Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Self-Healing Polymers and Composites: Extrinsic Routes

Author(s): Nidhi Agrawal and Bharti Arora*

Volume 19, Issue 4, 2022

Published on: 02 August, 2021

Page: [496 - 512] Pages: 17

DOI: 10.2174/1570193X18666210802110810

Price: $65

Abstract

Polymers have the property to convert the physical stress to covalent bond shuffling, thereby acting as the healing agents. Polymeric coatings, paints, electronic devices, drug delivery, and many other applications find self-healing materials as a smart technique to prolong the life cycle of the end products. The idea behind these artificial materials is to make them behave like the human body. It should sense the failure and repair it before it becomes worse or irreparable. Researchers have explored several polymeric materials which can self-heal through intrinsic or extrinsic mechanisms. This review specifically focuses on extrinsic routes governed by mechanical stress, temperature change in a covalent bond, humidity, variation in pH, optical sensitivity, and electrochemical effects. Each possible mechanism is further supported by the molecules or bonds which can undergo the transformations under given conditions. On a broader scale, bonds that can self-repair by mechanical force, thermal treatment, chemical modifications, UV irradiation, or electromagnetic phenomenon are covered under this review. It brings into the notice the shortcomings or challenges in adopting the technology to the commercial scale. The possible molecules or bonds which can undergo self-healing under certain conditions have been distinctly presented in a well-segregated manner. This review is envisaged to act as a guide for researchers working in this area.

Keywords: Self-healing, extrinsic routes, polymer composites, stress mechanical, thermal, chemical, optical, electrochemical.

Graphical Abstract

[1]
Wayman, E. The secrets of ancient rome’s buildings what is it about roman concrete that keeps the pantheon and the colosseum still standing? Smithsonian Magzine, 2021. Available from: https://www.smithsonianmag.com/history/the-secrets-of-ancient-romes-buildings-234992/?no-ist
[2]
Boneschansker, I. First international conference on self-healing materials. Eureka Alert - American Association for the advancemnet of science, 2007. Available from: https://www.eurekalert.org/pub_releases/2007-04/duot-fic_1041307.php
[3]
Cremaldi, J.C.; Bhushan, B. Bioinspired self-healing materials: lessons from nature. Beilstein J. Nanotechnol., 2018, 9, 907-935.
[http://dx.doi.org/10.3762/bjnano.9.85] [PMID: 29600152]
[4]
Mobaraki, M.; Ghaffari, M.; Mozafari, M. Potential self-healing functionality in a composite structure: methodology and applications.Self-healing composite materials; Elsevier, 2020, pp. 53-70.
[http://dx.doi.org/10.1016/B978-0-12-817354-1.00004-1]
[5]
Lumley, R.N.; Morton, A.J.; Polmear, I.J. Enhanced creep performance in an Al–Cu–Mg–Ag alloy through underageing. Acta Mater., 2002, 50(14), 3597-3608.
[http://dx.doi.org/10.1016/S1359-6454(02)00164-7]
[6]
Laha, K.; Kyono, J.; Shinya, N. An advanced creep cavitation resistance Cu-containing 18Cr–12Ni–Nb austenitic stainless steel. Scr. Mater., 2007, 56(10), 915-918.
[http://dx.doi.org/10.1016/j.scriptamat.2006.12.030]
[7]
Laha, K.; Kyono, J.; Kishimoto, S.; Shinya, N. Beneficial effect of B segregation on creep cavitation in a type 347 austenitic stainless steel. Scr. Mater., 2005, 52(7), 675-678.
[http://dx.doi.org/10.1016/j.scriptamat.2004.11.016]
[8]
Zhang, S. Defect-induced Au precipitation in Fe–Au and Fe–Au–B–N alloys studied by in situ small-angle neutron scattering. Acta Mater., 2013, 61(18), 7009-7019.
[http://dx.doi.org/10.1016/j.actamat.2013.08.015]
[9]
Zhang, S.; Kwakernaak, C.; Sloof, W.; Brück, E.; van der Zwaag, S.; van Dijk, N. Self healing of creep damage by gold precipitation in iron alloys. Adv. Eng. Mater., 2015, 17(5), 598-603.
[http://dx.doi.org/10.1002/adem.201400511]
[10]
Song, G.M.; Pei, Y.T.; Sloof, W.G.; Li, S.B.; De Hosson, J.Th.M.; van der Zwaag, S. Oxidation-induced crack healing in Ti3AlC2 ceramics. Scr. Mater., 2008, 58(1), 13-16.
[http://dx.doi.org/10.1016/j.scriptamat.2007.09.006]
[11]
de Rooij, M. Self-healing phenomena in cement-based materials: state-of-the-art report of rilem technical committee 221-shc: Selfhealing phenomena in cement-based materialsSpringer: Dordrecht, 2013. International union of testing and research laboratories for materials and structures
[12]
Mostavi, E.; Asadi, S.; Hassan, M.M.; Alansari, M. Evaluation of self-healing mechanisms in concrete with double-walled sodium silicate microcapsules. J. Mater. Civ. Eng., 2015, 27(12)04015035
[http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001314]
[13]
Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng., 2010, 36(2), 230-235.
[http://dx.doi.org/10.1016/j.ecoleng.2008.12.036]
[14]
Ramesh, M.; Kumar, L.R.; Khan, A.; Asiri, A.M. Self-healing polymer composites and its chemistry.Self-healing composite materials; Elsevier, 2020, pp. 415-427.
[http://dx.doi.org/10.1016/B978-0-12-817354-1.00022-3]
[15]
Kim, A.R.; Park, C.J.; Vinothkannan, M.; Yoo, D.J. Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells. Compos., Part B Eng., 2018, 155, 272-281.
[http://dx.doi.org/10.1016/j.compositesb.2018.08.016]
[16]
Kim, A.R.; Vinothkannan, M.; Yoo, D.J. Artificially designed, low humidifying organic–inorganic (SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells. Compos., Part B Eng., 2017, 130, 103-118.
[http://dx.doi.org/10.1016/j.compositesb.2017.07.042]
[17]
Kim, A.R.; Vinothkannan, M.; Song, M.H.; Lee, J-Y.; Lee, H-K.; Yoo, D.J. Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly(ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Compos., Part B Eng., 2020, 188107890
[http://dx.doi.org/10.1016/j.compositesb.2020.107890]
[18]
Nosonovsky, M.; Rohatgi, P.K. Biomimetics in materials science: Self-healing, self-lubricating, and self-cleaning materials; Springer: New York, 2012.
[http://dx.doi.org/10.1007/978-1-4614-0926-7]
[19]
Farhain, S.S.M.; Hafiz, H.M.; Md, B.K.A.S.; Che, M.S.H.; Wan, A.W.K.; Norfhairna, B. A review of recent developments: self-healing approaches for polymeric materials. Chem. Eng. Trans., 2019, 72, 433-438.
[http://dx.doi.org/10.3303/CET1972073]
[20]
Amaral, A.J.R.; Pasparakis, G. Stimuli responsive self-healing polymers: gels, elastomers and membranes. Polym. Chem., 2017, 8(42), 6464-6484.
[http://dx.doi.org/10.1039/C7PY01386H]
[21]
Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos., Part B Eng., 2016, 87, 92-119.
[http://dx.doi.org/10.1016/j.compositesb.2015.09.057]
[22]
Burnworth, M.; Tang, L.; Kumpfer, J.R.; Duncan, A.J.; Beyer, F.L.; Fiore, G.L.; Rowan, S.J.; Weder, C. Optically healable supramolecular polymers. Nature, 2011, 472(7343), 334-337.
[http://dx.doi.org/10.1038/nature09963] [PMID: 21512571]
[23]
Thakur, V.K.; Kessler, M.R. Self-healing polymer nanocomposite materials: A review. Polymer (Guildf.), 2015, 69, 369-383.
[http://dx.doi.org/10.1016/j.polymer.2015.04.086]
[24]
Mors, R.; Jonkers, H.M. Bacteria-based self-healing concrete: evaluation of full scale demonstrator projects. RILEM Tech. Lett., 2020, 4, 138-144.
[http://dx.doi.org/10.21809/rilemtechlett.2019.93]
[25]
Diesendruck, C.E.; Sottos, N.R.; Moore, J.S.; White, S.R. Biomimetic self-healing. Angew. Chem. Int. Ed. Engl., 2015, 54(36), 10428-10447.
[http://dx.doi.org/10.1002/anie.201500484] [PMID: 26216654]
[26]
Almutairi, M.D.; Aria, A.I.; Thakur, V.K.; Khan, M.A. Self-healing mechanisms for 3D-printed polymeric structures: from lab to reality. Polymers (Basel), 2020, 12(7), 1534.
[http://dx.doi.org/10.3390/polym12071534] [PMID: 32664571]
[27]
Kumar Banshiwal, J.; Nath Tripathi, D. Self-healing polymer composites for structural application.Functional Materials; Sahu, D., Ed.; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.82420]
[28]
Li, W.; Zhu, X.; Zhao, N.; Jiang, Z. Preparation and properties of melamine urea-formaldehyde microcapsules for self-healing of cementitious materials. Materials (Basel), 2016, 9(3)E152
[http://dx.doi.org/10.3390/ma9030152] [PMID: 28773280]
[29]
Park, J.S.; Darlington, T.; Starr, A.F.; Takahashi, K.; Riendeau, J.; Thomas Hahn, H. Multiple healing effect of thermally activated self-healing composites based on Diels–Alder reaction. Compos. Sci. Technol., 2010, 70(15), 2154-2159.
[http://dx.doi.org/10.1016/j.compscitech.2010.08.017]
[30]
Trenor, S.R.; Shultz, A.R.; Love, B.J.; Long, T.E. Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem. Rev., 2004, 104(6), 3059-3077.
[http://dx.doi.org/10.1021/cr030037c] [PMID: 15186188]
[31]
Jiang, B.; Guo, H.; Zhao, L.; Xu, B.; Wang, C.; Liu, C.; Fan, H. Fabrication of a β-cyclodextrin-based self-assembly containing a redox-responsive ferrocene. Soft Matter, 2020, 16(1), 125-131.
[http://dx.doi.org/10.1039/C9SM02049G] [PMID: 31763662]
[32]
Kowalski, D.; Ueda, M.; Ohtsuka, T. Self-healing ion-permselective conducting polymer coating. J. Mater. Chem., 2010, 20(36), 7630.
[http://dx.doi.org/10.1039/c0jm00866d]
[33]
Wool, R.P. Self-healing materials: A review. Soft Matter, 2008, 4(3), 400-418.
[http://dx.doi.org/10.1039/b711716g] [PMID: 32907199]
[34]
Liu, S.; Gong, W.; Yang, X. Self-healing supramolecular polymers via host-guest interactions. Curr. Org. Chem., 2014, 18(15), 2010-2015.
[http://dx.doi.org/10.2174/1385272819666140514005435]
[35]
White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature, 2001, 409(6822), 794-797.
[http://dx.doi.org/10.1038/35057232] [PMID: 11236987]
[36]
Kling, S.; Czigány, T. Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling. Compos. Sci. Technol., 2014, 99, 82-88.
[http://dx.doi.org/10.1016/j.compscitech.2014.05.020]
[37]
Karthikeyan, S.; Sijbesma, R.P. Mechanochemistry: Forcing a molecule’s hand. Nat. Chem., 2010, 2(6), 436-437.
[http://dx.doi.org/10.1038/nchem.677] [PMID: 20489708]
[38]
Andersson, H.M.; Wilson, G.O. Self-healing systems for high-performance coatings. PCI paints and coatings industry, 2012. Available from: https://www.pcimag.com/articles/96379-self-healing-systems-for-high-performance-coatings
[39]
Cho, S.H.; White, S.R.; Braun, P.V. Room-temperature polydimethylsiloxane-based self-healing polymers. Chem. Mater., 2012, 24(21), 4209-4214.
[http://dx.doi.org/10.1021/cm302501b]
[40]
Yao, L.; Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. Self-healing linear polymers based on RAFT polymerization. Polymer (Guildf.), 2011, 52(14), 3137-3145.
[http://dx.doi.org/10.1016/j.polymer.2011.05.024]
[41]
Haiyan, L.; Rongguo, W.; Wenbo, L. Preparation and self-healing performance of epoxy composites with microcapsules and tungsten (VI) chloride catalyst. J. Reinf. Plast. Compos., 2012, 31(13), 924-932.
[http://dx.doi.org/10.1177/0731684412442990]
[42]
Ismail, N.A.; Khan, A.; Fayyad, E.; Kahraman, R.; Abdullah, A.M.; Shakoor, R.A. Self-healing performance of smart polymeric coatings modified with tung oil and linalyl acetate. Polymers (Basel), 2021, 13(10), 1609.
[http://dx.doi.org/10.3390/polym13101609] [PMID: 34067528]
[43]
Wang, D-P.; Zhao, Z-H.; Li, C-H.; Zuo, J-L. An ultrafast self-healing polydimethylsiloxane elastomer with persistent sealing performance. Mater. Chem. Front., 2019, 3(7), 1411-1421.
[http://dx.doi.org/10.1039/C9QM00115H]
[44]
Yin, Z.; Guo, J.; Qiao, J.; Chen, X. Improved self-healing properties and crack growth resistance of polydimethylsiloxane elastomers with dual-capsule room-temperature healing systems. Colloid Polym. Sci., 2020, 298(1), 67-77.
[http://dx.doi.org/10.1007/s00396-019-04587-2]
[45]
Chowdhury, R.A. Self-healing epoxy composites: preparation, characterization and healing performance. J. Mater. Res. Technol., 2015, 4(1), 33-43.
[http://dx.doi.org/10.1016/j.jmrt.2014.10.016]
[46]
Qiao, L.; Xue, Y.; Zhang, Q. Synthesis and characterization of phenol–formaldehyde microcapsules for self-healing coatings. J. Mater. Sci., 2018, 53(2), 1035-1048.
[http://dx.doi.org/10.1007/s10853-017-1551-2]
[47]
Safaei, F.; Khorasani, S.N.; Rahnama, H.; Neisiany, R.E.; Koochaki, M.S. Single microcapsules containing epoxy healing agent used for development in the fabrication of cost efficient self-healing epoxy coating. Prog. Org. Coat., 2018, 114, 40-46.
[http://dx.doi.org/10.1016/j.porgcoat.2017.09.019]
[48]
Dong, B. Self-healing features in cementitious material with urea–formaldehyde/epoxy microcapsules. Constr. Build. Mater., 2016, 106, 608-617.
[http://dx.doi.org/10.1016/j.conbuildmat.2015.12.140]
[49]
Zhu, D.Y.; Cao, G.S.; Qiu, W.L.; Rong, M.Z.; Zhang, M.Q. Self-healing polyvinyl chloride (PVC) based on microencapsulated nucleophilic thiol-click chemistry. Polymer (Guildf.), 2015, 69, 1-9.
[http://dx.doi.org/10.1016/j.polymer.2015.05.052]
[50]
Khun, N.W.; Sun, D.W.; Huang, M.X.; Yang, J.L.; Yue, C.Y. Wear resistant epoxy composites with diisocyanate-based self-healing functionality. Wear, 2014, 313(1–2), 19-28.
[http://dx.doi.org/10.1016/j.wear.2014.02.011]
[51]
Lang, S.; Zhou, Q. Synthesis and characterization of poly(urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog. Org. Coat., 2017, 105, 99-110.
[http://dx.doi.org/10.1016/j.porgcoat.2016.11.015]
[52]
Lv, L.; Guo, P.; Xing, F.; Han, N. Trigger efficiency enhancement of polymeric microcapsules for self-healing cementitious materials. Constr. Build. Mater., 2020, 235117443
[http://dx.doi.org/10.1016/j.conbuildmat.2019.117443]
[53]
Zhu, D.Y.; Rong, M.Z.; Zhang, M.Q. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Prog. Polym. Sci., 2015, 49-50, 175-220.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.07.002]
[54]
Khan, N.I.; Halder, S. Self-healing fiber-reinforced polymer composites for their potential structural applications.Self-healing polymer-based systems; Elsevier, 2020, pp. 455-472.
[http://dx.doi.org/10.1016/B978-0-12-818450-9.00015-5]
[55]
Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Compos., Part B Eng., 2018, 138, 122-139.
[http://dx.doi.org/10.1016/j.compositesb.2017.11.028]
[56]
Zhu, Y.; Ye, X.J.; Rong, M.Z.; Zhang, M.Q. Self-healing glass fiber/epoxy composites with polypropylene tubes containing self-pressurized epoxy and mercaptan healing agents. Compos. Sci. Technol., 2016, 135, 146-152.
[http://dx.doi.org/10.1016/j.compscitech.2016.09.020]
[57]
Mirmohammad Sadeghi, S.A.; Borhani, S.; Zadhoush, A.; Dinari, M. Single nozzle electrospinning of encapsulated epoxy and mercaptan in PAN for self-healing application. Polymer (Guildf.), 2020, 186122007
[http://dx.doi.org/10.1016/j.polymer.2019.122007]
[58]
Adli, A.; Shelesh-Nezhad, K.; Khoshravan Azar, M.; Mohammadi-Aghdam, M. The effect of vascular self-healing pattern on mechanical behaviour and healing performance of epoxy/glass composite. Plast. Rubber Compos., 2020, 49(2), 79-90.
[http://dx.doi.org/10.1080/14658011.2019.1706278]
[59]
Kato, Y.; Minakuchi, S.; Ogihara, S.; Takeda, N. Self-healing composites structure using multiple through-thickness microvascular channels. Adv. Compos. Mater., 2021, 30(sup1), 1- 18.
[http://dx.doi.org/10.1080/09243046.2020.1744228]
[60]
Shirvanimoghaddam, K. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos. Part Appl. Sci. Manuf., 2017, 92, 70-96.
[http://dx.doi.org/10.1016/j.compositesa.2016.10.032]
[61]
Bekas, D.G.; Baltzis, D.; Paipetis, A.S. Nano-reinforced polymeric healing agents for vascular self-repairing composites. Mater. Des., 2017, 116, 538-544.
[http://dx.doi.org/10.1016/j.matdes.2016.12.049]
[62]
Lanzara, G.; Yoon, Y.; Liu, H.; Peng, S.; Lee, W-I. Carbon nanotube reservoirs for self-healing materials. Nanotechnology, 2009, 20(33)335704
[http://dx.doi.org/10.1088/0957-4484/20/33/335704] [PMID: 19636099]
[63]
Luan, C.; Yao, X.; Zhang, C.; Fu, J.; Wang, B. Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology. Compos. Sci. Technol., 2020, 188107986
[http://dx.doi.org/10.1016/j.compscitech.2019.107986]
[64]
Seyyed Monfared Zanjani, J.; Saner Okan, B.; Yilmaz, C.; Menceloglu, Y.; Yildiz, M. Monitoring the interface and bulk self-healing capability of tri-axial electrospun fibers in glass fiber reinforced epoxy composites. Compos. Part Appl. Sci. Manuf., 2017, 99, 221-232.
[http://dx.doi.org/10.1016/j.compositesa.2017.04.017]
[65]
Neisiany, R.E.; Lee, J.K.Y.; Khorasani, S.N.; Ramakrishna, S. Self-healing and interfacially toughened carbon fibre-epoxy composites based on electrospun core-shell nanofibres: ARTICLE. J. Appl. Polym. Sci., 2017, 134(31), 44956.
[http://dx.doi.org/10.1002/app.44956]
[66]
Esmaeely Neisiany, R.; Lee, J.K.Y.; Nouri Khorasani, S.; Bagheri, R.; Ramakrishna, S. Facile strategy toward fabrication of highly responsive self-healing carbon/epoxy composites via incorporation of healing agents encapsulated in poly(methylmethacrylate) nanofiber shell. J. Ind. Eng. Chem., 2018, 59, 456-466.
[http://dx.doi.org/10.1016/j.jiec.2017.11.007]
[67]
Qamar, I.P.S.; Sottos, N.R.; Trask, R.S. Grand challenges in the design and manufacture of vascular self-healing. Multifunct. Mater., 2020, 3(1)013001
[http://dx.doi.org/10.1088/2399-7532/ab69e2]
[68]
ASME conference on smart materials, adaptive structures and intelligent systems. Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems - 2017: Presented at ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 18-20, 2017, Snowbird, Utah, USA. Volume 1: Development and characterization of multifunctional materials, mechanics and behavior of active materials, bioinspired smart materials and systems, energy harvesting, emerging technologies, 2017.
[69]
Hickenboth, C.R.; Rule, J.D.; Moore, J.S. Preparation of enediyne-crosslinked networks and their reactivity under thermal and mechanical conditions. Tetrahedron, 2008, 64(36), 8435-8448.
[http://dx.doi.org/10.1016/j.tet.2008.04.106]
[70]
Binder, W.H. The ‘labile’ chemical bond: A perspective on mechanochemistry in polymers. Polymer (Guildf.), 2020, 202122639
[http://dx.doi.org/10.1016/j.polymer.2020.122639]
[71]
Diesendruck, C.E.; Moore, J.S. Mechanophores for self-healing applications.Self-healing polymers; Binder, W. H., Ed.; Wiley VCH Verlag GmbH & Co. KGaA: Weinheim, Germany 2013, 193-214.
[http://dx.doi.org/10.1002/9783527670185.ch8]
[72]
Kryger, M.J.; Ong, M.T.; Odom, S.A.; Sottos, N.R.; White, S.R.; Martinez, T.J.; Moore, J.S. Masked cyanoacrylates unveiled by mechanical force. J. Am. Chem. Soc., 2010, 132(13), 4558-4559.
[http://dx.doi.org/10.1021/ja1008932] [PMID: 20232911]
[73]
Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P. Activating catalysts with mechanical force. Nat. Chem., 2009, 1(2), 133-137.
[http://dx.doi.org/10.1038/nchem.167] [PMID: 21378826]
[74]
Wiggins, K.M.; Hudnall, T.W.; Tennyson, A.G.; Bielawski, C.W. Retracted article: Selective scission of pyridine–boronium complexes: mechanical generation of Brønsted bases and polymerizationcatalysts. J. Mater. Chem., 2011, 21(23), 8355-8359.
[http://dx.doi.org/10.1039/C0JM03619F]
[75]
Diesendruck, C.E.; Steinberg, B.D.; Sugai, N.; Silberstein, M.N.; Sottos, N.R.; White, S.R.; Braun, P.V.; Moore, J.S. Proton-coupled mechanochemical transduction: a mechanogenerated acid. J. Am. Chem. Soc., 2012, 134(30), 12446-12449.
[http://dx.doi.org/10.1021/ja305645x] [PMID: 22775564]
[76]
Canadell, J.; Goossens, H.; Klumperman, B. Self-healing materials based on disulfide links. Macromolecules, 2011, 44(8), 2536-2541.
[http://dx.doi.org/10.1021/ma2001492]
[77]
kailong, J.; Lingqiao, L.; John, T. Reprocessable cross-linked network polymers with alkoxyamine dynamic covalent bonds. US 2017/0081449 A1, 2017.
[78]
Yuan, C.; Zhang, M.Q.; Rong, M.Z. Application of alkoxyamine in self-healing of epoxy. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(18), 6558-6566.
[http://dx.doi.org/10.1039/C4TA00130C]
[79]
Ghezzo, F. Development and characterization of healable carbon fiber composites with a reversibly cross linked polymer. J. Compos. Mater., 2010, 44(13), 1587-1603.
[http://dx.doi.org/10.1177/0021998310363165]
[80]
Urdl, K.; Weiss, S.; Christöfl, P.; Kandelbauer, A.; Müller, U.; Kern, W. Diels-Alder modified self-healing melamine resin. Eur. Polym. J., 2020, 127109601
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109601]
[81]
Yang, S.; Wang, S.; Du, X.; Cheng, X.; Wang, H.; Du, Z. Mechanically and thermo-driven self-healing polyurethane elastomeric composites using inorganic–organic hybrid material as crosslinker. Polym. Chem., 2020, 11(6), 1161-1170.
[http://dx.doi.org/10.1039/C9PY01531K]
[82]
Zhang, Y.; Broekhuis, A.A.; Picchioni, F. Thermally self-healing polymeric materials: The next step to recycling thermoset polymers? Macromolecules, 2009, 42(6), 1906-1912.
[http://dx.doi.org/10.1021/ma8027672]
[83]
Cao, S. A thermal self-healing polyurethane thermoset based on phenolic urethane. Polym. J., 2017, 49(11), 775-781.
[http://dx.doi.org/10.1038/pj.2017.48]
[84]
Nevejans, S.; Ballard, N.; Miranda, J.I.; Reck, B.; Asua, J.M. The underlying mechanisms for self-healing of poly(disulfide)s. Phys. Chem. Chem. Phys., 2016, 18(39), 27577-27583.
[http://dx.doi.org/10.1039/C6CP04028D] [PMID: 27722578]
[85]
Chang, K.; Jia, H.; Gu, S-Y. A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Eur. Polym. J., 2019, 112, 822-831.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.11.005]
[86]
Wang, X.; Zhang, H.; Yang, B.; Wang, L.; Sun, H. A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds. New J. Chem., 2020, 44(15), 5746-5754.
[http://dx.doi.org/10.1039/C9NJ06457E]
[87]
Zhang, Z.P.; Lu, Y.; Rong, M.Z.; Zhang, M.Q. A thermally remendable and reprocessable crosslinked methyl methacrylate polymer based on oxygen insensitive dynamic reversible C–ON bonds. RSC Advances, 2016, 6(8), 6350-6357.
[http://dx.doi.org/10.1039/C5RA22275C] [PMID: 27588169]
[88]
Gragert, M.; Schunack, M.; Binder, W.H. Azide/alkyne-“click”-reactions of encapsulated reagents: toward self-healing materials. Macromol. Rapid Commun., 2011, 32(5), 419-425.
[http://dx.doi.org/10.1002/marc.201000687] [PMID: 21433193]
[89]
Szmechtyk, T.; Sienkiewicz, N.; Strzelec, K. Thermally induced self-healing epoxy/glass laminates with porous layers containing crystallized healing agent. Express Polym. Lett., 2018, 12(7), 640-648.
[http://dx.doi.org/10.3144/expresspolymlett.2018.54]
[90]
Rodriguez, R.; Bekas, D.G.; Flórez, S.; Kosarli, M.; Paipetis, A.S. Development of self-contained microcapsules for optimised catalyst position in self-healing materials. Polymer (Guildf.), 2020, 187122084
[http://dx.doi.org/10.1016/j.polymer.2019.122084]
[91]
Kim, H.; Yarin, A.L.; Lee, M.W. Self-healing corrosion protection film for marine environment. Compos., Part B Eng., 2020, 182107598
[http://dx.doi.org/10.1016/j.compositesb.2019.107598]
[92]
Amendola, V.; Meneghetti, M. Advances in self-healing optical materials. J. Mater. Chem., 2012, 22(47), 24501.
[http://dx.doi.org/10.1039/c2jm33464j]
[93]
Froimowicz, P.; Klinger, D.; Landfester, K. Photoreactive nanoparticles as nanometric building blocks for the generation of self-healing hydrogel thin films. Chemistry, 2011, 17(44), 12465-12475.
[http://dx.doi.org/10.1002/chem.201100685] [PMID: 21938746]
[94]
Froimowicz, P.; Frey, H.; Landfester, K. Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromol. Rapid Commun., 2011, 32(5), 468-473.
[http://dx.doi.org/10.1002/marc.201000643] [PMID: 21433201]
[95]
Otsuka, H.; Nagano, S.; Kobashi, Y.; Maeda, T.; Takahara, A. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem. Commun. (Camb.), 2010, 46(7), 1150-1152.
[http://dx.doi.org/10.1039/B916128G] [PMID: 20126743]
[96]
Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater., 2012, 24(29), 3975-3980.
[http://dx.doi.org/10.1002/adma.201201928] [PMID: 22730102]
[97]
Scott, T.F.; Schneider, A.D.; Cook, W.D.; Bowman, C.N. Photoinduced plasticity in cross-linked polymers. Science, 2005, 308(5728), 1615-1617.
[http://dx.doi.org/10.1126/science.1110505] [PMID: 15947185]
[98]
Gruendling, T.; Kaupp, M.; Blinco, J.P.; Barner-Kowollik, C. Photoinduced conjugation of dithioester- and trithiocarbonate-functional raft polymers with alkenes. Macromolecules, 2011, 44(1), 166-174.
[http://dx.doi.org/10.1021/ma101893u]
[99]
Skorb, E.V.; Sviridov, D.V.; Möhwald, H.; Shchukin, D.G. Light responsive protective coatings. Chem. Commun. (Camb.), 2009, (40), 6041-6043.
[http://dx.doi.org/10.1039/b914257f] [PMID: 19809637]
[100]
Skirtach, A.G.; Dejugnat, C.; Braun, D.; Susha, A.S.; Rogach, A.L.; Parak, W.J.; Möhwald, H.; Sukhorukov, G.B. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett., 2005, 5(7), 1371-1377.
[http://dx.doi.org/10.1021/nl050693n] [PMID: 16178241]
[101]
Abdallh, M.; Hearn, M.T.W.; Simon, G.P.; Saito, K. Light triggered self-healing of polyacrylate polymers crosslinked with 7-methacryloyoxycoumarin crosslinker. Polym. Chem., 2017, 8(38), 5875-5883.
[http://dx.doi.org/10.1039/C7PY01385J]
[102]
Wang, Y. UV-triggered self-healing polyurethane with enhanced stretchability and elasticity. Polymer (Guildf.), 2019, 172, 187-195.
[http://dx.doi.org/10.1016/j.polymer.2019.03.045]
[103]
Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater., 2020, 5(8), 562-583.
[http://dx.doi.org/10.1038/s41578-020-0202-4]
[104]
Kim, S.; Kim, B-H.; Oh, M.; Park, D.H.; Lee, S. Repeatable crack self-healing by photochemical [2 + 2] cycloaddition of tce-co-dce monomers enclosed in homopolymer microcapsules. Polymers (Basel), 2019, 11(1), 104.
[http://dx.doi.org/10.3390/polym11010104] [PMID: 30960087]
[105]
Fang, Y.; Du, X.; Du, Z.; Wang, H.; Cheng, X. Light- and heat-triggered polyurethane based on dihydroxyl anthracene derivatives for self-healing applications. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(17), 8010-8017.
[http://dx.doi.org/10.1039/C7TA00871F]
[106]
Zhao, D. UV light curable self-healing superamphiphobic coatings by photopromoted disulfide exchange reaction. ACS Appl. Polym. Mater., 2019, 1(11), 2951-2960.
[http://dx.doi.org/10.1021/acsapm.9b00656]
[107]
Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. Engl., 2011, 50(7), 1660-1663.
[http://dx.doi.org/10.1002/anie.201003888] [PMID: 21308927]
[108]
Ghosh, B.; Urban, M.W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science, 2009, 323(5920), 1458-1460.
[http://dx.doi.org/10.1126/science.1167391] [PMID: 19286550]
[109]
Thangavel, G.; Tan, M.W.M.; Lee, P.S. Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg., 2019, 6(1), 29.
[http://dx.doi.org/10.1186/s40580-019-0199-9] [PMID: 31414249]
[110]
Liu, H. Ultraviolet and infrared two-wavelength modulated self-healing materials based on azobenzene-functionalized carbon nanotubes. Compos. Commun., 2020, 19, 233-238.
[http://dx.doi.org/10.1016/j.coco.2020.03.014]
[111]
Zhang, Y-T.; Yu, H-C.; Shen, M-C.; Chern, Y-T.; Li, C-C. Synthesis and application of self-healing microcapsules containing curable glue. Mater. Chem. Phys., 2020, 240122161
[http://dx.doi.org/10.1016/j.matchemphys.2019.122161]
[112]
Qu, J.; Zhao, X.; Ma, P.X.; Guo, B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater., 2017, 58, 168-180.
[http://dx.doi.org/10.1016/j.actbio.2017.06.001] [PMID: 28583902]
[113]
Jay, J.I.; Langheinrich, K.; Hanson, M.C.; Mahalingam, A.; Kiser, P.F. Unequal stoichiometry between crosslinking moieties affects the properties of transient networks formed by dynamic covalent crosslinks. Soft Matter, 2011, 7(12), 5826.
[http://dx.doi.org/10.1039/c1sm05209h]
[114]
Sharma, P.K.; Taneja, S.; Singh, Y. Hydrazone-linkage-based self-healing and injectable xanthan-poly(ethylene glycol) hydrogels for controlled drug release and 3D cell culture. ACS Appl. Mater. Interfaces, 2018, 10(37), 30936-30945.
[http://dx.doi.org/10.1021/acsami.8b07310] [PMID: 30148349]
[115]
Haldar, U.; Bauri, K.; Li, R.; Faust, R.; De, P. Polyisobutylene-based ph-responsive self-healing polymeric gels. ACS Appl. Mater. Interfaces, 2015, 7(16), 8779-8788.
[http://dx.doi.org/10.1021/acsami.5b01272] [PMID: 25844579]
[116]
Yang, Q.; Lv, J.; Li, P. A pH-responsive self-healing gel with crosslinking of cucurbituril (CB[ n ]) via hydrogen bonding. Chem. Lett., 2018, 47(2), 192-195.
[http://dx.doi.org/10.1246/cl.170886]
[117]
Khatib, M.; Zohar, O.; Saliba, W.; Srebnik, S.; Haick, H. Highly efficient and water‐insensitive self‐healing elastomer for wet and underwater electronics. Adv. Funct. Mater., 2020, 30(22)1910196
[http://dx.doi.org/10.1002/adfm.201910196]
[118]
Khatib, M.; Zohar, O.; Saliba, W.; Haick, H. A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations. Adv. Mater., 2020, 32(17)e2000246
[http://dx.doi.org/10.1002/adma.202000246] [PMID: 32173928]
[119]
Romero, N.A.; Parker, W.O.; Swager, T.M. Functional, redox-responsive poly(phenylene sulfide)-based gels. Macromolecules, 2019, 52(21), 8256-8265.
[http://dx.doi.org/10.1021/acs.macromol.9b01855]
[120]
Liu, H.; Rong, L.; Wang, B.; Xie, R.; Sui, X.; Xu, H.; Zhang, L.; Zhong, Y.; Mao, Z. Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr. Polym., 2017, 176, 299-306.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.085] [PMID: 28927612]
[121]
Wu, J.; Wang, L.; Yu, H. Zain-ul, Abdin; Khan, R. U.; Haroon, M. Ferrocene-based redox-responsive polymer gels: Synthesis, structures and applications. J. Organomet. Chem., 2017, 828, 38-51.
[http://dx.doi.org/10.1016/j.jorganchem.2016.10.041]
[122]
Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun., 2011, 2(1), 511.
[http://dx.doi.org/10.1038/ncomms1521] [PMID: 22027591]
[123]
Lv, L-P.; Zhao, Y.; Vilbrandt, N.; Gallei, M.; Vimalanandan, A.; Rohwerder, M.; Landfester, K.; Crespy, D. Redox responsive release of hydrophobic self-healing agents from polyaniline capsules. J. Am. Chem. Soc., 2013, 135(38), 14198-14205.
[http://dx.doi.org/10.1021/ja405279t] [PMID: 23957577]
[124]
Peng, L. Electrochemical redox responsive supramolecular self-healing hydrogels based on host–guest interaction. Polym. Chem., 2015, 6(19), 3652-3659.
[http://dx.doi.org/10.1039/C5PY00296F]
[125]
Shi, S.; Goto, T.; Cho, S.; Sekino, T. Electrochemically assisted room‐temperature crack healing of ceramic‐based composites. J. Am. Ceram. Soc., 2019, 102(7), 4236-4246.
[http://dx.doi.org/10.1111/jace.16264]
[126]
Williams, K.A.; Boydston, A.J.; Bielawski, C.W. Towards electrically conductive, self-healing materials. J. R. Soc. Interface, 2007, 4(13), 359-362.
[http://dx.doi.org/10.1098/rsif.2006.0202] [PMID: 17251165]
[127]
Bandodkar, A.J.; López, C.S.; Vinu Mohan, A.M.; Yin, L.; Kumar, R.; Wang, J. All-printed magnetically self-healing electrochemical devices. Sci. Adv., 2016, 2(11)e1601465
[http://dx.doi.org/10.1126/sciadv.1601465] [PMID: 27847875]
[128]
Shibaev, A.V.; Smirnova, M.E.; Kessel, D.E.; Bedin, S.A.; Razumovskaya, I.V.; Philippova, O.E. Remotely self-healable, shapeable and ph-sensitive dual cross-linked polysaccharide hydrogels with fast response to magnetic field. Nanomaterials (Basel), 2021, 11(5), 1271.
[http://dx.doi.org/10.3390/nano11051271] [PMID: 34066084]
[129]
G. V. research. Self-healing Materials Market Size, Share & Trends Analysis Report By Product (Concrete, Coatings), By Technology (Reversible Polymers), By Application (Construction, Automotive), And Segment Forecasts, 2019 - 2025,” San fransisco, USA, market analysis report GVR-1-68038-829-9. 2019. Available from: https://www.grandviewresearch.com/industry-analysis/self-healing-materials
[130]
F. market Research. Self-Healing Concrete Market to Develop at 34% CAGR by 2027 | Market Research Future (MRFR), Pune, India, Market overview. 2021. Available from: https://www. globenewswire.com/news-release/2021/04/08/2207014/0/en/Self-Healing-Concrete-Market-to-Develop-at-34-CAGR-by-2027-Market-Research-Future-MRFR.html
[131]
Smyth, L. Self-healing materials and the automotive industry. 2020. Available from: https://www.engineerlive.com/content/self-healing-materials-and-automotive-industry
[132]
Je, P.C. Manufacturing challenges in self-healing technology for polymer composites — a review. J. Mater. Res. Technol., 2020, 9(4), 7370-7379.
[http://dx.doi.org/10.1016/j.jmrt.2020.04.082]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy