Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional In vitro Cellular Models: Impressive Tool in Drug Discovery

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 17, Issue 1, 2022

Published on: 26 November, 2021

Page: [80 - 91] Pages: 12

DOI: 10.2174/1574892816666210728115605

Price: $65

Abstract

The heterogeneous tumor microenvironment is exceptionally perplexing and not wholly comprehended. Different multifaceted alignments lead to the generation of oxygen destitute situations within the tumor niche that modulate numerous intrinsic tumor microenvironments. Disentangling these communications is vital for scheming practical therapeutic approaches that can successfully decrease tumor allied chemotherapy resistance by utilizing the innate capability of the immune system. Several research groups are concerned with a protruding role for oxygen metabolism along with hypoxia in the immunity of healthy tissue. Hypoxia, in addition to hypoxia-inducible factors (HIFs) in the tumor microenvironment, plays an important part in tumor progression and endurance. Although numerous hypoxia-focused therapies have shown promising outcomes both in vitro and in vivo, these outcomes have not effectively translated into clinical preliminaries. Distinctive cell culture techniques have been utilized as an in vitro model for tumor niche along with tumor microenvironment and proficient in more precisely recreating tumor genomic profiles as well as envisaging therapeutic response. To study the dynamics of tumor immune evasion, three-dimensional (3D) cell cultures are more physiologically important to the hypoxic tumor microenvironment. Recent research has revealed new information and insights into our fundamental understanding of immune systems, and novel results that have been established as potential therapeutic targets. There are a lot of patented 3D cell culture techniques which will be highlighted in this review. At present notable 3D cell culture procedures in the hypoxic tumor microenvironment, discourse open doors to accommodate both drug repurposing, advancement, and divulgence of new medications and will deliberate the 3D cell culture methods into standard prescription disclosure, especially in the field of cancer biology, which will be discussing here.

Keywords: 3D cell culture, drug discovery, hypoxia, hypoxia-inducible factors, patent, tumor microenvironment, tumor-immune manifestations.

« Previous
[1]
Gaggioli C, Meneguzzi G, Albrengues J. Methods and compositions for targeting tumor microenvironment and for preventing metastasis. WO2015040243A3, 2015. https://patents.google.com/patent/WO2015040243A3/en
[2]
Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18(1): 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[3]
Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 2016; 18(1): 84.
[http://dx.doi.org/10.1186/s13058-016-0740-2] [PMID: 27515302]
[4]
Cimmino F, Avitabile M, Lasorsa VA, et al. HIF-1 transcription activity: HIF1A driven response in normoxia and in hypoxia. BMC Med Genet 2019; 20(1): 37.
[http://dx.doi.org/10.1186/s12881-019-0767-1] [PMID: 30808328]
[5]
Shafee N, Stanbridge EJ, Yusoff K, Liew S-Y. Hypoxia inducible factor (HIF) activity reporter cell line. 9995730, 2018. https://patents.justia.com/patent/9995730
[6]
Ray SK, Meshram Y, Mukherjee S. Cancer immunology and CAR-T cells: A turning point therapeutic approach in cancer treatment focusing on colorectal carcinoma with clinical landscape. Curr Mol Med 2021; 21(3): 221-36.
[http://dx.doi.org/10.2174/1566524020666200824103749] [PMID: 32838717]
[7]
Ray SK, Mukherjee S. Current headway in cancer Immunotherapy emphasizing the practice of genetically engineered t cells to target selected tumor antigens. Crit Rev Immunol 2021; 41(1): 23-40.
[http://dx.doi.org/10.1615/CritRevImmunol.2020037044] [PMID: 33822523]
[8]
Daniel SK, Sullivan KM, Labadie KP, Pillarisetty VG. Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma. Clin Transl Med 2019; 8(1): 10.
[http://dx.doi.org/10.1186/s40169-019-0226-9] [PMID: 30931508]
[9]
Chang CH, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162(6): 1229-41.
[http://dx.doi.org/10.1016/j.cell.2015.08.016] [PMID: 26321679]
[10]
Otranto M, Sarrazy V, Bonté F, Hinz B, Gabbiani G, Desmoulière A. The role of the myofibroblast in tumor stroma remodeling. Cell Adhes Migr 2012; 6(3): 203-19.
[http://dx.doi.org/10.4161/cam.20377] [PMID: 22568985]
[11]
Kawaguchi K, Sakurai M, Yamamoto Y, et al. Alteration of specific cytokine expression patterns in patients with breast cancer. Sci Rep 2019; 9(1): 2924.
[http://dx.doi.org/10.1038/s41598-019-39476-9] [PMID: 30814616]
[12]
Kuczek DE, Larsen AMH, Thorseth ML, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer 2019; 7(1): 68.
[http://dx.doi.org/10.1186/s40425-019-0556-6] [PMID: 30867051]
[13]
Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 2018; 9: 6.
[http://dx.doi.org/10.3389/fphar.2018.00006] [PMID: 29410625]
[14]
Nishida-Aoki N, Gujral TS. Emerging approaches to study cell- cell interactions in tumor microenvironment. Oncotarget 2019; 10(7): 785-97.
[http://dx.doi.org/10.18632/oncotarget.26585] [PMID: 30774780]
[15]
Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci 2018; 14(4): 910-9.
[PMID: 30002710]
[16]
Messner S, Wolfgang M, Lichtenberg J, Kelm JM. Method of preparing cells for 3d tissue culture. WO2015158777A1, 2015. Available from: https://patents.google.com/patent/WO2015158777A1/en
[17]
Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 2013; 18(5-6): 240-9.
[http://dx.doi.org/10.1016/j.drudis.2012.10.003] [PMID: 23073387]
[18]
Lv D, Hu Z, Lu L, Lu H, Xu X. Three-dimensional cell culture: A powerful tool in tumor research and drug discovery. Oncol Lett 2017; 14(6): 6999-7010. [Review].
[http://dx.doi.org/10.3892/ol.2017.7134] [PMID: 29344128]
[19]
Huang H, Ding Y, Sun XS, Nguyen TA. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells. PLoS One 2013; 8(3): e59482.
[http://dx.doi.org/10.1371/journal.pone.0059482] [PMID: 23527204]
[20]
Kim JB. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 2005; 15(5): 365-77.
[http://dx.doi.org/10.1016/j.semcancer.2005.05.002] [PMID: 15975824]
[21]
Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 2012; 125(Pt 13): 3015-24.
[http://dx.doi.org/10.1242/jcs.079509] [PMID: 22797912]
[22]
Xu X, Gurski LA, Zhang C, Harrington DA, Farach-Carson MC, Jia X. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials 2012; 33(35): 9049-60.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.061] [PMID: 22999468]
[23]
Gurski L, Petrelli N, Jia X, Farach-Carson M. Three-dimensional matrices for anti-cancer drug testing and development. Oncol Issues 2010; 25: 20-5.
[http://dx.doi.org/10.1080/10463356.2010.11883480]
[24]
Takai A, Fako V, Dang H, et al. Three-dimensional organotypic culture models of human hepatocellular carcinoma. Sci Rep 2016; 6: 21174.
[http://dx.doi.org/10.1038/srep21174] [PMID: 26880118]
[25]
Yip D, Cho CH. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem Biophys Res Commun 2013; 433(3): 327-32.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.008] [PMID: 23501105]
[26]
Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 2007; 8(10): 839-45.
[http://dx.doi.org/10.1038/nrm2236] [PMID: 17684528]
[27]
Senkowski W, Jarvius M, Rubin J, et al. Large-scale gene expression profiling platform for identification of context-dependent drug responses in multicellular tumor spheroids. Cell Chem Biol 2016; 23(11): 1428-38.
[http://dx.doi.org/10.1016/j.chembiol.2016.09.013] [PMID: 27984028]
[28]
Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 2015; 16(3): 5517-27.
[http://dx.doi.org/10.3390/ijms16035517] [PMID: 25768338]
[29]
Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007; 99(19): 1441-54.
[http://dx.doi.org/10.1093/jnci/djm135] [PMID: 17895480]
[30]
Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 2009; 103(4): 655-63.
[http://dx.doi.org/10.1002/bit.22361] [PMID: 19472329]
[31]
Krausz E, de Hoogt R, Gustin E, et al. Translation of a tumor microenvironment mimicking 3D tumor growth co-culture assay platform to high-content screening. J Biomol Screen 2013; 18(1): 54-66.
[http://dx.doi.org/10.1177/1087057112456874] [PMID: 22923784]
[32]
Lv D, Yu SC, Ping YF, et al. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget 2016; 7(35): 56904-14.
[http://dx.doi.org/10.18632/oncotarget.10885] [PMID: 27486877]
[33]
Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016; 34(3): 312-9.
[http://dx.doi.org/10.1038/nbt.3413] [PMID: 26878319]
[34]
Szot CS, Buchanan CF, Freeman JW, Rylander MN. 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 2011; 32(31): 7905-12.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.001] [PMID: 21782234]
[35]
Price KJ, Tsykin A, Giles KM, et al. Matrigel basement membrane matrix influences expression of microRNAs in cancer cell lines. Biochem Biophys Res Commun 2012; 427(2): 343-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.059] [PMID: 23000157]
[36]
Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 2016; 8(4): 045005.
[http://dx.doi.org/10.1088/1758-5090/8/4/045005] [PMID: 27725343]
[37]
Hongisto V, Jernström S, Fey V, et al. High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells. PLoS One 2013; 8(10): e77232.
[http://dx.doi.org/10.1371/journal.pone.0077232] [PMID: 24194875]
[38]
Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 2014; 12(4): 207-18.
[http://dx.doi.org/10.1089/adt.2014.573] [PMID: 24831787]
[39]
Hickman JA, Graeser R, de Hoogt R, et al. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J 2014; 9(9): 1115-28.
[http://dx.doi.org/10.1002/biot.201300492] [PMID: 25174503]
[40]
Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc 2009; 4(3): 309-24.
[http://dx.doi.org/10.1038/nprot.2008.226] [PMID: 19214182]
[41]
Shin CS, Kwak B, Han B, Park K. Development of an in vitro 3D tumor model to study therapeutic efficiency of an anticancer drug. Mol Pharm 2013; 10(6): 2167-75.
[http://dx.doi.org/10.1021/mp300595a] [PMID: 23461341]
[42]
Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nat Rev Immunol 2011; 11(2): 81-91.
[http://dx.doi.org/10.1038/nri2922] [PMID: 21469396]
[43]
Glover LE, Colgan SP. Epithelial barrier regulation by hypoxia-inducible factor. Ann Am Thorac Soc 2017; 233-6.
[http://dx.doi.org/10.1513/AnnalsATS.201608-610MG]
[44]
Manresa MC, Taylor CT. Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell Mol Gastroenterol Hepatol 2017; 3(3): 303-15.
[http://dx.doi.org/10.1016/j.jcmgh.2017.02.004] [PMID: 28462372]
[45]
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. J Exp Clin Cancer Res 2020; 39(1): 224.
[http://dx.doi.org/10.1186/s13046-020-01733-5] [PMID: 33109235]
[46]
Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med 2019; 51(6): 1-13.
[http://dx.doi.org/10.1038/s12276-019-0235-1] [PMID: 31221962]
[47]
Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med 2009; 4: 2.
[http://dx.doi.org/10.1186/1747-5341-4-2] [PMID: 19146696]
[48]
Orr DE, Gevaert MR, Cheluvaraju C, Crosswell HE, Desrochers TM. 3D tissue culture devices and systems. WO2015134550A1, 2015. Available from: https://patents.google.com/patent/WO2015134550A1.
[49]
Zoetemelk M, Rausch M, Colin DJ, Dormond O, Nowak-Sliwinska P. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci Rep 2019; 9(1): 7103.
[http://dx.doi.org/10.1038/s41598-019-42836-0] [PMID: 31068603]
[50]
Kuriakose AE, Hu W, Nguyen KT, Menon JU. Scaffold-based lung tumor culture on porous PLGA microparticle substrates. PLoS One 2019; 14(5): e0217640.
[http://dx.doi.org/10.1371/journal.pone.0217640] [PMID: 31150477]
[51]
Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. Isolating cells and growing them in culture 4th edition. 2002. https://www.ncbi.nlm.nih.gov/books/NBK26851
[52]
Fang Y, Eglen RM. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov 2017; 22(5): 456-72.
[http://dx.doi.org/10.1177/1087057117696795] [PMID: 28520521]
[53]
Jensen G, Morrill C, Huang Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm Sin B 2018; 8(5): 756-66.
[http://dx.doi.org/10.1016/j.apsb.2018.03.006] [PMID: 30258764]
[54]
Dzobo k, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C. Advances in regenerative medicine and tissue engineering:innovation and transformation of medicine. Stem Cells International 2018.
[55]
Vukasinovic J. Three dimensional cell culture compositions and methods of use. US20140051168A1, 2016. https://patents.google.com/patent/US20140051168A1/en
[56]
Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon 2020; 6(4): e03719.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03719] [PMID: 32280802]
[57]
Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, et al. The bioprinting roadmap. Biofabrication 2020; 12(2020)
[http://dx.doi.org/10.1088/1758-5090/ab5158]
[58]
Klimkiewicz K, Weglarczyk K, Collet G, et al. A 3D model of tumour angiogenic microenvironment to monitor hypoxia effects on cell interactions and cancer stem cell selection. Cancer Lett 2017; 396: 10-20.
[http://dx.doi.org/10.1016/j.canlet.2017.03.006] [PMID: 28288873]
[59]
Valencia-Cervantes J, Huerta-Yepez S, Aquino-Jarquín G, et al. Hypoxia increases chemoresistance in human medulloblastoma DAOY cells in via hypoxia-inducible factor 1α-mediated downregulation of the CYP2B6, CYP3A4 and CYP3A5 enzymes and inhibition of cell proliferation. Oncol Rep 2019; 41(1): 178-90.
[PMID: 30320358]
[60]
Nobre AR, Entenberg D, Wang Y, Condeelis J, Aguirre-Ghiso JA. The different routes to metastasis in via hypoxia-regulated programs. Trends Cell Biol 2018; 28(11): 941-56.
[http://dx.doi.org/10.1016/j.tcb.2018.06.008] [PMID: 30041830]
[61]
Bregenzer ME, Horst EN, Mehta P, et al. Integrated cancer tissue engineering models for precision medicine. PLoS One 2019; 14(5): e0216564.
[http://dx.doi.org/10.1371/journal.pone.0216564] [PMID: 31075118]
[62]
Van Beurden R. Means and methods for spheroid cell culturing and analysis. WO2017142410A1, 2017. https://patents.google.com/patent/WO2017142410A1/en
[63]
Charoen KM, Fallica B, Colson YL, Zaman MH, Grinstaff MW. Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug-device combinations. Biomaterials 2014; 35(7): 2264-71.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.038] [PMID: 24360576]
[64]
Tevis KM, Colson YL, Grinstaff MW. Embedded spheroids as models of the cancer microenvironment. Adv Biosyst 2017; 1(10): 1700083.
[http://dx.doi.org/10.1002/adbi.201700083] [PMID: 30221187]
[65]
Gordon J, Amini S, White MK. General overview of neuronal cell culture. Methods Mol Biol 2013; 1078: 1-8.
[http://dx.doi.org/10.1007/978-1-62703-640-5_1] [PMID: 23975816]
[66]
Białkowska K, Komorowski P, Bryszewska M, Miłowska K. Spheroids as a type of three-dimensional cell cultures-examples of methods of preparation and the most important application. Int J Mol Sci 2020; 21(17): 6225.
[http://dx.doi.org/10.3390/ijms21176225] [PMID: 32872135]
[67]
Kwon T, Prentice H, Oliveira J, et al. Microfluidic cell retention device for perfusion of mammalian suspension culture. Sci Rep 2017; 7(1): 6703.
[http://dx.doi.org/10.1038/s41598-017-06949-8] [PMID: 28751635]
[68]
Kuo CT, Wang JY, Lin YF, Wo AM, Chen BPC, Lee H. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Sci Rep 2017; 7(1): 4363.
[http://dx.doi.org/10.1038/s41598-017-04718-1] [PMID: 28663555]
[69]
Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 2011; (51): 2720.
[http://dx.doi.org/10.3791/2720] [PMID: 21587162]
[70]
Nirmalanandhan VS, Duren A, Hendricks P, Vielhauer G, Sittampalam GS. Activity of anticancer agents in a three-dimensional cell culture model. Assay Drug Dev Technol 2010; 8(5): 581-90.
[http://dx.doi.org/10.1089/adt.2010.0276] [PMID: 20662735]
[71]
Nam J, Brunelle A. Hydrogel scaffold for three dimensional cell culture. US20190030211A1, 2019. https://patents.google.com/patent/US20190030211A1/en
[72]
Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 2019; 4: 271-92.
[http://dx.doi.org/10.1016/j.bioactmat.2019.10.005] [PMID: 31709311]
[73]
Emami Nejad A, Najafgholian S, Rostami A, et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21(1): 62.
[http://dx.doi.org/10.1186/s12935-020-01719-5] [PMID: 33472628]
[74]
Riffle S, Hegde RS. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. J Exp Clin Cancer Res 2017; 36(1): 102.
[http://dx.doi.org/10.1186/s13046-017-0570-9] [PMID: 28774341]
[75]
Musah-Eroje A, Watson S. Adaptive changes of glioblastoma cells following exposure to hypoxic (1% oxygen) tumour microenvironment. Int J Mol Sci 2019; 20(9): E2091.
[http://dx.doi.org/10.3390/ijms20092091] [PMID: 31035344]
[76]
Ullmann P, Nurmik M, Schmitz M, et al. Tumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity. Cancer Lett 2019; 450: 32-41.
[http://dx.doi.org/10.1016/j.canlet.2019.02.030] [PMID: 30790680]
[77]
Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J. Organoid modeling of the tumor immune microenvironment. Cell 2018; 175(7): 1972-88.
[78]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]
[79]
Wu Q, Liu J, Wang X, et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online 2020; 19(1): 9.
[http://dx.doi.org/10.1186/s12938-020-0752-0] [PMID: 32050989]
[80]
Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, Hernández-Antonio A, et al. Organs-on-a-Chip Module: A review from the development and applications perspective micromachines (Basel). 2018; 9(10): 536.
[81]
Kačarević ZP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials (Basel) 2018; 11(11): 2199.
[http://dx.doi.org/10.3390/ma11112199] [PMID: 30404222]
[82]
Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis 2017; 4(4): 185-95.
[http://dx.doi.org/10.1016/j.gendis.2017.10.002] [PMID: 29911158]
[83]
Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D bioprinting methods and techniques: Applications on artificial blood vessel fabrication. Acta Cardiol Sin 2019; 35(3): 284-9.
[PMID: 31249458]
[84]
Gatenholm P, Backdahl H, Tzavaras TJ, Davalos RV, Sano MB. Three-dimensional bioprinting of biosynthetic cellulose (bc) implants and scaffolds for tissue engineering. US20120190078A1, 2014.https://patents.google.com/patent/US20120190078A1/en
[85]
Wragg NM, Burke L, Wilson SL. A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. Ren Replace Ther 2019; 5: 18.
[http://dx.doi.org/10.1186/s41100-019-0218-7]
[86]
Tasnim N, De la Vega L, Anil Kumar S, et al. 3D Bioprinting Stem Cell Derived Tissues. Cell Mol Bioeng 2018; 11(4): 219-40.
[http://dx.doi.org/10.1007/s12195-018-0530-2] [PMID: 31719887]
[87]
Ma X, Liu J, Zhu W, et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 2018; 132: 235-51.
[http://dx.doi.org/10.1016/j.addr.2018.06.011] [PMID: 29935988]
[88]
Song L, Yuan X, Jones Z, et al. Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci Rep 2019; 9(1): 5977.
[http://dx.doi.org/10.1038/s41598-019-42439-9] [PMID: 30979929]
[89]
Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR. Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 2019; 7: 4.
[http://dx.doi.org/10.3389/fcell.2019.00004] [PMID: 30761299]
[90]
Stéphanou A, Ballesta A. pH as a potential therapeutic target to improve temozolomide antitumor efficacy : A mechanistic modeling study. Pharmacol Res Perspect 2019; 7(1): e00454.
[http://dx.doi.org/10.1002/prp2.454] [PMID: 30705757]
[91]
Lucien F, Lavoie RR, Dubois CM. Targeting endosomal pH for cancer chemotherapy. Mol Cell Oncol 2018; 5(3): e1435184.
[http://dx.doi.org/10.1080/23723556.2018.1435184] [PMID: 30250892]
[92]
Langer EM, Allen-Petersen BL, King SM, et al. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep 2019; 26(3): 608-623.e6.
[http://dx.doi.org/10.1016/j.celrep.2018.12.090] [PMID: 30650355]
[93]
Ando Y, Siegler EL, Ta HP, et al. Evaluating CAR-T cell therapy in a Hypoxic 3D Tumor Model. Adv Healthc Mater 2019; 8(5): e1900001.
[http://dx.doi.org/10.1002/adhm.201900001] [PMID: 30734529]
[94]
Liu C, Lewin Mejia D, Chiang B, Luker KE, Luker GD. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Acta Biomater 2018; 75: 213-25.
[http://dx.doi.org/10.1016/j.actbio.2018.06.003] [PMID: 29879553]
[95]
de la Puente P, Muz B, Gilson RC, et al. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials 2015; 73: 70-84.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.017] [PMID: 26402156]
[96]
Sethumadhavan S, Silva M, Philbrook P, et al. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS One 2017; 12(11): e0187314.
[http://dx.doi.org/10.1371/journal.pone.0187314] [PMID: 29155844]
[97]
Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010; 31(32): 8494-506.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.064] [PMID: 20709389]
[98]
Kondo J, Endo H, Okuyama H, et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci USA 2011; 108(15): 6235-40.
[http://dx.doi.org/10.1073/pnas.1015938108] [PMID: 21444794]
[99]
Rizki A, Weaver VM, Lee SY, et al. A human breast cell model of preinvasive to invasive transition. Cancer Res 2008; 68(5): 1378-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2225] [PMID: 18316601]
[100]
Cavo M, Caria M, Pulsoni I, Beltrame F, Fato M, Scaglione S. A new cell-laden 3D alginate-matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo”. Sci Rep 2018; 8(1): 5333.
[http://dx.doi.org/10.1038/s41598-018-23250-4] [PMID: 29593247]
[101]
Chen L, Xiao Z, Meng Y, et al. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials 2012; 33(5): 1437-44.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.056] [PMID: 22078807]
[102]
Dunne LW, Huang Z, Meng W, et al. Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials 2014; 35(18): 4940-9.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.003] [PMID: 24661550]
[103]
Maguire SL, Peck B, Wai PT, et al. Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol 2016; 240(3): 315-28.
[http://dx.doi.org/10.1002/path.4778] [PMID: 27512948]
[104]
Lee JM, Mhawech-Fauceglia P, Lee N, et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest 2013; 93(5): 528-42.
[http://dx.doi.org/10.1038/labinvest.2013.41] [PMID: 23459371]
[105]
Loessner D, Rizzi SC, Stok KS, et al. A bioengineered 3D ovarian cancer model for the assessment of peptidase-mediated enhancement of spheroid growth and intraperitoneal spread. Biomaterials 2013; 34(30): 7389-400.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.009] [PMID: 23827191]
[106]
Fitzgerald KA, Guo J, Tierney EG, et al. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials 2015; 66: 53-66.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.019] [PMID: 26196533]
[107]
Simon KA, Mosadegh B, Minn KT, et al. Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system. Biomaterials 2016; 95: 47-59.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.002] [PMID: 27116031]
[108]
Stratmann AT, Fecher D, Wangorsch G, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol 2014; 8(2): 351-65.
[http://dx.doi.org/10.1016/j.molonc.2013.11.009] [PMID: 24388494]
[109]
Sha H, Zou Z, Xin K, et al. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release 2015; 200: 188-200.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.039] [PMID: 25553823]
[110]
Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015; 521(7550): 43-7.
[http://dx.doi.org/10.1038/nature14415] [PMID: 25924068]
[111]
Ray SK, Mukherjee S. Genome editing with CRISPR-Cas9: A budding biological contrivance for colorectal carcinoma research and its perspective in molecular medicine. Curr Mol Med 2020.
[http://dx.doi.org/10.2174/1566524020666201119143943] [PMID: 33213345]
[112]
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015; 17(1): 1-15.
[http://dx.doi.org/10.1016/j.neo.2014.12.004] [PMID: 25622895]
[113]
Febles NK, Ferrie AM, Fang Y. Label-free single cell kinetics of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 2014; 86(17): 8842-9.
[http://dx.doi.org/10.1021/ac502269v] [PMID: 25118958]
[114]
Chandrasekaran S, Deng H, Fang Y. PTEN deletion potentiates invasion of colorectal cancer spheroidal cells through 3D Matrigel. Integr Biol 2015; 7(3): 324-34.
[http://dx.doi.org/10.1039/c4ib00298a] [PMID: 25625883]
[115]
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010; 328(5986): 1662-8.
[http://dx.doi.org/10.1126/science.1188302] [PMID: 20576885]
[116]
Barbone D, Van Dam L, Follo C, et al. Analysis of Gene Expression in 3D Spheroids Highlights a Survival Role for ASS1 in Mesothelioma. PLoS One 2016; 11(3): e0150044.
[http://dx.doi.org/10.1371/journal.pone.0150044] [PMID: 26982031]
[117]
Halfter K, Hoffmann O, Ditsch N, et al. Testing chemotherapy efficacy in HER2 negative breast cancer using patient-derived spheroids. J Transl Med 2016; 14(1): 112.
[http://dx.doi.org/10.1186/s12967-016-0855-3] [PMID: 27142386]
[118]
Aref AR, Huang RY, Yu W, et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr Biol 2013; 5(2): 381-9.
[http://dx.doi.org/10.1039/C2IB20209C] [PMID: 23172153]
[119]
Dambach DM, Uppal H. Improving risk assessment. Sci Transl Med 2012; 4(159): 159ps22.
[http://dx.doi.org/10.1126/scitranslmed.3003497] [PMID: 23136041]
[120]
Jackson EL, Lu H. Three-dimensional models for studying development and disease: Moving on from organisms to organs-on-a-chip and organoids. Integr Biol 2016; 8(6): 672-83.
[http://dx.doi.org/10.1039/C6IB00039H] [PMID: 27156572]
[121]
Roy A, McDonald PR, Sittampalam S, Chaguturu R. Open access high throughput drug discovery in the public domain: A Mount Everest in the making. Curr Pharm Biotechnol 2010; 11(7): 764-78.
[http://dx.doi.org/10.2174/138920110792927757] [PMID: 20809896]
[122]
Worthington P, Drake KM, Li Z, Napper AD, Pochan DJ, Langhans SA. Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture. Anal Biochem 2017; 535: 25-34.
[http://dx.doi.org/10.1016/j.ab.2017.07.024] [PMID: 28757092]
[123]
Mittler F, Obeïd P, Rulina AV, Haguet V, Gidrol X, Balakirev MY. High-content monitoring of drug effects in a 3D spheroid model. Front Oncol 2017; 7: 293.
[http://dx.doi.org/10.3389/fonc.2017.00293] [PMID: 29322028]
[124]
Lage OM, Ramos MC, Calisto R, Almeida E, Vasconcelos V, Vicente F. Current screening methodologies in drug discovery for selected human diseases. Mar Drugs 2018; 16(8): 279.
[http://dx.doi.org/10.3390/md16080279] [PMID: 30110923]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy