heuer, T.S. EXEL-7647 inhibits mutant forms of ErbB2 associated with lapatinib resistance and neoplastic transformation. Clin. Cancer Res., 2008, 14(8), 2465-2475.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4367] [PMID: 18413839]
[152]
Wetterskog, D.; Shiu, K.K.; Chong, I.; Meijer, T.; Mackay, A.; Lambros, M.; Cunningham, D.; Reis-Filho, J.S.; Lord, C.J.; Ashworth, A. Identification of novel determinants of resistance to lapatinib in ERBB2-amplified cancers. Oncogene, 2014, 33(8), 966-976.
[http://dx.doi.org/10.1038/onc.2013.41] [PMID: 23474757]
[153]
Nishimura, R.; Arima, N. Is triple negative a prognostic factor in breast cancer? Breast Cancer, 2008, 15(4), 303-308.
[http://dx.doi.org/10.1007/s12282-008-0042-3] [PMID: 18369692]
[154]
Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet, 2017, 389(10087), 2430-2442.
[http://dx.doi.org/10.1016/S0140-6736(16)32454-0] [PMID: 27939063]
[155]
Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10869-10874.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[156]
Pareja, F.; Geyer, F.C.; Marchiò, C.; Burke, K.A.; Weigelt, B.; Reis-Filho, J.S. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer, 2016, 2, 16036.
[http://dx.doi.org/10.1038/npjbcancer.2016.36] [PMID: 28721389]
[157]
Wein, L.; Loi, S. Mechanisms of resistance of chemotherapy in early-stage Triple Negative Breast Cancer (TNBC). Breast, 2017, 34(Suppl. 1), S27-S30.
[http://dx.doi.org/10.1016/j.breast.2017.06.023] [PMID: 28668293]
[158]
Isakoff, S.J. Triple-negative breast cancer: role of specific chemotherapy agents. Cancer J., 2010, 16(1), 53-61.
[http://dx.doi.org/10.1097/PPO.0b013e3181d24ff7] [PMID: 20164691]
[159]
Rivera, E. Implications of anthracycline-resistant and taxane-resistant metastatic breast cancer and new therapeutic options. Breast J., 2010, 16(3), 252-263.
[http://dx.doi.org/10.1111/j.1524-4741.2009.00896.x] [PMID: 20408828]
[160]
Zeichner, S.B.; Terawaki, H.; Gogineni, K. A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer (Auckl.), 2016, 10, 25-36.
[http://dx.doi.org/10.4137/BCBCR.S32783] [PMID: 27042088]
[161]
Perez-Garcia, J.M.; Cortes, J. The safety of eribulin for the treatment of metastatic breast cancer. Expert Opin. Drug Saf., 2019, 18(5), 347-355.
[http://dx.doi.org/10.1080/14740338.2019.1608946] [PMID: 31107111]
[162]
Gregory, R.K.; Smith, I.E. Vinorelbine-a clinical review. Br. J. Cancer, 2000, 82(12), 1907-1913.
[PMID: 10864196]
[163]
Blum, J.L.; Jones, S.E.; Buzdar, A.U.; LoRusso, P.M.; Kuter, I.; Vogel, C.; Osterwalder, B.; Burger, H.U.; Brown, C.S.; Griffin, T. Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J. Clin. Oncol., 1999, 17(2), 485-493.
[http://dx.doi.org/10.1200/JCO.1999.17.2.485] [PMID: 10080589]
[164]
McGrogan, B.T.; Gilmartin, B.; Carney, D.N.; McCann, A. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta, 2008, 1785(2), 96-132.
[PMID: 18068131]
[165]
Assal, A.; Kaner, J.; Pendurti, G.; Zang, X. Emerging targets in cancer immunotherapy: beyond CTLA-4 and PD-1. Immunotherapy, 2015, 7(11), 1169-1186.
[http://dx.doi.org/10.2217/imt.15.78] [PMID: 26567614]
[166]
Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R. Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med., 2018, 379(22), 2108-2121.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[167]
Heimes, A.S.; Schmidt, M. Atezolizumab for the treatment of triple-negative breast cancer. Expert Opin. Investig. Drugs, 2019, 28(1), 1-5.
[http://dx.doi.org/10.1080/13543784.2019.1552255] [PMID: 30474425]
[168]
Garg, A.D.; More, S.; Rufo, N.; Mece, O.; Sassano, M.L.; Agostinis, P.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. OncoImmunology, 2017, 6(12),e1386829.
[http://dx.doi.org/10.1080/2162402X.2017.1386829] [PMID: 29209573]
[169]
Heinhuis, K.M.; Ros, W.; Kok, M.; Steeghs, N.; Beijnen, J.H.; Schellens, J.H.M. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann. Oncol., 2019, 30(2), 219-235.
[http://dx.doi.org/10.1093/annonc/mdy551] [PMID: 30608567]
[170]
Emens, L.A.; Middleton, G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol. Res., 2015, 3(5), 436-443.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0064] [PMID: 25941355]
[171]
Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther., 2017, 16(11), 2598-2608.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0386] [PMID: 28835386]
[172]
Barroso-Sousa, R.; Jain, E.; Cohen, O.; Kim, D.; Buendia-Buendia, J.; Winer, E.; Lin, N.; Tolaney, S.M.; Wagle, N. Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann. Oncol., 2020, 31(3), 387-394.
[http://dx.doi.org/10.1016/j.annonc.2019.11.010] [PMID: 32067680]
[173]
García-Teijido, P.; Cabal, M.L.; Fernández, I.P.; Pérez, Y.F. Tumor-infiltrating Lymphocytes in triple negative breast cancer: the future of immune targeting. Clin. Med. Insights Oncol., 2016, 10(Suppl. 1), 31-39.
[http://dx.doi.org/10.4137/CMO.S34540] [PMID: 27081325]
[174]
Dushyanthen, S.; Beavis, P.A.; Savas, P.; Teo, Z.L.; Zhou, C.; Mansour, M.; Darcy, P.K.; Loi, S. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med., 2015, 13, 202.
[http://dx.doi.org/10.1186/s12916-015-0431-3] [PMID: 26300242]
[175]
Lee, H.J.; Park, I.A.; Song, I.H.; Shin, S.J.; Kim, J.Y.; Yu, J.H.; Gong, G. Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J. Clin. Pathol., 2016, 69(5), 422-430.
[http://dx.doi.org/10.1136/jclinpath-2015-203089] [PMID: 26475777]
[176]
Seo, A.N.; Lee, H.J.; Kim, E.J.; Kim, H.J.; Jang, M.H.; Lee, H.E.; Kim, Y.J.; Kim, J.H.; Park, S.Y. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br. J. Cancer, 2013, 109(10), 2705-2713.
[http://dx.doi.org/10.1038/bjc.2013.634] [PMID: 24129232]
[177]
Loi, S.; Dushyanthen, S.; Beavis, P.A.; Salgado, R.; Denkert, C.; Savas, P.; Combs, S.; Rimm, D.L.; Giltnane, J.M.; Estrada, M.V.; Sánchez, V.; Sanders, M.E.; Cook, R.S.; Pilkinton, M.A.; Mallal, S.A.; Wang, K.; Miller, V.A.; Stephens, P.J.; Yelensky, R.; Doimi, F.D.; Gómez, H.; Ryzhov, S.V.; Darcy, P.K.; Arteaga, C.L.; Balko, J.M. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res., 2016, 22(6), 1499-1509.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1125] [PMID: 26515496]
[178]
Tomioka, N.; Azuma, M.; Ikarashi, M.; Yamamoto, M.; Sato, M.; Watanabe, K.I.; Yamashiro, K.; Takahashi, M. The therapeutic candidate for immune checkpoint inhibitors elucidated by the status of Tumor-Infiltrating Lymphocytes (TILs) and Programmed Death Ligand 1 (PD-L1) expression in Triple Negative Breast Cancer (TNBC). Breast Cancer, 2018, 25(1), 34-42.
[http://dx.doi.org/10.1007/s12282-017-0781-0] [PMID: 28488168]
[179]
Kim, I.S.; Gao, Y.; Welte, T.; Wang, H.; Liu, J.; Janghorban, M.; Sheng, K.; Niu, Y.; Goldstein, A.; Zhao, N.; Bado, I.; Lo, H.C.; Toneff, M.J.; Nguyen, T.; Bu, W.; Jiang, W.; Arnold, J.; Gu, F.; He, J.; Jebakumar, D.; Walker, K.; Li, Y.; Mo, Q.; Westbrook, T.F.; Zong, C.; Rao, A.; Sreekumar, A.; Rosen, J.M.; Zhang, X.H. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol., 2019, 21(9), 1113-1126.
[http://dx.doi.org/10.1038/s41556-019-0373-7] [PMID: 31451770]
[180]
Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; Williams, L.J.; Deng, W.; Chen, G.; Mbofung, R.; Lazar, A.J.; Torres-Cabala, C.A.; Cooper, Z.A.; Chen, P.L.; Tieu, T.N.; Spranger, S.; Yu, X.; Bernatchez, C.; Forget, M.A.; Haymaker, C.; Amaria, R.; McQuade, J.L.; Glitza, I.C.; Cascone, T.; Li, H.S.; Kwong, L.N.; Heffernan, T.P.; Hu, J.; Bassett, R.L., Jr; Bosenberg, M.W.; Woodman, S.E.; Overwijk, W.W.; Lizée, G.; Roszik, J.; Gajewski, T.F.; Wargo, J.A.; Gershenwald, J.E.; Radvanyi, L.; Davies, M.A.; Hwu, P. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov., 2016, 6(2), 202-216.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0283] [PMID: 26645196]
[181]
Barroso-Sousa, R.; Keenan, T.E.; Pernas, S.; Exman, P.; Jain, E.; Garrido-Castro, A.C.; Hughes, M.; Bychkovsky, B.; Umeton, R.; Files, J.L.; Lindeman, N.I.; MacConaill, L.E.; Hodi, F.S.; Krop, I.E.; Dillon, D.; Winer, E.P.; Wagle, N.; Lin, N.U.; Mittendorf, E.A.; Van Allen, E.M.; Tolaney, S.M. Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin. Cancer Res., 2020, 26(11), 2565-2572.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3507] [PMID: 32019858]
[182]
Gudmundsdottir, K.; Ashworth, A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene, 2006, 25(43), 5864-5874.
[http://dx.doi.org/10.1038/sj.onc.1209874] [PMID: 16998501]
[183]
Gonzalez-Angulo, A.M.; Timms, K.M.; Liu, S.; Chen, H.; Litton, J.K.; Potter, J.; Lanchbury, J.S.; Stemke-Hale, K.; Hennessy, B.T.; Arun, B.K.; Hortobagyi, G.N.; Do, K.A.; Mills, G.B.; Meric-Bernstam, F. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin. Cancer Res., 2011, 17(5), 1082-1089.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2560] [PMID: 21233401]
[184]
Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med., 2017, 377(6), 523-533.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[185]
Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; Roché, H.; Im, Y.H.; Quek, R.G.W.; Markova, D.; Tudor, I.C.; Hannah, A.L.; Eiermann, W.; Blum, J.L. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med., 2018, 379(8), 753-763.
[http://dx.doi.org/10.1056/NEJMoa1802905] [PMID: 30110579]
[186]
Noordermeer, S.M.; van Attikum, H. PARP inhibitor resistance: a tug-of-war in BRCA-mutated cells. Trends Cell Biol., 2019, 29(10), 820-834.
[http://dx.doi.org/10.1016/j.tcb.2019.07.008] [PMID: 31421928]
[187]
Christie, E.L.; Pattnaik, S.; Beach, J.; Copeland, A.; Rashoo, N.; Fereday, S.; Hendley, J.; Alsop, K.; Brady, S.L.; Lamb, G.; Pandey, A.; deFazio, A.; Thorne, H.; Bild, A.; Bowtell, D.D.L. Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer. Nat. Commun., 2019, 10(1), 1295.
[http://dx.doi.org/10.1038/s41467-019-09312-9] [PMID: 30894541]
[188]
Rottenberg, S.; Jaspers, J.E.; Kersbergen, A.; van der Burg, E.; Nygren, A.O.; Zander, S.A.; Derksen, P.W.; de Bruin, M.; Zevenhoven, J.; Lau, A.; Boulter, R.; Cranston, A.; O’Connor, M.J.; Martin, N.M.; Borst, P.; Jonkers, J. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA, 2008, 105(44), 17079-17084.
[http://dx.doi.org/10.1073/pnas.0806092105] [PMID: 18971340]
[189]
Oplustilova, L.; Wolanin, K.; Mistrik, M.; Korinkova, G.; Simkova, D.; Bouchal, J.; Lenobel, R.; Bartkova, J.; Lau, A.; O’Connor, M.J.; Lukas, J.; Bartek, J. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle, 2012, 11(20), 3837-3850.
[http://dx.doi.org/10.4161/cc.22026] [PMID: 22983061]
[190]
Du, Y.; Yamaguchi, H.; Wei, Y.; Hsu, J.L.; Wang, H.L.; Hsu, Y.H.; Lin, W.C.; Yu, W.H.; Leonard, P.G.; Lee, G.R., IV; Chen, M.K.; Nakai, K.; Hsu, M.C.; Chen, C.T.; Sun, Y.; Wu, Y.; Chang, W.C.; Huang, W.C.; Liu, C.L.; Chang, Y.C.; Chen, C.H.; Park, M.; Jones, P.; Hortobagyi, G.N.; Hung, M.C. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat. Med., 2016, 22(2), 194-201.
[http://dx.doi.org/10.1038/nm.4032] [PMID: 26779812]
[191]
Gogola, E.; Duarte, A.A.; de Ruiter, J.R.; Wiegant, W.W.; Schmid, J.A.; de Bruijn, R.; James, D.I.; Guerrero Llobet, S.; Vis, D.J.; Annunziato, S.; van den Broek, B.; Barazas, M.; Kersbergen, A.; van de Ven, M.; Tarsounas, M.; Ogilvie, D.J.; van Vugt, M.; Wessels, L.F.A.; Bartkova, J.; Gromova, I.; Andújar-Sánchez, M.; Bartek, J.; Lopes, M.; van Attikum, H.; Borst, P.; Jonkers, J.; Rottenberg, S. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell, 2018, 33(6), 1078-1093.
[http://dx.doi.org/10.1016/j.ccell.2018.05.008] [PMID: 29894693]
[192]
Pettitt, S.J.; Krastev, D.B.; Brandsma, I.; Dréan, A.; Song, F.; Aleksandrov, R.; Harrell, M.I.; Menon, M.; Brough, R.; Campbell, J.; Frankum, J.; Ranes, M.; Pemberton, H.N.; Rafiq, R.; Fenwick, K.; Swain, A.; Guettler, S.; Lee, J.M.; Swisher, E.M.; Stoynov, S.; Yusa, K.; Ashworth, A.; Lord, C.J. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat. Commun., 2018, 9(1), 1849.
[http://dx.doi.org/10.1038/s41467-018-03917-2] [PMID: 29748565]
[193]
Norquist, B.; Wurz, K.A.; Pennil, C.C.; Garcia, R.; Gross, J.; Sakai, W.; Karlan, B.Y.; Taniguchi, T.; Swisher, E.M. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol., 2011, 29(22), 3008-3015.
[http://dx.doi.org/10.1200/JCO.2010.34.2980] [PMID: 21709188]
[194]
Lin, K.K.; Harrell, M.I.; Oza, A.M.; Oaknin, A.; Ray-Coquard, I.; Tinker, A.V.; Helman, E.; Radke, M.R.; Say, C.; Vo, L.T.; Mann, E.; Isaacson, J.D.; Maloney, L.; O’Malley, D.M.; Chambers, S.K.; Kaufmann, S.H.; Scott, C.L.; Konecny, G.E.; Coleman, R.L.; Sun, J.X.; Giordano, H.; Brenton, J.D.; Harding, T.C.; McNeish, I.A.; Swisher, E.M. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov., 2019, 9(2), 210-219.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0715] [PMID: 30425037]
[195]
Gornstein, E.L.; Sandefur, S.; Chung, J.H.; Gay, L.M.; Holmes, O.; Erlich, R.L.; Soman, S.; Martin, L.K.; Rose, A.V.; Stephens, P.J.; Ross, J.S.; Miller, V.A.; Ali, S.M.; Blau, S. BRCA2 reversion mutation associated with acquired resistance to olaparib in estrogen receptor-positive breast cancer detected by genomic profiling of tissue and liquid biopsy. Clin. Breast Cancer, 2018, 18(2), 184-188.
[http://dx.doi.org/10.1016/j.clbc.2017.12.010] [PMID: 29325860]
[196]
Quigley, D.; Alumkal, J.J.; Wyatt, A.W.; Kothari, V.; Foye, A.; Lloyd, P.; Aggarwal, R.; Kim, W.; Lu, E.; Schwartzman, J.; Beja, K.; Annala, M.; Das, R.; Diolaiti, M.; Pritchard, C.; Thomas, G.; Tomlins, S.; Knudsen, K.; Lord, C.J.; Ryan, C.; Youngren, J.; Beer, T.M.; Ashworth, A.; Small, E.J.; Feng, F.Y. Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov., 2017, 7(9), 999-1005.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0146] [PMID: 28450426]
[197]
Edwards, S.L.; Brough, R.; Lord, C.J.; Natrajan, R.; Vatcheva, R.; Levine, D.A.; Boyd, J.; Reis-Filho, J.S.; Ashworth, A. Resistance to therapy caused by intragenic deletion in BRCA2. Nature, 2008, 451(7182), 1111-1115.
[http://dx.doi.org/10.1038/nature06548] [PMID: 18264088]
[198]
Lheureux, S.; Bruce, J.P.; Burnier, J.V.; Karakasis, K.; Shaw, P.A.; Clarke, B.A.; Yang, S.Y.; Quevedo, R.; Li, T.; Dowar, M.; Bowering, V.; Pugh, T.J.; Oza, A.M. Somatic BRCA1/2 recovery as a resistance mechanism after exceptional response to poly (ADP-ribose) polymerase inhibition. J. Clin. Oncol., 2017, 35(11), 1240-1249.
[http://dx.doi.org/10.1200/JCO.2016.71.3677] [PMID: 28221868]
[199]
Ter Brugge, P.; Kristel, P.; van der Burg, E.; Boon, U.; de Maaker, M.; Lips, E.; Mulder, L.; de Ruiter, J.; Moutinho, C.; Gevensleben, H.; Marangoni, E.; Majewski, I.; Józwiak, K.; Kloosterman, W.; van Roosmalen, M.; Duran, K.; Hogervorst, F.; Turner, N.; Esteller, M.; Cuppen, E.; Wesseling, J.; Jonkers, J. Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. J. Natl. Cancer Inst., 2016, 108(11),djw148.
[http://dx.doi.org/10.1093/jnci/djw148] [PMID: 27381626]
[200]
Weigelt, B.; Comino-Méndez, I.; de Bruijn, I.; Tian, L.; Meisel, J.L.; García-Murillas, I.; Fribbens, C.; Cutts, R.; Martelotto, L.G.; Ng, C.K.Y.; Lim, R.S.; Selenica, P.; Piscuoglio, S.; Aghajanian, C.; Norton, L.; Murali, R.; Hyman, D.M.; Borsu, L.; Arcila, M.E.; Konner, J.; Reis-Filho, J.S.; Greenberg, R.A.; Robson, M.E.; Turner, N.C. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin. Cancer Res., 2017, 23(21), 6708-6720.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0544] [PMID: 28765325]
[201]
Simmons, A.D.; Nguyen, M.; Pintus, E. Polyclonal BRCA2 mutations following carboplatin treatment confer resistance to the PARP inhibitor rucaparib in a patient with mCRPC: a case report. BMC Cancer, 2020, 20(1), 215.
[http://dx.doi.org/10.1186/s12885-020-6657-2] [PMID: 32171277]
[202]
Mayor, P.; Gay, L.M.; Lele, S.; Elvin, J.A. BRCA1 reversion mutation acquired after treatment identified by liquid biopsy. Gynecol. Oncol. Rep., 2017, 21, 57-60.
[http://dx.doi.org/10.1016/j.gore.2017.06.010] [PMID: 28706968]
[203]
Goodall, J.; Mateo, J.; Yuan, W.; Mossop, H.; Porta, N.; Miranda, S.; Perez-Lopez, R.; Dolling, D.; Robinson, D.R.; Sandhu, S.; Fowler, G.; Ebbs, B.; Flohr, P.; Seed, G.; Rodrigues, D.N.; Boysen, G.; Bertan, C.; Atkin, M.; Clarke, M.; Crespo, M.; Figueiredo, I.; Riisnaes, R.; Sumanasuriya, S.; Rescigno, P.; Zafeiriou, Z.; Sharp, A.; Tunariu, N.; Bianchini, D.; Gillman, A.; Lord, C.J.; Hall, E.; Chinnaiyan, A.M.; Carreira, S.; de Bono, J.S. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov., 2017, 7(9), 1006-1017.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0261] [PMID: 28450425]
[204]
Berti, M.; Ray Chaudhuri, A.; Thangavel, S.; Gomathinayagam, S.; Kenig, S.; Vujanovic, M.; Odreman, F.; Glatter, T.; Graziano, S.; Mendoza-Maldonado, R.; Marino, F.; Lucic, B.; Biasin, V.; Gstaiger, M.; Aebersold, R.; Sidorova, J.M.; Monnat, R.J., Jr; Lopes, M.; Vindigni, A. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol., 2013, 20(3), 347-354.
[http://dx.doi.org/10.1038/nsmb.2501] [PMID: 23396353]
[205]
Schlacher, K.; Christ, N.; Siaud, N.; Egashira, A.; Wu, H.; Jasin, M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell, 2011, 145(4), 529-542.
[http://dx.doi.org/10.1016/j.cell.2011.03.041] [PMID: 21565612]
[206]
Schlacher, K.; Wu, H.; Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell, 2012, 22(1), 106-116.
[http://dx.doi.org/10.1016/j.ccr.2012.05.015] [PMID: 22789542]
[207]
Ying, S.; Hamdy, F.C.; Helleday, T. Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res., 2012, 72(11), 2814-2821.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3417] [PMID: 22447567]
[208]
Rondinelli, B.; Gogola, E.; Yücel, H.; Duarte, A.A.; van de Ven, M.; van der Sluijs, R.; Konstantinopoulos, P.A.; Jonkers, J.; Ceccaldi, R.; Rottenberg, S.; D’Andrea, A.D. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat. Cell Biol., 2017, 19(11), 1371-1378.
[http://dx.doi.org/10.1038/ncb3626] [PMID: 29035360]
[209]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35(Suppl.), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy