Mini-Review Article

Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned

Author(s): Valeria Graceffa*

Volume 22, Issue 3, 2022

Published on: 28 July, 2021

Page: [191 - 213] Pages: 23

DOI: 10.2174/1566523221666210728141924

Price: $65

Abstract

Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies have the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, the majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.

Keywords: Lysosomal storage diseases, cell therapies, gene therapy, cross-correction, lysosomal enzymes, GVHD.

Graphical Abstract

[1]
Stepien KM, Roncaroli F, Turton N, et al. Mechanisms of mitochondrial dysfunction in lysosomal storage disorders: a review. J Clin Med 2020; 9(8): 2596.
[http://dx.doi.org/10.3390/jcm9082596] [PMID: 32796538]
[2]
van den Broek BTA, van Doorn J, Hegeman CV, et al. Hurdles in treating Hurler disease: potential routes to achieve a “real” cure. Blood Adv 2020; 4(12): 2837-49.
[http://dx.doi.org/10.1182/bloodadvances.2020001708] [PMID: 32574368]
[3]
Graceffa V. Therapeutic potential of reactive oxygen species: state of the art and recent advances. SLAS Technol 2021; 26(2): 140-58.
[http://dx.doi.org/10.1177/2472630320977450] [PMID: 33345675]
[4]
Tanpaiboon P. Practical management of lysosomal storage disorders (LSDs). Transl Sci Rare Dis 2019; 4: 133-57.
[http://dx.doi.org/10.3233/TRD-190047]
[5]
Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA. Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 2010; 25(2): 102-15.
[http://dx.doi.org/10.1152/physiol.00041.2009] [PMID: 20430954]
[6]
Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis 2017; 40(4): 543-54.
[http://dx.doi.org/10.1007/s10545-017-0052-4] [PMID: 28560469]
[7]
Colella P, Mingozzi F. Gene therapy for pompe disease: the time is now. Hum Gene Ther 2019; 30(10): 1245-62.
[http://dx.doi.org/10.1089/hum.2019.109] [PMID: 31298581]
[8]
Hendrickx G, Danyukova T, Baranowsky A, et al. Enzyme replacement therapy in mice lacking arylsulfatase B targets bone-remodeling cells, but not chondrocytes. Hum Mol Genet 2020; 29(5): 803-16.
[http://dx.doi.org/10.1093/hmg/ddaa006] [PMID: 31943020]
[9]
Gonzalez A, Valeiras M, Sidransky E, Tayebi N. Lysosomal integral membrane protein-2: a new player in lysosome-related pathology. Mol Genet Metab 2014; 111(2): 84-91.
[http://dx.doi.org/10.1016/j.ymgme.2013.12.005] [PMID: 24389070]
[10]
Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 2001; 106(2): 157-69.
[http://dx.doi.org/10.1016/S0092-8674(01)00421-4] [PMID: 11511344]
[11]
Iglesias DM, El-Kares R, Taranta A, et al. Stem cell microvesicles transfer cystinosin to human cystinotic cells and reduce cystine accumulation in vitro. PLoS One 2012; 7(8)e42840
[http://dx.doi.org/10.1371/journal.pone.0042840] [PMID: 22912749]
[12]
Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016; 32: 65-74.
[http://dx.doi.org/10.1016/j.arr.2016.05.001] [PMID: 27238186]
[13]
Eng CM, Banikazemi M, Gordon RE, et al. A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 2001; 68(3): 711-22.
[http://dx.doi.org/10.1086/318809] [PMID: 11179018]
[14]
Kishnani PS, Goldenberg PC, DeArmey SL, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 2010; 99(1): 26-33.
[http://dx.doi.org/10.1016/j.ymgme.2009.08.003] [PMID: 19775921]
[15]
Banugaria SG, Patel TT, Mackey J, et al. Persistence of high sustained antibodies to enzyme replacement therapy despite extensive immunomodulatory therapy in an infant with Pompe disease: need for agents to target antibody-secreting plasma cells. Mol Genet Metab 2012; 105(4): 677-80.
[http://dx.doi.org/10.1016/j.ymgme.2012.01.019] [PMID: 22365055]
[16]
Banugaria SG, Prater SN, Ng Y-K, et al. The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet Med 2011; 13(8): 729-36.
[http://dx.doi.org/10.1097/GIM.0b013e3182174703] [PMID: 21637107]
[17]
Sun B, Kulis MD, Young SP, et al. Immunomodulatory gene therapy prevents antibody formation and lethal hypersensitivity reactions in murine pompe disease. Mol Ther 2010; 18(2): 353-60.
[http://dx.doi.org/10.1038/mt.2009.195] [PMID: 19690517]
[18]
Messinger YH, Mendelsohn NJ, Rhead W, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med 2012; 14(1): 135-42.
[http://dx.doi.org/10.1038/gim.2011.4] [PMID: 22237443]
[19]
Hunley TE, Corzo D, Dudek M, et al. Nephrotic syndrome complicating alpha-glucosidase replacement therapy for Pompe disease. Pediatrics 2004; 114(4): e532-5.
[http://dx.doi.org/10.1542/peds.2003-0988-L] [PMID: 15466083]
[20]
Medin JA, Tudor M, Simovitch R, et al. Correction in trans for Fabry disease: expression, secretion and uptake of alpha-galactosidase A in patient-derived cells driven by a high-titer recombinant retroviral vector. Proc Natl Acad Sci USA 1996; 93(15): 7917-22.
[http://dx.doi.org/10.1073/pnas.93.15.7917] [PMID: 8755577]
[21]
Fuller M, Mellett N, Hein LK, Brooks DA, Meikle PJ. Absence of α-galactosidase cross-correction in Fabry heterozygote cultured skin fibroblasts. Mol Genet Metab 2015; 114(2): 268-73.
[http://dx.doi.org/10.1016/j.ymgme.2014.11.005] [PMID: 25468650]
[22]
Alroy J, Garganta C, Wiederschain G. Secondary biochemical and morphological consequences in lysosomal storage diseases. Biochemistry (Mosc) 2014; 79(7): 619-36.
[http://dx.doi.org/10.1134/S0006297914070049] [PMID: 25108325]
[23]
Matte U, Baldo G, Giugliani R. Non viral gene transfer approaches for lysosomal storage disorders. Non-viral gene therapy 2011; 147-68.
[http://dx.doi.org/10.5772/18106]
[24]
Müntze J, Gensler D, Maniuc O, et al. Oral chaperone therapy migalastat for treating fabry disease: enzymatic response and serum biomarker changes after 1 year. Clin Pharmacol Ther 2019; 105(5): 1224-33.
[http://dx.doi.org/10.1002/cpt.1321] [PMID: 30506669]
[25]
Ferlinz K, Kopal G, Bernardo K, et al. Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J Biol Chem 2001; 276(38): 35352-60.
[http://dx.doi.org/10.1074/jbc.M103066200] [PMID: 11451951]
[26]
Reczek D, Schwake M, Schröder J, et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 2007; 131(4): 770-83.
[http://dx.doi.org/10.1016/j.cell.2007.10.018] [PMID: 18022370]
[27]
Aflaki E, Stubblefield BK, Maniwang E, et al. Macrophage models of gaucher disease for evaluating disease pathogenesis and candidate drugs. Sci Transl Med 2014; 6(240): 240ra73-3.
[http://dx.doi.org/10.1126/scitranslmed.3008659]
[28]
Willingham MC, Pastan IH, Sahagian GG, Jourdian GW, Neufeld EF. Morphologic study of the internalization of a lysosomal enzyme by the mannose 6-phosphate receptor in cultured Chinese hamster ovary cells. Proc Natl Acad Sci USA 1981; 78(11): 6967-71.
[http://dx.doi.org/10.1073/pnas.78.11.6967] [PMID: 6273898]
[29]
Otomo T, Schweizer M, Kollmann K, et al. Mannose 6 phosphorylation of lysosomal enzymes controls B cell functions. J Cell Biol 2015; 208(2): 171-80.
[http://dx.doi.org/10.1083/jcb.201407077] [PMID: 25601403]
[30]
Fischetto R, Palladino V, Mancardi MM, et al. Substrate reduction therapy with Miglustat in pediatric patients with GM1 type 2 gangliosidosis delays neurological involvement: A multicenter experience. Mol Genet Genomic Med 2020; 8(10)e1371https://doi.org/https://doi.org/10.1002/mgg3.1371
[http://dx.doi.org/10.1002/mgg3.1371] [PMID: 32779865]
[31]
Dersh D, Iwamoto Y, Argon Y. Tay-Sachs disease mutations in HEXA target the α chain of hexosaminidase A to endoplasmic reticulum-associated degradation. Mol Biol Cell 2016; 27(24): 3813-27.
[http://dx.doi.org/10.1091/mbc.E16-01-0012] [PMID: 27682588]
[32]
Tsuji D, Kuroki A, Ishibashi Y, Itakura T, Itoh K. Metabolic correction in microglia derived from Sandhoff disease model mice. J Neurochem 2005; 94(6): 1631-8.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03317.x] [PMID: 16092933]
[33]
Rigat B, Wang W, Leung A, Mahuran DJ. Two mechanisms for the recapture of extracellular GM2 activator protein: evidence for a major secretory form of the protein. Biochemistry 1997; 36(27): 8325-31.
[http://dx.doi.org/10.1021/bi970571c] [PMID: 9204879]
[34]
Glombitza GJ, Becker E, Kaiser HW, Sandhoff K. Biosynthesis, processing, and intracellular transport of GM2 activator protein in human epidermal keratinocytes. The lysosomal targeting of the GM2 activator is independent of a mannose-6-phosphate signal. J Biol Chem 1997; 272(8): 5199-207.
[http://dx.doi.org/10.1074/jbc.272.8.5199] [PMID: 9030589]
[35]
Sleat DE, Della Valle MC, Zheng H, Moore DF, Lobel P. The mannose 6-phosphate glycoprotein proteome. J Proteome Res 2008; 7(7): 3010-21.
[http://dx.doi.org/10.1021/pr800135v] [PMID: 18507433]
[36]
Leal AF, Benincore-Flórez E, Solano-Galarza D, et al. GM2 gangliosidoses: clinical features, pathophysiological aspects, and current therapies. Int J Mol Sci 2020; 21(17): 6213.
[http://dx.doi.org/10.3390/ijms21176213] [PMID: 32867370]
[37]
Klein D, Yaghootfam A, Matzner U, Koch B, Braulke T, Gieselmann V. Mannose 6-phosphate receptor-dependent endocytosis of lysosomal enzymes is increased in sulfatide-storing kidney cells. Biol Chem 2009; 390(1): 41-8.
[http://dx.doi.org/10.1515/BC.2009.009] [PMID: 19007310]
[38]
Zhang X-Y, Dinh A, Cronin J, Li S-C, Reiser J. Cellular uptake and lysosomal delivery of galactocerebrosidase tagged with the HIV Tat protein transduction domain. J Neurochem 2008; 104(4): 1055-64.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05030.x] [PMID: 17986221]
[39]
Ni X, Morales CR. The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic 2006; 7(7): 889-902.
[http://dx.doi.org/10.1111/j.1600-0854.2006.00429.x] [PMID: 16787399]
[40]
Dhami R, Schuchman EH. Mannose 6-phosphate receptor-mediated uptake is defective in acid sphingomyelinase-deficient macrophages: implications for Niemann-Pick disease enzyme replacement therapy. J Biol Chem 2004; 279(2): 1526-32.
[http://dx.doi.org/10.1074/jbc.M309465200] [PMID: 14557264]
[41]
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta 2013; 1832(11): 1866-81.https://doi.org/https://doi.org/10.1016/j.bbadis.2013.01.019
[http://dx.doi.org/10.1016/j.bbadis.2013.01.019] [PMID: 23402926]
[42]
Schwake M, Schröder B, Saftig P. Lysosomal membrane proteins and their central role in physiology. Traffic 2013; 14(7): 739-48.
[http://dx.doi.org/10.1111/tra.12056] [PMID: 23387372]
[43]
Kohlschütter A, Schulz A, Bartsch U, Storch S. Current and emerging treatment strategies for neuronal ceroid lipofuscinoses. CNS Drugs 2019; 33(4): 315-25.
[http://dx.doi.org/10.1007/s40263-019-00620-8] [PMID: 30877620]
[44]
Qian M, Sleat DE, Zheng H, Moore D, Lobel P. Proteomics analysis of serum from mutant mice reveals lysosomal proteins selectively transported by each of the two mannose 6-phosphate receptors. Mol Cell Proteomics 2008; 7(1): 58-70.
[http://dx.doi.org/10.1074/mcp.M700217-MCP200] [PMID: 17848585]
[45]
Rijnboutt S, Kal AJ, Geuze HJ, Aerts H, Strous GJ. Mannose 6-phosphate-independent targeting of cathepsin D to lysosomes in HepG2 cells. J Biol Chem 1991; 266(35): 23586-92.
[http://dx.doi.org/10.1016/S0021-9258(18)54323-4] [PMID: 1660878]
[46]
Doccini S, Sartori S, Maeser S, et al. Early infantile neuronal ceroid lipofuscinosis (CLN10 disease) associated with a novel mutation in CTSD. J Neurol 2016; 263(5): 1029-32.
[http://dx.doi.org/10.1007/s00415-016-8111-6] [PMID: 27072142]
[47]
Wang B, Shi GP, Yao PM, Li Z, Chapman HA, Brömme D. Human cathepsin F. Molecular cloning, functional expression, tissue localization, and enzymatic characterization. J Biol Chem 1998; 273(48): 32000-8.
[http://dx.doi.org/10.1074/jbc.273.48.32000] [PMID: 9822672]
[48]
Di Domenico C, Villani GRD, Di Napoli D, et al. Gene therapy for a mucopolysaccharidosis type I murine model with lentiviral-IDUA vector. Hum Gene Ther 2005; 16(1): 81-90.
[http://dx.doi.org/10.1089/hum.2005.16.81] [PMID: 15703491]
[49]
Zeng Y, He X, Danyukova T, Pohl S, Kermode AR. Toward engineering the mannose 6-phosphate elaboration pathway in plants for enzyme replacement therapy of lysosomal storage disorders. J Clin Med 2019; 8(12): 2190.
[http://dx.doi.org/10.3390/jcm8122190] [PMID: 31842258]
[50]
Daniele A, Tomanin R, Villani GRD, Zacchello F, Scarpa M, Di Natale P. Uptake of recombinant iduronate-2-sulfatase into neuronal and glial cells in vitro. Biochim Biophys Acta 2002; 1588(3): 203-9.https://doi.org/https://doi.org/10.1016/S0925-4439(02)00166-7
[http://dx.doi.org/10.1016/S0925-4439(02)00166-7] [PMID: 12393174]
[51]
Di Natale P, Vanacore B, Daniele A, Esposito S. Heparan N-sulfatase: in vitro mutagenesis of potential N-glycosylation sites. Biochem Biophys Res Commun 2001; 280(5): 1251-7.
[http://dx.doi.org/10.1006/bbrc.2001.4265] [PMID: 11162662]
[52]
Tardieu M, Zérah M, Husson B, et al. Intracerebral administration of adeno-associated viral vector serotype rh.10 carrying human SGSH and SUMF1 cDNAs in children with mucopolysaccharidosis type IIIA disease: results of a phase I/II trial. Hum Gene Ther 2014; 25(6): 506-16.
[http://dx.doi.org/10.1089/hum.2013.238] [PMID: 24524415]
[53]
Yogalingam G, Weber B, Meehan J, Rogers J, Hopwood JJ. Mucopolysaccharidosis type IIIB: characterisation and expression of wild-type and mutant recombinant alpha-N-acetylglucosaminidase and relationship with sanfilippo phenotype in an attenuated patient. Biochim Biophys Acta 2000; 1502(3): 415-25.
[http://dx.doi.org/10.1016/S0925-4439(00)00066-1] [PMID: 11068184]
[54]
Tardieu M, Zérah M, Gougeon M-L, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet Neurol 2017; 16(9): 712-20.
[http://dx.doi.org/10.1016/S1474-4422(17)30169-2] [PMID: 28713035]
[55]
Sleat DE, Kraus SR, Sohar I, Lackland H, Lobel P. Alpha-glucosidase and n-acetylglucosamine-6-sulphatase are the major mannose-6-phosphate glycoproteins in human urine. Biochem J 1997; 324(Pt 1): 33-9.
[http://dx.doi.org/10.1042/bj3240033]
[56]
Tomatsu S, Montaño AM, Gutierrez M, et al. Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase. Mol Genet Metab 2007; 91(1): 69-78.
[http://dx.doi.org/10.1016/j.ymgme.2007.01.004] [PMID: 17336563]
[57]
Distler J, Hieber V, Sahagian G, Schmickel R, Jourdian GW. Identification of mannose 6-phosphate in glycoproteins that inhibit the assimilation of beta-galactosidase by fibroblasts. Proc Natl Acad Sci USA 1979; 76(9): 4235-9.
[http://dx.doi.org/10.1073/pnas.76.9.4235] [PMID: 116230]
[58]
Kosuga M, Takahashi S, Sasaki K, et al. Adenovirus-mediated gene therapy for mucopolysaccharidosis VII: involvement of cross-correction in wide-spread distribution of the gene products and long-term effects of CTLA-4Ig coexpression. Mol Ther 2000; 1(5 Pt 1): 406-13.
[http://dx.doi.org/10.1006/mthe.2000.0067] [PMID: 10933961]
[59]
McCafferty EH, Scott LJ. Vestronidase Alfa: A Review in Mucopolysaccharidosis VII. BioDrugs 2019; 33(2): 233-40.
[http://dx.doi.org/10.1007/s40259-019-00344-7] [PMID: 30848434]
[60]
Gasingirwa M-C, Thirion J, Mertens-Strijthagen J, et al. Endocytosis of hyaluronidase-1 by the liver. Biochem J 2010; 430(2): 305-13.
[http://dx.doi.org/10.1042/BJ20100711] [PMID: 20572808]
[61]
Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford) 2011; 50(Suppl. 5): v4-v12.
[http://dx.doi.org/10.1093/rheumatology/ker394] [PMID: 22210669]
[62]
McVie-Wylie AJ, Lee KL, Qiu H, et al. Biochemical and pharmacological characterization of different recombinant acid alpha-glucosidase preparations evaluated for the treatment of Pompe disease. Mol Genet Metab 2008; 94(4): 448-55.
[http://dx.doi.org/10.1016/j.ymgme.2008.04.009] [PMID: 18538603]
[63]
Cardone M, Porto C, Tarallo A, et al. Abnormal mannose-6-phosphate receptor trafficking impairs recombinant alpha-glucosidase uptake in Pompe disease fibroblasts. PathoGenetics 2008; 1(1): 1-22.
[http://dx.doi.org/10.1186/1755-8417-1-6] [PMID: 19046416]
[64]
Sun H, Yang M, Haskins ME, Patterson DF, Wolfe JH. Retrovirus vector-mediated correction and cross-correction of lysosomal alpha-mannosidase deficiency in human and feline fibroblasts. Hum Gene Ther 1999; 10(8): 1311-9.
[http://dx.doi.org/10.1089/10430349950017996] [PMID: 10365662]
[65]
Roces DP, Lüllmann-Rauch R, Peng J, et al. Efficacy of enzyme replacement therapy in alpha-mannosidosis mice: a preclinical animal study. Hum Mol Genet 2004; 13(18): 1979-88.
[http://dx.doi.org/10.1093/hmg/ddh220] [PMID: 15269179]
[66]
Malm D, Nilssen Ø. Alpha-mannosidosis. Orphanet J Rare Dis 2008; 3(1): 21.
[http://dx.doi.org/10.1186/1750-1172-3-21] [PMID: 18651971]
[67]
Guffon N, Tylki-Szymanska A, Borgwardt L, et al. Recognition of alpha-mannosidosis in paediatric and adult patients: Presentation of a diagnostic algorithm from an international working group. Mol Genet Metab 2019; 126(4): 470-4.
[http://dx.doi.org/10.1016/j.ymgme.2019.01.024] [PMID: 30792122]
[68]
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73: 225-302.
[http://dx.doi.org/10.1016/bs.accb.2016.08.002] [PMID: 27816107]
[69]
Kyttälä A, Heinonen O, Peltonen L, Jalanko A. Expression and endocytosis of lysosomal aspartylglucosaminidase in mouse primary neurons. J Neurosci 1998; 18(19): 7750-6.
[http://dx.doi.org/10.1523/JNEUROSCI.18-19-07750.1998] [PMID: 9742145]
[70]
Alroy J, García-Moliner ML, Lee RE. The pathology of the skeleton 191 in lysosomal storage diseases, 874-92.
[71]
Autti T, Rapola J, Santavuori P, et al. Bone marrow transplantation in aspartylglucosaminuria-histopathological and MRI study. Neuropediatrics 1999; 30(6): 283-8.
[http://dx.doi.org/10.1055/s-2007-973506] [PMID: 10706021]
[72]
Panneerselvam K, Balasubramanian AS. Inhibition by lysosomal enzymes and mannose-6-phosphate of the phosphorylation of the lysosomal enzyme binding receptor protein from monkey brain. Biochem Biophys Res Commun 1989; 162(3): 1244-52.
[http://dx.doi.org/10.1016/0006-291X(89)90807-3] [PMID: 2475106]
[73]
Meng X-L, Eto Y, Schiffmann R, Shen J-S. HIV tat domain improves cross-correction of human galactocerebrosidase in a gene- and flanking sequence-dependent manner. Mol Ther Nucleic Acids 2013; 2(10): e130-0.
[http://dx.doi.org/10.1038/mtna.2013.57] [PMID: 24150577]
[74]
Monti E, Bonten E, D’Azzo A, et al. Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv Carbohydr Chem Biochem 2010; 64: 403-79.
[http://dx.doi.org/10.1016/S0065-2318(10)64007-3] [PMID: 20837202]
[75]
Franceschetti S, Canafoglia L, Panzica F. Sialidoses (Types I and II) BT.Atlas of Epilepsies; Panayiotopoulos.C P. London 2010; pp. 1243-6.
[http://dx.doi.org/10.1007/978-1-84882-128-6_183]
[76]
Sando GN, Ma GP, Lindsley KA, Wei YP. Intercellular transport of lysosomal acid lipase mediates lipoprotein cholesteryl ester metabolism in a human vascular endothelial cell-fibroblast coculture system. Cell Regul 1990; 1(9): 661-74.
[http://dx.doi.org/10.1091/mbc.1.9.661] [PMID: 2150334]
[77]
Aguisanda F, Yeh CD, Chen CZ, et al. Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics. Orphanet J Rare Dis 2017; 12(1): 120.
[http://dx.doi.org/10.1186/s13023-017-0670-9] [PMID: 28659158]
[78]
Conrad KS, Cheng T-W, Ysselstein D, et al. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat Commun 2017; 8(1): 1908.
[http://dx.doi.org/10.1038/s41467-017-02044-8] [PMID: 29199275]
[79]
Amrom D, Andermann F, Andermann E. Action myoclonus – renal failure syndrome. GeneReviews: Seattle, WA 2015; pp. 1-24.
[80]
Staudt C, Puissant E, Boonen M. Subcellular trafficking of mammalian lysosomal proteins: an extended view. Int J Mol Sci 2016; 18(1): 47.
[http://dx.doi.org/10.3390/ijms18010047] [PMID: 28036022]
[81]
Huemer M, Diodato D, Schwahn B, et al. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis 2017; 40(1): 21-48.
[http://dx.doi.org/10.1007/s10545-016-9991-4] [PMID: 27905001]
[82]
Cherqui S, Kalatzis V, Trugnan G, Antignac C. The targeting of cystinosin to the lysosomal membrane requires a tyrosine-based signal and a novel sorting motif. J Biol Chem 2001; 276(16): 13314-21.
[http://dx.doi.org/10.1074/jbc.M010562200] [PMID: 11150305]
[83]
Storch S, Pohl S, Quitsch A, Falley K, Braulke T. C-terminal prenylation of the CLN3 membrane glycoprotein is required for efficient endosomal sorting to lysosomes. Traffic 2007; 8(4): 431-44.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00537.x] [PMID: 17286803]
[84]
Kida E, Kaczmarski W, Golabek AA, Kaczmarski A, Michalewski M, Wisniewski KE. Analysis of intracellular distribution and trafficking of the CLN3 protein in fusion with the green fluorescent protein in vitro. Mol Genet Metab 1999; 66(4): 265-71.
[http://dx.doi.org/10.1006/mgme.1999.2837] [PMID: 10191113]
[85]
Metcalf DJ, Calvi AA, Seaman MNj, Mitchison HM, Cutler DF. Loss of the batten disease gene CLN3 prevents exit from the TGN of the mannose 6-phosphate receptor. Traffic 2008; 9(11): 1905-14.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00807.x] [PMID: 18817525]
[86]
Sharifi A, Kousi M, Sagné C, et al. Expression and lysosomal targeting of CLN7, a major facilitator superfamily transporter associated with variant late-infantile neuronal ceroid lipofuscinosis. Hum Mol Genet 2010; 19(22): 4497-514.
[http://dx.doi.org/10.1093/hmg/ddq381] [PMID: 20826447]
[87]
Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 2003; 72: 395-447.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161800] [PMID: 12651740]
[88]
Stauber T, Jentsch TJ. Sorting motifs of the endosomal/lysosomal CLC chloride transporters. J Biol Chem 2010; 285(45): 34537-48.
[http://dx.doi.org/10.1074/jbc.M110.162545] [PMID: 20817731]
[89]
EL-Sobky T. A.; El-Haddad, A.; Elsobky, E.; Elsayed, S. M.; Sakr, H. M. Reversal of skeletal radiographic pathology in a case of malignant infantile osteopetrosis following hematopoietic stem cell transplantation. Egypt J Radiol Nucl Med 2017; 48(1): 237-43.
[http://dx.doi.org/10.1016/j.ejrnm.2016.12.013]
[90]
Orchard PJ, Fasth AL, Le Rademacher J, et al. Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood 2015; 126(2): 270-6.
[http://dx.doi.org/10.1182/blood-2015-01-625541] [PMID: 26012570]
[91]
Vergarajauregui S, Puertollano R. Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 2006; 7(3): 337-53.
[http://dx.doi.org/10.1111/j.1600-0854.2006.00387.x] [PMID: 16497227]
[92]
Fedele AO, Isenmann S, Kamei M, et al. Lysosomal N-acetyltransferase interacts with ALIX and is detected in extracellular vesicles. Biochim Biophys Acta Mol Cell Res 2018; 1865(10): 1451-64.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.001] [PMID: 29981367]
[93]
Fan X, Tkachyova I, Sinha A, Rigat B, Mahuran D. Characterization of the biosynthesis, processing and kinetic mechanism of action of the enzyme deficient in mucopolysaccharidosis IIIC. PLoS One 2011; 6(9)e24951
[http://dx.doi.org/10.1371/journal.pone.0024951] [PMID: 21957468]
[94]
Morin P, Sagné C, Gasnier B. Functional characterization of wild-type and mutant human sialin. EMBO J 2004; 23(23): 4560-70.
[http://dx.doi.org/10.1038/sj.emboj.7600464] [PMID: 15510212]
[95]
Luzio JP. CLN8 safeguards lysosome biogenesis. Nat Cell Biol 2018; 20(12): 1333-5.
[http://dx.doi.org/10.1038/s41556-018-0240-y] [PMID: 30397316]
[96]
Liu L, Lee W-S, Doray B, Kornfeld S. Engineering of GlcNAc-1-phosphotransferase for production of highly phosphorylated lysosomal enzymes for enzyme replacement therapy. Mol Ther Methods Clin Dev 2017; 5: 59-65.
[http://dx.doi.org/10.1016/j.omtm.2017.03.006] [PMID: 28480305]
[97]
van Meel E, Qian Y, Kornfeld SA. Mislocalization of phosphotransferase as a cause of mucolipidosis III αβ. Proc Natl Acad Sci USA 2014; 111(9): 3532-7.
[http://dx.doi.org/10.1073/pnas.1401417111] [PMID: 24550498]
[98]
Yang M, Cho SY, Park H-D, et al. Clinical, biochemical and molecular characterization of Korean patients with mucolipidosis II/III and successful prenatal diagnosis. Orphanet J Rare Dis 2017; 12(1): 11.
[http://dx.doi.org/10.1186/s13023-016-0556-2] [PMID: 28095893]
[99]
Schlotawa L, Adang LA, Radhakrishnan K, Ahrens-Nicklas RC. Multiple sulfatase deficiency: a disease comprising mucopolysaccharidosis, sphingolipidosis, and more caused by a defect in posttranslational modification. Int J Mol Sci 2020; 21(10): 3448.
[http://dx.doi.org/10.3390/ijms21103448] [PMID: 32414121]
[100]
Leinekugel P, Michel S, Conzelmann E, Sandhoff K. Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 1992; 88(5): 513-23.
[http://dx.doi.org/10.1007/BF00219337] [PMID: 1348043]
[101]
Conzelmann E, Sandhoff K. Partial enzyme deficiencies: residual activities and the development of neurological disorders. Dev Neurosci 1983-1984; 6(1): 58-71.
[http://dx.doi.org/10.1159/000112332] [PMID: 6421563]
[102]
Spada M, Pagliardini S, Yasuda M, et al. High incidence of later-onset fabry disease revealed by newborn screening. Am J Hum Genet 2006; 79(1): 31-40.
[http://dx.doi.org/10.1086/504601] [PMID: 16773563]
[103]
Naphade S, Sharma J, Gaide Chevronnay HP, et al. Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 2015; 33(1): 301-9.
[http://dx.doi.org/10.1002/stem.1835] [PMID: 25186209]
[104]
Rocca CJ, Cherqui S. Potential use of stem cells as a therapy for cystinosis. Pediatr Nephrol 2019; 34(6): 965-73.
[http://dx.doi.org/10.1007/s00467-018-3974-7] [PMID: 29789935]
[105]
Klein D, Büssow H, Fewou SN, Gieselmann V. Exocytosis of storage material in a lysosomal disorder. Biochem Biophys Res Commun 2005; 327(3): 663-7.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.054] [PMID: 15649398]
[106]
Canonico B, Cesarini E, Salucci S, et al. Defective autophagy, mitochondrial clearance and lipophagy in niemann-pick type B lymphocytes. PLoS One 2016; 11(10)e0165780
[http://dx.doi.org/10.1371/journal.pone.0165780] [PMID: 27798705]
[107]
Strauss K, Goebel C, Runz H, et al. Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease. J Biol Chem 2010; 285(34): 26279-88.
[http://dx.doi.org/10.1074/jbc.M110.134775] [PMID: 20554533]
[108]
Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci 112(12): E1433 LP-.
[http://dx.doi.org/10.1073/pnas.1418401112]
[109]
Pauly DF, Fraites TJ, Toma C, et al. Intercellular transfer of the virally derived precursor form of acid alpha-glucosidase corrects the enzyme deficiency in inherited cardioskeletal myopathy Pompe disease. Hum Gene Ther 2001; 12(5): 527-38.
[http://dx.doi.org/10.1089/104303401300042447] [PMID: 11268285]
[110]
Haney MJ, Klyachko NL, Harrison EB, Zhao Y, Kabanov AV, Batrakova EV. TPP1 Delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease. Adv Healthc Mater 2019; 8(11)e1801271
[http://dx.doi.org/10.1002/adhm.201801271] [PMID: 30997751]
[111]
Thoene JG, DelMonte MA, Mullet J. Microvesicle delivery of a lysosomal transport protein to ex vivo rabbit cornea. Mol Genet Metab Rep 2020; 23: 100587.
[http://dx.doi.org/10.1016/j.ymgmr.2020.100587] [PMID: 32280591]
[112]
Harrison F, Yeagy BA, Rocca CJ, Kohn DB, Salomon DR, Cherqui S. Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis. Mol Ther 2013; 21(2): 433-44.
[http://dx.doi.org/10.1038/mt.2012.214] [PMID: 23089735]
[113]
Thoene J, Goss T, Witcher M, et al. In vitro correction of disorders of lysosomal transport by microvesicles derived from baculovirus-infected Spodoptera cells. Mol Genet Metab 2013; 109(1): 77-85.
[http://dx.doi.org/10.1016/j.ymgme.2013.01.014] [PMID: 23465695]
[114]
Elliger SS, Elliger CA, Lang C, Watson GL. Enhanced secretion and uptake of beta-glucuronidase improves adeno-associated viral-mediated gene therapy of mucopolysaccharidosis type VII mice. Mol Ther 2002; 5(5 Pt 1): 617-26.
[http://dx.doi.org/10.1006/mthe.2002.0594] [PMID: 11991753]
[115]
Sun B, Zhang H, Benjamin DKJ Jr, et al. Enhanced efficacy of an AAV vector encoding chimeric, highly secreted acid alpha-glucosidase in glycogen storage disease type II. Mol Ther 2006; 14(6): 822-30.
[http://dx.doi.org/10.1016/j.ymthe.2006.08.001] [PMID: 16987711]
[116]
Xia H, Mao Q, Davidson BL. The HIV Tat protein transduction domain improves the biodistribution of beta-glucuronidase expressed from recombinant viral vectors. Nat Biotechnol 2001; 19(7): 640-4.
[http://dx.doi.org/10.1038/90242] [PMID: 11433275]
[117]
Orii KO, Grubb JH, Vogler C, et al. Defining the pathway for Tat-mediated delivery of beta-glucuronidase in cultured cells and MPS VII mice. Mol Ther 2005; 12(2): 345-52.
[http://dx.doi.org/10.1016/j.ymthe.2005.02.031] [PMID: 16043103]
[118]
Lee KO, Luu N, Kaneski CR, Schiffmann R, Brady RO, Murray GJ. Improved intracellular delivery of glucocerebrosidase mediated by the HIV-1 TAT protein transduction domain. Biochem Biophys Res Commun 2005; 337(2): 701-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.207] [PMID: 16223608]
[119]
Higuchi K, Yoshimitsu M, Fan X, et al. Alpha-galactosidase A-Tat fusion enhances storage reduction in hearts and kidneys of Fabry mice. Mol Med 2010; 16(5-6): 216-21.
[http://dx.doi.org/10.2119/molmed.2009.00163] [PMID: 20454522]
[120]
Matsuoka K, Tsuji D, Aikawa S, Matsuzawa F, Sakuraba H, Itoh K. Introduction of an N-glycan sequon into HEXA enhances human beta-hexosaminidase cellular uptake in a model of Sandhoff disease. Mol Ther 2010; 18(8): 1519-26.
[http://dx.doi.org/10.1038/mt.2010.113] [PMID: 20571546]
[121]
Do MA, Levy D, Brown A, Marriott G, Lu B. Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles. Sci Rep 2019; 9(1): 17274.
[http://dx.doi.org/10.1038/s41598-019-53844-5] [PMID: 31754156]
[122]
LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc Natl Acad Sci USA 2004; 101(9): 3083-8.
[http://dx.doi.org/10.1073/pnas.0308728100] [PMID: 14976248]
[123]
Di Domenico C, Di Napoli D, Gonzalez Y, et al. Limited transgene immune response and long-term expression of human alpha-L-iduronidase in young adult mice with mucopolysaccharidosis type i by liver-directed gene therapy. Hum Gene Ther 2006; 17(11): 1112-21.
[http://dx.doi.org/10.1089/hum.2006.17.1112] [PMID: 17044753]
[124]
Sawamoto K, Karumuthil-Melethil S, Khan S, et al. Liver-targeted AAV8 gene therapy ameliorates skeletal and cardiovascular pathology in a mucopolysaccharidosis IVA murine model. Mol Ther Methods Clin Dev 2020; 18: 50-61.
[http://dx.doi.org/10.1016/j.omtm.2020.05.015] [PMID: 32577432]
[125]
Raben N, Lu N, Nagaraju K, et al. Conditional tissue-specific expression of the acid α-glucosidase (GAA) gene in the GAA knockout mice: implications for therapy. Hum Mol Genet 2001; 10(19): 2039-47.
[http://dx.doi.org/10.1093/hmg/10.19.2039] [PMID: 11590121]
[126]
Moris D, Lu L, Qian S. Mechanisms of liver-induced tolerance. Curr Opin Organ Transplant 2017; 22(1): 71-8.
[http://dx.doi.org/10.1097/MOT.0000000000000380] [PMID: 27984276]
[127]
Ziegler RJ, Lonning SM, Armentano D, et al. AAV2 vector harboring a liver-restricted promoter facilitates sustained expression of therapeutic levels of alpha-galactosidase A and the induction of immune tolerance in Fabry mice. Mol Ther 2004; 9(2): 231-40.
[http://dx.doi.org/10.1016/j.ymthe.2003.11.015] [PMID: 14759807]
[128]
Aronovich EL, Hall BC, Bell JB, McIvor RS, Hackett PB. Quantitative analysis of α-L-iduronidase expression in immunocompetent mice treated with the Sleeping Beauty transposon system. PLoS One 2013; 8(10): e78161.
[http://dx.doi.org/10.1371/journal.pone.0078161] [PMID: 24205141]
[129]
Aronovich EL, Bell JB, Khan SA, et al. Systemic correction of storage disease in MPS I NOD/SCID mice using the sleeping beauty transposon system. Mol Ther 2009; 17(7): 1136-44.
[http://dx.doi.org/10.1038/mt.2009.87] [PMID: 19384290]
[130]
Aronovich EL, Bell JB, Belur LR, et al. Prolonged expression of a lysosomal enzyme in mouse liver after Sleeping Beauty transposon-mediated gene delivery: implications for non-viral gene therapy of mucopolysaccharidoses. J Gene Med 2007; 9(5): 403-15.
[http://dx.doi.org/10.1002/jgm.1028] [PMID: 17407189]
[131]
Aronovich EL, Hyland KA, Hall BC, et al. Prolonged expression of secreted enzymes in dogs after liver-directed delivery of sleeping beauty transposons: implications for non-viral gene therapy of systemic disease. Hum Gene Ther 2017; 28(7): 551-64.
[http://dx.doi.org/10.1089/hum.2017.004] [PMID: 28530135]
[132]
Osborn MJ, McElmurry RT, Lees CJ, et al. Minicircle DNA-based gene therapy coupled with immune modulation permits long-term expression of α-L-iduronidase in mice with mucopolysaccharidosis type I. Mol Ther 2011; 19(3): 450-60.
[http://dx.doi.org/10.1038/mt.2010.249] [PMID: 21081900]
[133]
Laoharawee K, DeKelver RC, Podetz-Pedersen KM, et al. Dose-dependent prevention of metabolic and neurologic disease in murine mps ii by zfn-mediated in vivo genome editing. Mol Ther 2018; 26(4): 1127-36.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.002] [PMID: 29580682]
[134]
Ou L, DeKelver RC, Rohde M, et al. ZFN-mediated in vivo genome editing corrects murine hurler syndrome. Mol Ther 2019; 27(1): 178-87.
[http://dx.doi.org/10.1016/j.ymthe.2018.10.018] [PMID: 30528089]
[135]
Sessa M, Lorioli L, Fumagalli F, et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 2016; 388(10043): 476-87.
[http://dx.doi.org/10.1016/S0140-6736(16)30374-9] [PMID: 27289174]
[136]
Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341(6148)1233158
[http://dx.doi.org/10.1126/science.1233158] [PMID: 23845948]
[137]
Hughes D, Patel N, Kinch R, et al. First-in-human study of a liver-directed aav gene therapy (FLT190) in fabry disease. Mol Genet Metab 2020; 129(2): S77-8.
[http://dx.doi.org/10.1016/j.ymgme.2019.11.188]
[138]
Armour S, Nordin J, Costa Verdera H, et al. Pre-Clinical development of SPK-3006, an investigational liver-directed AAV gene therapy for the treatment of pompe disease. Neuromuscul Disord 2019; 29: S39.
[http://dx.doi.org/10.1016/j.nmd.2019.06.024]
[139]
Mavilio F, Cunningham J, Eggers M, et al. Pre-clinical safety and efficacy findings of AT845, a novel gene replacement therapy for pompe disease targeting skeletal muscle and heart. Mol Genet Metab 2020; 129.
[http://dx.doi.org/10.1016/j.ymgme.2019.11.272]
[140]
Corti M, Cleaver B, Clément N, et al. Evaluation of readministration of a recombinant adeno-associated virus vector expressing acid alpha-glucosidase in pompe disease: preclinical to clinical planning. Hum Gene Ther Clin Dev 2015; 26(3): 185-93.
[http://dx.doi.org/10.1089/humc.2015.068] [PMID: 26390092]
[141]
Corti M, Liberati C, Smith BK, et al. Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by pompe disease. Hum Gene Ther Clin Dev 2017; 28(4): 208-18.
[http://dx.doi.org/10.1089/humc.2017.146] [PMID: 29160099]
[142]
Smith BK, Martin AD, Lawson LA, et al. Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: Clinical evidence of respiratory plasticity. Exp Neurol 2017; 287(Pt 2): 216-24.
[http://dx.doi.org/10.1016/j.expneurol.2016.07.013] [PMID: 27453480]
[143]
Worgall S, Sondhi D, Hackett NR, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 2008; 19(5): 463-74.
[http://dx.doi.org/10.1089/hum.2008.022] [PMID: 18473686]
[144]
Rappeport JM, Ginns EI. Bone-marrow transplantation in severe Gaucher’s disease. N Engl J Med 1984; 311(2): 84-8.
[http://dx.doi.org/10.1056/NEJM198407123110203] [PMID: 6377066]
[145]
Graceffa V, Zeugolis DI. Carrageenan enhances chondrogenesis and osteogenesis in human bone marrow stem cell culture. Eur Cell Mater 2019; 37: 310-32.
[http://dx.doi.org/10.22203/eCM.v037a19] [PMID: 31038192]
[146]
Syres K, Harrison F, Tadlock M, et al. Successful treatment of the murine model of cystinosis using bone marrow cell transplantation. Blood 2009; 114(12): 2542-52.
[http://dx.doi.org/10.1182/blood-2009-03-213934] [PMID: 19506297]
[147]
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DIDIDI. Chasing chimeras - the elusive stable chondrogenic phenotype. Biomaterials 2019; 192: 199-225.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.014] [PMID: 30453216]
[148]
Lange MC, Teive HAG, Troiano AR, et al. Bone marrow transplantation in patients with storage diseases: a developing country experience. Arq Neuropsiquiatr 2006; 64(1): 1-4.
[http://dx.doi.org/10.1590/S0004-282X2006000100001] [PMID: 16622543]
[149]
Miano M, Lanino E, Gatti R, et al. Four year follow-up of a case of fucosidosis treated with unrelated donor bone marrow transplantation. Bone Marrow Transplant 2001; 27(7): 747-51.
[http://dx.doi.org/10.1038/sj.bmt.1702994] [PMID: 11360116]
[150]
Yeager AM, Uhas KA, Coles CD, Davis PC, Krause WL, Moser HW. Bone marrow transplantation for infantile ceramidase deficiency (Farber disease). Bone Marrow Transplant 2000; 26(3): 357-63.
[http://dx.doi.org/10.1038/sj.bmt.1702489] [PMID: 10967581]
[151]
Grewal S, Shapiro E, Braunlin E, et al. Continued neurocognitive development and prevention of cardiopulmonary complications after successful BMT for I-cell disease: a long-term follow-up report. Bone Marrow Transplant 2003; 32(9): 957-60.
[http://dx.doi.org/10.1038/sj.bmt.1704249] [PMID: 14561999]
[152]
Krivit W, Peters C, Dusenbery K, et al. Wolman disease successfully treated by bone marrow transplantation. Bone Marrow Transplant 2000; 26(5): 567-70.
[http://dx.doi.org/10.1038/sj.bmt.1702557] [PMID: 11019848]
[153]
Albert MH, Schuster F, Peters C, et al. T-cell-depleted peripheral blood stem cell transplantation for α-mannosidosis. Bone Marrow Transplant 2003; 32(4): 443-6.
[http://dx.doi.org/10.1038/sj.bmt.1704148] [PMID: 12900784]
[154]
Lee J-P, Jeyakumar M, Gonzalez R, et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 2007; 13(4): 439-47.
[http://dx.doi.org/10.1038/nm1548] [PMID: 17351625]
[155]
Coulson-Thomas VJ, Caterson B, Kao WW-Y. Transplantation of human umbilical mesenchymal stem cells cures the corneal defects of mucopolysaccharidosis VII mice. Stem Cells 2013; 31(10): 2116-26.
[http://dx.doi.org/10.1002/stem.1481] [PMID: 23897660]
[156]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[157]
Rocca CJ, Kreymerman A, Ur SN, et al. Treatment of inherited eye defects by systemic hematopoietic stem cell transplantation. Invest Ophthalmol Vis Sci 2015; 56(12): 7214-23.
[http://dx.doi.org/10.1167/iovs.15-17107] [PMID: 26540660]
[158]
Lech M, Gröbmayr R, Weidenbusch M, Anders H-J. Tissues use resident dendritic cells and macrophages to maintain homeostasis and to regain homeostasis upon tissue injury: the immunoregulatory role of changing tissue environments. Mediators Inflamm 2012; 2012: 951390.
[http://dx.doi.org/10.1155/2012/951390] [PMID: 23251037]
[159]
Weinstock NI, Shin D, Dhimal N, et al. Macrophages expressing GALC improve peripheral krabbe disease by a mechanism independent of cross-correction. Neuron 2020; 107(1): 65-81.e9.https://doi.org/https://doi.org/10.1016/j.neuron.2020.03.031
[http://dx.doi.org/10.1016/j.neuron.2020.03.031] [PMID: 32375064]
[160]
Yeagy BA, Harrison F, Gubler M-C, Koziol JA, Salomon DR, Cherqui S. Kidney preservation by bone marrow cell transplantation in hereditary nephropathy. Kidney Int 2011; 79(11): 1198-206.
[http://dx.doi.org/10.1038/ki.2010.537] [PMID: 21248718]
[161]
Chinnery HR, Keller KE. Tunneling nanotubes and the eye: intercellular communication and implications for ocular health and disease. BioMed Res Int 2020; 20207246785
[http://dx.doi.org/10.1155/2020/7246785] [PMID: 32352005]
[162]
Yasuda K, Khandare A, Burianovskyy L, et al. Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging (Albany NY) 2011; 3(6): 597-608.
[http://dx.doi.org/10.18632/aging.100341] [PMID: 21705809]
[163]
Elmonem MA, Veys K, Oliveira Arcolino F, et al. Allogeneic HSCT transfers wild-type cystinosin to nonhematological epithelial cells in cystinosis: first human report. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2018; 2823-8.
[http://dx.doi.org/10.1111/ajt.15029]
[164]
Staba SL, Escolar ML, Poe M, et al. Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med 2004; 350(19): 1960-9.
[http://dx.doi.org/10.1056/NEJMoa032613] [PMID: 15128896]
[165]
Mynarek M, Tolar J, Albert MH, et al. Allogeneic hematopoietic SCT for alpha-mannosidosis: an analysis of 17 patients. Bone Marrow Transplant 2012; 47(3): 352-9.
[http://dx.doi.org/10.1038/bmt.2011.99] [PMID: 21552297]
[166]
van den Broek BTA, Page K, Paviglianiti A, et al. Early and late outcomes after cord blood transplantation for pediatric patients with inherited leukodystrophies. Blood Adv 2018; 2(1): 49-60.
[http://dx.doi.org/10.1182/bloodadvances.2017010645] [PMID: 29344584]
[167]
Mattsson J, Remberger M, Svahn B-M, Svenberg P, Winiarski J, Ringden O. Allogeneic hematopoietic stem cell transplantation for inherited disorders: experience in a single-center. Biol Blood Marrow Transplant 2006; 12(2): 126.
[http://dx.doi.org/10.1016/j.bbmt.2005.11.386] [PMID: 16443511]
[168]
Gentry T, Deibert E, Foster SJ, Haley R, Kurtzberg J, Balber AE. Isolation of early hematopoietic cells, including megakaryocyte progenitors, in the ALDH-bright cell population of cryopreserved, banked UC blood. Cytotherapy 2007; 9(6): 569-76.
[http://dx.doi.org/10.1080/14653240701466347] [PMID: 17882722]
[169]
Galaverna F, Pagliara D, Manwani D, Agarwal R, Kuhn M, Locatelli F. Administration of BPX-501 following α-T and B-cell depleted haplo-HSCT in children with transfusion-dependent thalassemia. Blood 2018; 132(Suppl. 1): 166.
[http://dx.doi.org/10.1182/blood-2018-166]
[170]
Miller WP, Rothman SM, Nascene D, et al. Outcomes after allogeneic hematopoietic cell transplantation for childhood cerebral adrenoleukodystrophy: the largest single-institution cohort report. Blood 2011; 118(7): 1971-8.
[http://dx.doi.org/10.1182/blood-2011-01-329235] [PMID: 21586746]
[171]
Matthes F, Wölte P, Böckenhoff A, et al. Transport of arylsulfatase A across the blood-brain barrier in vitro. J Biol Chem 2011; 286(20): 17487-94.
[http://dx.doi.org/10.1074/jbc.M110.189381] [PMID: 21454621]
[172]
Blanz J, Stroobants S, Lüllmann-Rauch R, et al. Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in alpha-mannosidosis mice. Hum Mol Genet 2008; 17(22): 3437-45.
[http://dx.doi.org/10.1093/hmg/ddn237] [PMID: 18713755]
[173]
Aronovich EL, Hackett PB. Lysosomal storage disease: gene therapy on both sides of the blood-brain barrier. Mol Genet Metab 2015; 114(2): 83-93.https://doi.org/https://doi.org/10.1016/j.ymgme.2014.09.011
[http://dx.doi.org/10.1016/j.ymgme.2014.09.011] [PMID: 25410058]
[174]
Dierenfeld AD, McEntee MF, Vogler CA, et al. Replacing the enzyme alpha-L-iduronidase at birth ameliorates symptoms in the brain and periphery of dogs with mucopolysaccharidosis type I. Sci Transl Med 2010; 2(60): 60ra89.
[http://dx.doi.org/10.1126/scitranslmed.3001380] [PMID: 21123810]
[175]
Sands MS, Vogler C, Kyle JW, et al. Enzyme replacement therapy for murine mucopolysaccharidosis type VII. J Clin Invest 1994; 93(6): 2324-31.
[http://dx.doi.org/10.1172/JCI117237] [PMID: 8200966]
[176]
Belur LR, Temme A, Podetz-Pedersen KM, et al. Intranasal adeno-associated virus mediated gene delivery and expression of human iduronidase in the central nervous system: a noninvasive and effective approach for prevention of neurologic disease in mucopolysaccharidosis type I. Hum Gene Ther 2017; 28(7): 576-87.
[http://dx.doi.org/10.1089/hum.2017.187] [PMID: 28462595]
[177]
Chakrabarty P, Rosario A, Cruz P, et al. Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLoS One 2013; 8(6)e67680
[http://dx.doi.org/10.1371/journal.pone.0067680] [PMID: 23825679]
[178]
Yoon SY, Bagel JH, O’Donnell PA, Vite CH, Wolfe JH. clinical improvement of alpha-mannosidosis cat following a single cisterna magna infusion of AAV1. Mol Ther 2016; 24(1): 26-33.
[http://dx.doi.org/10.1038/mt.2015.168] [PMID: 26354342]
[179]
Vite CH, Wang P, Patel RT, et al. Biodistribution and pharmacodynamics of recombinant human alpha-L-iduronidase (rhIDU) in mucopolysaccharidosis type I-affected cats following multiple intrathecal administrations. Mol Genet Metab 2011; 103(3): 268-74.
[http://dx.doi.org/10.1016/j.ymgme.2011.03.011] [PMID: 21482164]
[180]
King B, Marshall NR, Hassiotis S, et al. Slow, continuous enzyme replacement via spinal CSF in dogs with the paediatric-onset neurodegenerative disease, MPS IIIA. J Inherit Metab Dis 2017; 40(3): 443-53.
[http://dx.doi.org/10.1007/s10545-016-9994-1] [PMID: 27832416]
[181]
King B, Hassiotis S, Rozaklis T, et al. Low-dose, continuous enzyme replacement therapy ameliorates brain pathology in the neurodegenerative lysosomal disorder mucopolysaccharidosis type IIIA. J Neurochem 2016; 137(3): 409-22.
[http://dx.doi.org/10.1111/jnc.13533] [PMID: 26762778]
[182]
Marshall NR, Hassiotis S, King B, et al. Delivery of therapeutic protein for prevention of neurodegenerative changes: comparison of different CSF-delivery methods. Exp Neurol 2015; 263: 79-90.
[http://dx.doi.org/10.1016/j.expneurol.2014.09.008] [PMID: 25246230]
[183]
Brooks A I, Stein C S, Hughes S M, et al. Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci 99(9): 6216 LP-21 LP.
[http://dx.doi.org/10.1073/pnas.082011999]
[184]
Bradbury AM, Bagel JH, Nguyen D, et al. Krabbe disease successfully treated via monotherapy of intrathecal gene therapy. J Clin Invest 2020; 130(9): 4906-20.
[http://dx.doi.org/10.1172/JCI133953] [PMID: 32773406]
[185]
Humbel M, Ramosaj M, Zimmer V, et al. Maximizing lentiviral vector gene transfer in the CNS. Gene Ther 2020; 28: 75-88.
[http://dx.doi.org/10.1038/s41434-020-0172-6] [PMID: 32632267]
[186]
Passini MA, Lee EB, Heuer GG, Wolfe JH. Distribution of a lysosomal enzyme in the adult brain by axonal transport and by cells of the rostral migratory stream. J Neurosci 2002; 22(15): 6437-46.
[http://dx.doi.org/10.1523/JNEUROSCI.22-15-06437.2002] [PMID: 12151523]
[187]
Ross CJ, Ralph M, Chang PL. Somatic gene therapy for a neurodegenerative disease using microencapsulated recombinant cells. Exp Neurol 2000; 166(2): 276-86.
[http://dx.doi.org/10.1006/exnr.2000.7531] [PMID: 11085893]
[188]
Baldo G, Quoos Mayer F, Burin M, Carrillo-Farga J, Matte U, Giugliani R. Recombinant encapsulated cells overexpressing alpha-L-iduronidase correct enzyme deficiency in human mucopolysaccharidosis type I cells. Cells Tissues Organs 2012; 195(4): 323-9.
[http://dx.doi.org/10.1159/000327532] [PMID: 21778683]
[189]
Baldo G, Mayer FQ, Martinelli B, et al. Intraperitoneal implant of recombinant encapsulated cells overexpressing alpha-L-iduronidase partially corrects visceral pathology in mucopolysaccharidosis type I mice. Cytotherapy 2012; 14(7): 860-7.
[http://dx.doi.org/10.3109/14653249.2012.672730] [PMID: 22472038]
[190]
Lagranha VL, de Carvalho TG, Giugliani R, Matte U. Treatment of MPS I mice with microencapsulated cells overexpressing IDUA: effect of the prednisolone administration. J Microencapsul 2013; 30(4): 383-9.
[http://dx.doi.org/10.3109/02652048.2012.746745] [PMID: 23418953]
[191]
Lizzi Lagranha V, Zambiasi Martinelli B, Baldo G, et al. Subcutaneous implantation of microencapsulated cells overexpressing α-L-iduronidase for mucopolysaccharidosis type I treatment. J Mater Sci Mater Med 2017; 28(3): 43.
[http://dx.doi.org/10.1007/s10856-017-5844-4] [PMID: 28150116]
[192]
Diel D, Lagranha VL, Schuh RS, Bruxel F, Matte U, Teixeira HF. Optimization of alginate microcapsules containing cells overexpressing α-l-iduronidase using Box-Behnken design. Eur J Pharm Sci Off J Eur Fed Pharm Sci 2018; 111: 29-37.
[http://dx.doi.org/10.1016/j.ejps.2017.09.004] [PMID: 28882767]
[193]
Meng Y, Sohar I, Sleat DE, et al. Effective intravenous therapy for neurodegenerative disease with a therapeutic enzyme and a peptide that mediates delivery to the brain. Mol Ther 2014; 22(3): 547-53.
[http://dx.doi.org/10.1038/mt.2013.267] [PMID: 24394185]
[194]
Boado RJ, Lu JZ, Hui EK-W, Lin H, Pardridge WM. Bi-functional IgG-lysosomal enzyme fusion proteins for brain drug delivery. Sci Rep 2019; 9(1): 18632.
[http://dx.doi.org/10.1038/s41598-019-55136-4] [PMID: 31819150]
[195]
Snyder EY, Taylor RM, Wolfe JH. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 1995; 374(6520): 367-70.
[http://dx.doi.org/10.1038/374367a0] [PMID: 7885477]
[196]
Sidman RL, Li J, Stewart GR, et al. Injection of mouse and human neural stem cells into neonatal Niemann-Pick A model mice. Brain Res 2007; 1140: 195-204.
[http://dx.doi.org/10.1016/j.brainres.2007.01.011] [PMID: 17289003]
[197]
Arthur JR, Lee JP, Snyder EY, Seyfried TN. Therapeutic effects of stem cells and substrate reduction in juvenile Sandhoff mice. Neurochem Res 2012; 37(6): 1335-43.
[http://dx.doi.org/10.1007/s11064-012-0718-0] [PMID: 22367451]
[198]
Peters C, Steward CG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant 2003; 31(4): 229-39.
[http://dx.doi.org/10.1038/sj.bmt.1703839] [PMID: 12621457]
[199]
Capotondo A, Milazzo R, Politi LS, et al. Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc Natl Acad Sci USA 2012; 109(37): 15018-23.
[http://dx.doi.org/10.1073/pnas.1205858109] [PMID: 22923692]
[200]
Kennedy DW, Abkowitz JL. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 1997; 90(3): 986-93.
[http://dx.doi.org/10.1182/blood.V90.3.986] [PMID: 9242527]
[201]
Mildner A, Schmidt H, Nitsche M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007; 10(12): 1544-53.
[http://dx.doi.org/10.1038/nn2015] [PMID: 18026096]
[202]
de Hosson LD, van de Warrenburg BPC, Preijers FWMB, et al. Adult metachromatic leukodystrophy treated by allo-SCT and a review of the literature. Bone Marrow Transplant 2011; 46(8): 1071-6.
[http://dx.doi.org/10.1038/bmt.2010.252] [PMID: 21042305]
[203]
Beschle J, Döring M, Kehrer C, et al. Early clinical course after hematopoietic stem cell transplantation in children with juvenile metachromatic leukodystrophy. Mol Cell Pediatr 2020; 7(1): 12.
[http://dx.doi.org/10.1186/s40348-020-00103-7] [PMID: 32910272]
[204]
Welling L, Marchal JP, van Hasselt P, van der Ploeg AT, Wijburg FA, Boelens JJ. Early umbilical cord blood-derived stem cell transplantation does not prevent neurological deterioration in mucopolysaccharidosis type iii. JIMD Rep 2015; 18: 63-8.
[http://dx.doi.org/10.1007/8904_2014_350] [PMID: 25256447]
[205]
Poe MD, Chagnon SL, Escolar ML. Early treatment is associated with improved cognition in Hurler syndrome. Ann Neurol 2014; 76(5): 747-53.
[http://dx.doi.org/10.1002/ana.24246] [PMID: 25103575]
[206]
Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 2005; 352(20): 2069-81.
[http://dx.doi.org/10.1056/NEJMoa042604] [PMID: 15901860]
[207]
Wang RY, Bodamer OA, Watson MS, Wilcox WR. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Genet Med 2011; 13(5): 457-84.
[http://dx.doi.org/10.1097/GIM.0b013e318211a7e1] [PMID: 21502868]
[208]
Filocamo M, Morrone A. Lysosomal storage disorders: molecular basis and laboratory testing. Hum Genomics 2011; 5(3): 156-69.
[http://dx.doi.org/10.1186/1479-7364-5-3-156] [PMID: 21504867]
[209]
Tsuji D, Kuroki A, Ishibashi Y, et al. Specific induction of macrophage inflammatory protein 1-alpha in glial cells of Sandhoff disease model mice associated with accumulation of N-acetylhexosaminyl glycoconjugates. J Neurochem 2005; 92(6): 1497-507.
[http://dx.doi.org/10.1111/j.1471-4159.2005.02986.x] [PMID: 15748167]
[210]
Sano R, Tessitore A, Ingrassia A, d’Azzo A. Chemokine-induced recruitment of genetically modified bone marrow cells into the CNS of GM1-gangliosidosis mice corrects neuronal pathology. Blood 2005; 106(7): 2259-68.
[http://dx.doi.org/10.1182/blood-2005-03-1189] [PMID: 15941905]
[211]
Fratantoni JC, Hall CW, Neufeld EF. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science 1968; 162(3853): 570-2.
[http://dx.doi.org/10.1126/science.162.3853.570] [PMID: 4236721]
[212]
Pallera AM, Schwartzberg LS. Managing the toxicity of hematopoietic stem cell transplant. J Support Oncol 2004; 2(3): 223-37.
[PMID: 15328824]
[213]
Graceffa V, Vinatier C, Guicheux J, et al. State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnol Adv 2018; 36(7): 1855-69.
[http://dx.doi.org/10.1016/j.biotechadv.2018.07.004] [PMID: 30012541]
[214]
Visigalli I, Delai S, Politi LS, et al. Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood 2010; 116(24): 5130-9.
[http://dx.doi.org/10.1182/blood-2010-04-278234] [PMID: 20847202]
[215]
Raben N, Danon M, Gilbert AL, et al. Enzyme replacement therapy in the mouse model of pompe disease. Mol Genet Metab 2003; 80(1-2): 159-69.
[http://dx.doi.org/10.1016/j.ymgme.2003.08.022] [PMID: 14567965]
[216]
Velayati A, DePaolo J, Gupta N, et al. A mutation in SCARB2 is a modifier in Gaucher disease. Hum Mutat 2011; 32(11): 1232-8.
[http://dx.doi.org/10.1002/humu.21566] [PMID: 21796727]
[217]
Somaraju UR, Tadepalli K. Hematopoietic stem cell transplantation for Gaucher disease. Cochrane Database Syst Rev 2017; 10(10)CD006974
[http://dx.doi.org/10.1002/14651858.CD006974.pub4] [PMID: 29044482]
[218]
Azarnia Tehran D, López-Hernández T, Maritzen T. Endocytic adaptor proteins in health and disease: lessons from model organisms and human mutations. Cells 2019; 8(11): E1345.
[http://dx.doi.org/10.3390/cells8111345] [PMID: 31671891]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy