Review Article

具有串联抗炎、免疫调节和抗 SARS-CoV/2 作用的天然产物:针对 SARS-CoV-2 的药物发现视角

卷 29, 期 14, 2022

页: [2530 - 2564] 页: 35

弟呕挨: 10.2174/0929867328666210726094955

价格: $65

摘要

背景:COVID-19 仍在全球范围内造成长期健康后果、大规模死亡和崩溃的医疗保健系统。没有有效的药物来治疗它。然而,先前的研究表明,SARS-CoV-2 和 SARS-CoV 在半胱氨酸蛋白酶 (3CLpro) 和木瓜蛋白酶样蛋白酶 (PLpro) 序列上分别具有 96% 和 86.5% 的相似性。这种相似性对于寻找对 SARS-CoV-2 具有抗病毒作用的候选药物可能很重要。 目的:本文汇编了抑制 SARS-CoV 3CLpro 和 PLpro 并同时减少炎症和/或调节免疫系统的天然产物,作为 COVID-19 药物发现的前景策略。它还介绍了使用 SARS-CoV-2 3CLpro 和 PLpro 作为目标对这些选定的天然产物进行的计算机研究,以提出一系列命中化合物。 方法:根据植物代谢物对 SARS-CoV 蛋白、炎症介质和免疫反应的生物学活性,在文献中选择植物代谢物。共识对接分析使用四个不同的包进行。 结果:文献中报道的对 SARS-CoV 蛋白具有抑制作用的 79 种化合物被报道为抗炎剂。其中 14 个在之前的研究中显示出免疫调节作用。其中五种和六种化合物显示出显着的计算机共识,分别作为可以抑制 PLpro 和 3CLpro 的候选药物。我们的研究结果证实了文献中关于抗 SARS-CoV-2 的最新结果。 结论:本研究表明,阿门黄酮、红木糖苷 B、savinin、补骨脂素、多毛酮和纸莎草酮 A 是寻找抗 COVID-19 抗生素的良好候选药物。

关键词: 天然产物、COVID-19、3CLpro 和 PLpro 抑制作用、抗炎作用、免疫调节作用、药物发现。

« Previous
[1]
Islam, M.M.; Jannat, A.; Al Rafi, D.A.; Aruga, K. Potential economic impacts of the covid-19 pandemic on south asian economies: A review. World, 2020, 1(3), 283-299.
[http://dx.doi.org/10.3390/world1030020]
[2]
Romano, C.M.; Chebabo, A.; Levi, J.E. Past, present, and future of COVID-19: A review. Braz. J. Med. Biol. Res., 2020, 53(9)e10475
[http://dx.doi.org/10.1590/1414-431x202010475] [PMID: 32725080]
[3]
Worldometer. COVID-19 coronavirus pandemic. Available from:. https://www.worldometers.info/coronavirus/[Accessed February 17, 2021]
[4]
Alimohamadi, Y.; Sepandi, M.; Taghdir, M.; Hosamirudsari, H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev. Med. Hyg., 2020, 61(3), E304-E312.
[PMID: 33150219]
[5]
Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus disease 2019 (covid-19). J. Gen. Intern. Med., 2020, 35(5), 1545-1549.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[6]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[7]
Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med., 2020, 58(7), 1021-1028.
[http://dx.doi.org/10.1515/cclm-2020-0369] [PMID: 32286245]
[8]
Khuroo, M.S. Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: A critical appraisal. Int. J. Antimicrob. Agents, 2020, 56(3)106101
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106101] [PMID: 32687949]
[9]
Sodani, P.; Mucci, L.; Girolimetti, R.; Tedesco, S.; Monaco, F.; Campanozzi, D.; Brunori, M.; Maltoni, S.; Bedetta, S.; Di Carlo, A.M.; Candoli, P.; Mancini, M.; Rebonato, A.; D’Adamo, F.; Capalbo, M.; Frausini, G. Successful recovery from COVID-19 pneumonia after receiving baricitinib, tocilizumab, and remdesivir. A case report: Review of treatments and clinical role of computed tomography analysis. Respir. Med. Case Rep., 2020, 31101115
[http://dx.doi.org/10.1016/j.rmcr.2020.101115] [PMID: 32670785]
[10]
Hung, I.F.; Lung, K.C.; Tso, E.Y.; Liu, R.; Chung, T.W.; Chu, M.Y.; Ng, Y.Y.; Lo, J.; Chan, J.; Tam, A.R.; Shum, H.P.; Chan, V.; Wu, A.K.L.; Sin, K.M.; Leung, W.S.; Law, W.L.; Lung, D.C.; Sin, S.; Yeung, P.; Yip, C.C.Y.; Zhang, R.R.; Fung, A.Y.F.; Yan, E.Y.W.; Leung, K.H.; Ip, J.D.; Chu, A.W.H.; Chan, W.M.; Ng, A.C.K.; Lee, R.; Fung, K.; Yeung, A.; Wu, T.C.; Chan, J.W.M.; Yan, W.W.; Chan, W.M.; Chan, J.F.W.; Lie, A.K.W.; Tsang, O.T.Y.; Cheng, V.C.C.; Que, T.L.; Lau, C.S.; Chan, K.H.; To, K.K.W.; Yuen, K.Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet, 2020, 395(10238), 1695-1704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[11]
Neuman, B.W.; Adair, B.D.; Yoshioka, C.; Quispe, J.D.; Orca, G.; Kuhn, P.; Milligan, R.A.; Yeager, M.; Buchmeier, M.J. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J. Virol., 2006, 80(16), 7918-7928.
[http://dx.doi.org/10.1128/JVI.00645-06] [PMID: 16873249]
[12]
Goldsmith, C.S.; Tatti, K.M.; Ksiazek, T.G.; Rollin, P.E.; Comer, J.A.; Lee, W.W.; Rota, P.A.; Bankamp, B.; Bellini, W.J.; Zaki, S.R. Ultrastructural characterization of SARS coronavirus. Emerg. Infect. Dis., 2004, 10(2), 320-326.
[http://dx.doi.org/10.3201/eid1002.030913] [PMID: 15030705]
[13]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses. Methods and protocols; Maier, H.; Bickerton, E.; Britton, P., Eds.; Humana Press: New York, , 2015; 1282, pp. 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[14]
Martin, S. Homology models of Wuhan coronavirus 3CLpro protease; ChemRxi, 2020.
[http://dx.doi.org/10.26434/chemrxiv.11637294.v3]
[15]
Fani, M.; Teimoori, A.; Ghafari, S. Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virol., 2020, 15(5), 317-323.
[http://dx.doi.org/10.2217/fvl-2020-0050]
[16]
Lee, E.; Shin, S.; Kim, J.K.; Woo, E.R.; Kim, Y. Anti-inflammatory effects of amentoflavone on modulation of signal pathways in lps-stimulated raw264.7 cells. Bull. Korean Chem. Soc., 2012, 33(9), 2878-2882.
[http://dx.doi.org/10.5012/bkcs.2012.33.9.2878]
[17]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[18]
Park, C.H.; Min, S.Y.; Yu, H.W.; Kim, K.; Kim, S.; Lee, H.J.; Kim, J.H.; Park, Y.J. Effects of apigenin on rbl-2h3, raw264.7, and hacat cells: Anti-allergic, anti-inflammatory, and skin-protective activities. Int. J. Mol. Sci., 2020, 21(13), 4620.
[http://dx.doi.org/10.3390/ijms21134620] [PMID: 32610574]
[19]
Atal, S.; Fatima, Z. IL-6 inhibitors in the treatment of serious covid-19: A promising therapy? Pharmaceut. Med., 2020, 34(4), 223-231.
[http://dx.doi.org/10.1007/s40290-020-00342-z] [PMID: 32535732]
[20]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[21]
Wang, B.; Li, L.; Jin, P.; Li, M.; Li, J. Hesperetin protects against inflammatory response and cardiac fibrosis in postmyocardial infarction mice by inhibiting nuclear factor κB signaling pathway. Exp. Ther. Med., 2017, 14(3), 2255-2260.
[http://dx.doi.org/10.3892/etm.2017.4729] [PMID: 28962151]
[22]
Ryan, P.M.; Caplice, N. COVID-19 and relative angiotensin-converting enzyme 2 deficiency: role in disease severity and therapeutic response. Open Heart, 2020, 7(1)001302
[http://dx.doi.org/10.1136/openhrt-2020-001302] [PMID: 32532804]
[23]
Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid. Med. Cell. Longev., 2019, 20195484138
[http://dx.doi.org/10.1155/2019/5484138] [PMID: 30962863]
[24]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[25]
Cho, B.O.; Yin, H.H.; Park, S.H.; Byun, E.B.; Ha, H.Y.; Jang, S.I. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Biosci. Biotechnol. Biochem., 2016, 80(8), 1520-1530.
[http://dx.doi.org/10.1080/09168451.2016.1171697] [PMID: 27068250]
[26]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[27]
Chen, X.; Wen, T.; Wei, J.; Wu, Z.; Wang, P.; Hong, Z.; Zhao, L.; Wang, B.; Flavell, R.; Gao, S.; Wang, M.; Yin, Z. Treatment of allergic inflammation and hyperresponsiveness by a simple compound, Bavachinin, isolated from Chinese herbs. Cell. Mol. Immunol., 2013, 10(6), 497-505.
[http://dx.doi.org/10.1038/cmi.2013.27] [PMID: 24013845]
[28]
Turianová, L.; Lachová, V.; Svetlíkova, D.; Kostrábová, A.; Betáková, T. Comparison of cytokine profiles induced by nonlethal and lethal doses of influenza A virus in mice. Exp. Ther. Med., 2019, 18(6), 4397-4405.
[http://dx.doi.org/10.3892/etm.2019.8096] [PMID: 31777543]
[29]
Gupta, A. Is immuno-modulation the key to covid-19 pandemic? Indian J. Orthop., 2020, 54(3), 394-397.
[http://dx.doi.org/10.1007/s43465-020-00121-7] [PMID: 32341599]
[30]
Chen, H.L.; Jia, W.J.; Li, H.E.; Han, H.; Li, F.; Zhang, X.L.N.; Li, J.J.; Yuan, Y.; Wu, C.Y. Scutellarin exerts anti-inflammatory effects in activated microglia/brain macrophage in cerebral ischemia and in activated bv-2 microglia through regulation of mapks signaling pathway. Neuromolecular Med., 2020, 22(2), 264-277.
[http://dx.doi.org/10.1007/s12017-019-08582-2] [PMID: 31792810]
[31]
Tremblay, M.E.; Madore, C.; Bordeleau, M.; Tian, L.; Verkhratsky, A. Neuropathobiology of covid-19: The role for glia. Front. Cell. Neurosci., 2020, 14592214
[http://dx.doi.org/10.3389/fncel.2020.592214] [PMID: 33304243]
[32]
Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-515.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[33]
Tang, X.L.; Liu, J.X.; Dong, W.; Li, P.; Li, L.; Hou, J.C.; Zheng, Y.Q.; Lin, C.R.; Ren, J.G. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation, 2015, 38(1), 94-101.
[http://dx.doi.org/10.1007/s10753-014-0011-2] [PMID: 25189464]
[34]
Ryu, J.H.; Ahn, H.; Jin Lee, H. Inhibition of nitric oxide production on LPS-activated macrophages by kazinol B from Broussonetia kazinoki. Fitoterapia, 2003, 74(4), 350-354.
[http://dx.doi.org/10.1016/S0367-326X(03)00062-5] [PMID: 12781805]
[35]
Luo, Y.; Shang, P.; Li, D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol., 2017, 8, 692.
[http://dx.doi.org/10.3389/fphar.2017.00692] [PMID: 29056912]
[36]
Nishitani, Y.; Yamamoto, K.; Yoshida, M.; Azuma, T.; Kanazawa, K.; Hashimoto, T.; Mizuno, M. Intestinal anti-inflammatory activity of luteolin: role of the aglycone in NF-κB inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors, 2013, 39(5), 522-533.
[http://dx.doi.org/10.1002/biof.1091] [PMID: 23460110]
[37]
Villapol, S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl. Res., 2020, 226, 57-69.
[http://dx.doi.org/10.1016/j.trsl.2020.08.004] [PMID: 32827705]
[38]
Bellik, Y.; Boukraâ, L.; Alzahrani, H.A.; Bakhotmah, B.A.; Abdellah, F.; Hammoudi, S.M.; Iguer-Ouada, M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update. Molecules, 2012, 18(1), 322-353.
[http://dx.doi.org/10.3390/molecules18010322] [PMID: 23271469]
[39]
Müller, C.; Hardt, M.; Schwudke, D.; Neuman, B.W.; Pleschka, S.; Ziebuhr, J. Inhibition of cytosolic phospholipase A2α impairs an early step of coronavirus replication in cell culture. J. Virol., 2018, 92(4), 01463-17.
[http://dx.doi.org/10.1128/JVI.01463-17] [PMID: 29167338]
[40]
Hoxha, M. What about COVID-19 and arachidonic acid pathway? Eur. J. Clin. Pharmacol., 2020, 76(11), 1501-1504.
[http://dx.doi.org/10.1007/s00228-020-02941-w] [PMID: 32583353]
[41]
Funk, C.D.; Ardakani, A. A novel strategy to mitigate the hyperinflammatory response to covid-19 by targeting leukotrienes. Front. Pharmacol., 2020, 11(11), 1214.
[http://dx.doi.org/10.3389/fphar.2020.01214] [PMID: 32848802]
[42]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[43]
Jin, Q.; Lee, C.; Lee, J.W.; Lee, D.; Kim, Y.; Hong, J.T.; Kim, J.S.; Kim, J.H.; Lee, M.K.; Hwang, B.Y. Geranylated flavanones from Paulownia coreana and their inhibitory effects on nitric oxide production. Chem. Pharm. Bull. (Tokyo), 2015, 63(5), 384-387.
[http://dx.doi.org/10.1248/cpb.c14-00839] [PMID: 25948332]
[44]
Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health, 2013, 10(9), 3886-3907.
[http://dx.doi.org/10.3390/ijerph10093886] [PMID: 23985773]
[45]
Hanáková, Z.; Hošek, J.; Babula, P.; Dall’Acqua, S.; Václavík, J.; Šmejkal, K. C-geranylated flavanones from paulownia tomentosa fruits as potential anti-inflammatory compounds acting via inhibition of tnf-α production. J. Nat. Prod., 2015, 78(4), 850-863.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00005] [PMID: 25735399]
[46]
Duret, P.M.; Sebbag, E.; Mallick, A.; Gravier, S.; Spielmann, L.; Messer, L. Recovery from COVID-19 in a patient with spondyloarthritis treated with TNF-alpha inhibitor etanercept. Ann. Rheum. Dis., 2020, 79(9), 1251-1252.
[http://dx.doi.org/10.1136/annrheumdis-2020-217362] [PMID: 32354772]
[47]
Yousaf, A.; Gayam, S.; Feldman, S.; Zinn, Z.; Kolodney, M. Clinical outcomes of COVID-19 in patients taking tumor necrosis factor inhibitors or methotrexate: A multicenter research network study. J. Am. Acad. Dermatol., 2021, 84(1), 70-75.
[http://dx.doi.org/10.1016/j.jaad.2020.09.009] [PMID: 32926977]
[48]
Hanáková, Z.; Hošek, J.; Kutil, Z.; Temml, V.; Landa, P.; Vaněk, T.; Schuster, D.; Dall’Acqua, S.; Cvačka, J.; Polanský, O.; Šmejkal, K. Anti-inflammatory activity of natural geranylated flavonoids: Cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J. Nat. Prod., 2017, 80(4), 999-1006.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01011] [PMID: 28322565]
[49]
Zhao, D.; Zhang, S.; Igawa, T.; Frishman, W. Use of nonsteroidal anti-inflammatory drugs for covid-19 infection: Adjunct therapy? Cardiol. Rev., 2020, 28(6), 303-307.
[http://dx.doi.org/10.1097/CRD.0000000000000340] [PMID: 33017365]
[50]
Cheng, C.L.; Jia, X.H.; Xiao, C.M.; Tang, W.Z. Paulownia C-geranylated flavonoids: Their structural variety, biological activity and application prospects. Phytochem. Rev., 2019, 18(3), 549-570.
[http://dx.doi.org/10.1007/s11101-019-09614-2] [PMID: 32214921]
[51]
Hosek, J.; Závalová, V.; Smejkal, K.; Bartos, M. Effect of diplacone on LPS-induced inflammatory gene expression in macrophages. Folia Biol. (Praha), 2010, 56(3), 124-130.
[PMID: 20653997]
[52]
Hirawat, R.; Saifi, M.A.; Godugu, C. Targeting inflammatory cytokine storm to fight against COVID-19 associated severe complications. Life Sci., 2021, 267118923
[http://dx.doi.org/10.1016/j.lfs.2020.118923] [PMID: 33358906]
[53]
Lee, C.; Lee, J.M.; Lee, N.R.; Kim, D.E.; Jeong, Y.J.; Chong, Y. Investigation of the pharmacophore space of severe acute respiratory syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg. Med. Chem. Lett., 2009, 19(16), 4538-4541.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.009] [PMID: 19625187]
[54]
Nguyen, T.T.H.; Woo, H.J.; Kang, H.K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[55]
Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[56]
Liu, H.; Ye, F.; Sun, Q.; Liang, H.; Li, C.; Li, S.; Lu, R.; Huang, B.; Tan, W.; Lai, L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 497-503.
[http://dx.doi.org/10.1080/14756366.2021.1873977] [PMID: 33491508]
[57]
Nguyen, T.T.H.; Jung, J-H.; Kim, M-K.; Lim, S.; Choi, J-M.; Chung, B.; Kim, D-W.; Kim, D. The inhibitory effects of plant derivate polyphenols on the Main Protease of SARS Coronavirus 2 and their structure–activity relationship. Molecules, 2021, 26(7), 1924.
[http://dx.doi.org/10.3390/molecules26071924] [PMID: 33808054]
[58]
Soromou, L.W.; Chen, N.; Jiang, L.; Huo, M.; Wei, M.; Chu, X.; Millimouno, F.M.; Feng, H.; Sidime, Y.; Deng, X. Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down-regulating NF-κB signaling pathway. Biochem. Biophys. Res. Commun., 2012, 419(2), 256-261.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.005] [PMID: 22342978]
[59]
Borghi, S.M.; Carvalho, T.T.; Staurengo-Ferrari, L.; Hohmann, M.S.; Pinge-Filho, P.; Casagrande, R.; Verri, W.A. Jr Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod., 2013, 76(6), 1141-1149.
[http://dx.doi.org/10.1021/np400222v] [PMID: 23742617]
[60]
Henss, L.; Auste, A.; Schürmann, C.; Schmidt, C.; von Rhein, C.; Mühlebach, M.D.; Schnierle, B.S. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. J. Gen. Virol., in press
[http://dx.doi.org/10.1099/jgv.0.001574] [PMID: 33830908]
[61]
Li, J.; Ye, L.; Wang, X.; Liu, J.; Wang, Y.; Zhou, Y.; Ho, W. (-)-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells. J. Neuroinflammation, 2012, 9, 161.
[http://dx.doi.org/10.1186/1742-2094-9-161] [PMID: 22768975]
[62]
Xu, B.; Huang, S.; Wang, C.; Zhang, H.; Fang, S.; Zhang, Y. Anti-inflammatory effects of dihydromyricetin in a mouse model of asthma. Mol Med Rep, 2017, 1I5, 3674-3680.
[http://dx.doi.org/10.3892/mmr.2017.6428]
[63]
Kang, G.J.; Han, S.C.; Ock, J.W.; Kang, H.K.; Yoo, E.S. Anti-inflammatory effect of quercetagetin, an active component of immature citrus unshiu, in hacat human keratinocytes. Biomol. Ther. (Seoul), 2013, 21(2), 138-145.
[http://dx.doi.org/10.4062/biomolther.2013.001] [PMID: 24009872]
[64]
Gutiérrez-Venegas, G.; Torras-Ceballos, A.; Gómez-Mora, J.A.; Fernández-Rojas, B. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts. Cell. Mol. Biol. Lett., 2017, 22, 19.
[http://dx.doi.org/10.1186/s11658-017-0047-z] [PMID: 28878808]
[65]
Clementi, N.; Scagnolari, C.; D’Amore, A.; Palombi, F.; Criscuolo, E.; Frasca, F.; Pierangeli, A.; Mancini, N.; Antonelli, G.; Clementi, M.; Carpaneto, A.; Filippini, A. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacol. Res., 2021, 163105255
[http://dx.doi.org/10.1016/j.phrs.2020.105255] [PMID: 33096221]
[66]
Manchope, M.F.; Casagrande, R.; Verri, W.A. Jr Naringenin: An analgesic and anti-inflammatory citrus flavanone. Oncotarget, 2017, 8(3), 3766-3767.
[http://dx.doi.org/10.18632/oncotarget.14084] [PMID: 28030851]
[67]
Zandi, K.; Musall, K.; Oo, A.; Cao, D.; Liang, B.; Hassandarvish, P.; Lan, S.; Slack, R.L.; Kirby, K.A.; Bassit, L.; Amblard, F.; Kim, B.; AbuBakar, S.; Sarafianos, S.G.; Schinazi, R.F. Baicalein and baicalin inhibit sars-cov-2 rna-dependent-rna polymerase. Microorganisms, 2021, 9(5), 893.
[http://dx.doi.org/10.3390/microorganisms9050893] [PMID: 33921971]
[68]
Song, J.; Zhang, L.; Xu, Y.; Yang, D.; Zhang, L.; Yang, S.; Zhang, W.; Wang, J.; Tian, S.; Yang, S.; Yuan, T.; Liu, A.; Lv, Q.; Li, F.; Liu, H.; Hou, B.; Peng, X.; Lu, Y.; Du, G. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem. Pharmacol., 2021, 183114302
[http://dx.doi.org/10.1016/j.bcp.2020.114302] [PMID: 33121927]
[69]
Sharifi-Rad, J.; Kamiloglu, S.; Yeskaliyeva, B.; Beyatli, A.; Alfred, M.A.; Salehi, B.; Calina, D.; Docea, A.O.; Imran, M.; Anil Kumar, N.V.; Romero-Román, M.E.; Maroyi, A.; Martorell, M. Pharmacological activities of psoralidin: A comprehensive review of the molecular mechanisms of action. Front. Pharmacol., 2020, 11571459
[http://dx.doi.org/10.3389/fphar.2020.571459] [PMID: 33192514]
[70]
Szliszka, E.; Skaba, D.; Czuba, Z.P.; Krol, W. Inhibition of inflammatory mediators by neobavaisoflavone in activated RAW264.7 macrophages. Molecules, 2011, 16(5), 3701-3712.
[http://dx.doi.org/10.3390/molecules16053701] [PMID: 21540797]
[71]
Tian, X.; Liu, T.; Li, L.; Shao, B.; Yao, D.; Feng, L.; Cui, J.; James, T.D.; Ma, X. Visual high-throughput screening for developing a fatty acid amide hydrolase natural inhibitor based on an enzyme-activated fluorescent probe. Anal. Chem., 2020, 92(14), 9493-9500.
[http://dx.doi.org/10.1021/acs.analchem.9b05826] [PMID: 32456414]
[72]
Lissoni, P.; Rovelli, F.; Pelizzoni, F.; Lissoni, A.; Fede, G.D. Coronavirus-induced severe acute respiratory syndrome (SARS) as a possible expression of fatty acid amide hydrolase (FAAH) hyper-activation and possible therapeutic role of FAAH inhibitors in COVID 19-induced SARS. J. Clin. Res. Reports, 2020, 5(2)
[73]
Lee, S.W.; Yun, B.R.; Kim, M.H.; Park, C.S.; Lee, W.S.; Oh, H.M.; Rho, M.C. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation. Planta Med., 2012, 78(9), 903-906.
[http://dx.doi.org/10.1055/s-0031-1298482] [PMID: 22573369]
[74]
Hirano, T.; Murakami, M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity, 2020, 52(5), 731-733.
[http://dx.doi.org/10.1016/j.immuni.2020.04.003] [PMID: 32325025]
[75]
Abbasifard, M.; Khorramdelazad, H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief look at potential therapeutic tactics. Life Sci., 2020, 257118097
[http://dx.doi.org/10.1016/j.lfs.2020.118097] [PMID: 32679148]
[76]
Mokuda, S.; Tokunaga, T.; Masumoto, J.; Sugiyama, E. Angiotensin-converting enzyme 2, a sars-cov-2 receptor, is upregulated by interleukin 6 through stat3 signaling in synovial tissues. J. Rheumatol., 2020, 47(10), 1593-1595.
[http://dx.doi.org/10.3899/jrheum.200547] [PMID: 32611670]
[77]
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm., 2007, 2007, 45673.
[http://dx.doi.org/10.1155/2007/45673] [PMID: 18274639]
[78]
Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; Feldman, J.; Muus, C.; Wadsworth, M.H., II; Kazer, S.W.; Hughes, T.K.; Doran, B.; Gatter, G.J.; Vukovic, M.; Taliaferro, F.; Mead, B.E.; Guo, Z.; Wang, J.P.; Gras, D.; Plaisant, M.; Ansari, M.; Angelidis, I.; Adler, H.; Sucre, J.M.S.; Taylor, C.J.; Lin, B.; Waghray, A.; Mitsialis, V.; Dwyer, D.F.; Buchheit, K.M.; Boyce, J.A.; Barrett, N.A.; Laidlaw, T.M.; Carroll, S.L.; Colonna, L.; Tkachev, V.; Peterson, C.W.; Yu, A.; Zheng, H.B.; Gideon, H.P.; Winchell, C.G.; Lin, P.L.; Bingle, C.D.; Snapper, S.B.; Kropski, J.A.; Theis, F.J.; Schiller, H.B.; Zaragosi, L.E.; Barbry, P.; Leslie, A.; Kiem, H.P.; Flynn, J.L.; Fortune, S.M.; Berger, B.; Finberg, R.W.; Kean, L.S.; Garber, M.; Schmidt, A.G.; Lingwood, D.; Shalek, A.K.; Ordovas-Montanes, J. HCA SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5), 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[79]
Jeon, Y.D.; Lee, J.H.; Lee, Y.M.; Kim, D.K. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed. Pharmacother., 2020, 124109847
[http://dx.doi.org/10.1016/j.biopha.2020.109847] [PMID: 31981944]
[80]
Cheng, Z.; Lin, C.; Hwang, T.; Teng, C. Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochem. Pharmacol., 2001, 61(8), 939-946.
[http://dx.doi.org/10.1016/S0006-2952(01)00543-3] [PMID: 11286985]
[81]
Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med., 1993, 329(27), 2002-2012.
[http://dx.doi.org/10.1056/NEJM199312303292706] [PMID: 7504210]
[82]
Ramachandran, R.A.; Lupfer, C.; Zaki, H. The inflammasome: regulation of nitric oxide and antimicrobial host defence. Adv. Microb. Physiol., 2018, 72, 65-115.
[http://dx.doi.org/10.1016/bs.ampbs.2018.01.004] [PMID: 29778217]
[83]
Stoclet, J.C.; Muller, B.; Andriantsitohaina, R.; Kleschyov, A. Overproduction of nitric oxide in pathophysiology of blood vessels. Biochemistry (Mosc.), 1998, 63(7), 826-832.
[PMID: 9721335]
[84]
Jing, H.; Wang, S.; Wang, M.; Fu, W.; Zhang, C.; Xu, D. Isobavachalcone attenuates mptp induced parkinson’s disease in mice by inhibition of microglial activation through nf-κb pathway. PLoS One, 2017, 12(1)0169560
[http://dx.doi.org/10.1371/journal.pone.0169560]
[85]
Kwon, H.M.; Choi, Y.J.; Choi, J.S.; Kang, S.W.; Bae, J.Y.; Kang, I.J.; Jun, J.G.; Lee, S.S.; Lim, S.S.; Kang, Y.H. Blockade of cytokine-induced endothelial cell adhesion molecule expression by licorice isoliquiritigenin through NF-kappaB signal disruption. Exp. Biol. Med. (Maywood), 2007, 232(2), 235-245.
[PMID: 17259331]
[86]
Lee, S.H.; Kim, J.Y.; Seo, G.S.; Kim, Y.C.; Sohn, D.H. Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm. Res., 2009, 58(5), 257-262.
[http://dx.doi.org/10.1007/s00011-008-8183-6] [PMID: 19169644]
[87]
Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Kim, S.; Lee, Y.M.; Koh, Y.S.; Kim, Y.H. Flavonoids from Astragalus membranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch. Pharm. Res., 2014, 37(2), 186-192.
[http://dx.doi.org/10.1007/s12272-013-0174-7] [PMID: 23771500]
[88]
Yang, N.; Patil, S.; Zhuge, J.; Wen, M.C.; Bolleddula, J.; Doddaga, S.; Goldfarb, J.; Sampson, H.A.; Li, X.M. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMI™, inhibit memory Th2 responses in vitro and in vivo. Phytother. Res., 2013, 27(9), 1381-1391.
[http://dx.doi.org/10.1002/ptr.4862] [PMID: 23165939]
[89]
Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[90]
Chang, H.R.; Lee, H.J.; Ryu, J.H. Chalcones from Angelica keiskei attenuate the inflammatory responses by suppressing nuclear translocation of NF-κB. J. Med. Food, 2014, 17(12), 1306-1313.
[http://dx.doi.org/10.1089/jmf.2013.3037] [PMID: 25369132]
[91]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[92]
Tang, S.; Wen, Q.; Liu, P.; Zhu, Z.; Li, N.; Zhang, X.; Kan, Q. Effects of cryptotanshinone on the expression levels of inflammatory factors in myocardial cells caused by Ang II and its mechanism. Int. J. Clin. Exp. Med., 2015, 8(8), 12617-12623.
[PMID: 26550173]
[93]
Cao, S.G.; Chen, R.; Wang, H.; Lin, L.M.; Xia, X.P. Cryptotanshinone inhibits prostaglandin E2 production and COX-2 expression via suppression of TLR4/NF-κB signaling pathway in LPS-stimulated Caco-2 cells. Microb. Pathog., 2018, 116, 313-317.
[http://dx.doi.org/10.1016/j.micpath.2017.12.027] [PMID: 29353005]
[94]
Wu, Y.H.; Wu, Y.R.; Li, B.; Yan, Z.Y. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia, 2020, 145104633
[http://dx.doi.org/10.1016/j.fitote.2020.104633] [PMID: 32445662]
[95]
Fan, S.Y.; Zeng, H.W.; Pei, Y.H.; Li, L.; Ye, J.; Pan, Y.X.; Zhang, J.G.; Yuan, X.; Zhang, W.D. The anti-inflammatory activities of an extract and compounds isolated from Platycladus orientalis (Linnaeus) Franco in vitro and ex vivo. J. Ethnopharmacol., 2012, 141(2), 647-652.
[http://dx.doi.org/10.1016/j.jep.2011.05.019] [PMID: 21619922]
[96]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[97]
Zhu, X.Y.; Zhang, C.L.; Lin, Y.; Dang, M.Y. Ferruginol alleviates inflammation in dextran sulfate sodium-induced colitis in mice through inhibiting COX-2, MMP-9 and NF-κB signaling. Asian Pac. J. Trop. Biomed., 2020, 10, 308-315.
[http://dx.doi.org/10.4103/2221-1691.284945]
[98]
Atkinson, J.J.; Senior, R.M. Matrix metalloproteinase-9 in lung remodeling. Am. J. Respir. Cell Mol. Biol., 2003, 28(1), 12-24.
[http://dx.doi.org/10.1165/rcmb.2002-0166TR] [PMID: 12495928]
[99]
Ueland, T.; Holter, J.C.; Holten, A.R.; Müller, K.E.; Lind, A.; Bekken, G.K.; Dudman, S.; Aukrust, P.; Dyrhol-Riise, A.M.; Heggelund, L. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. J. Infect., 2020, 81(3), e41-e43.
[http://dx.doi.org/10.1016/j.jinf.2020.06.061] [PMID: 32603675]
[100]
Wei, Y.; Li, K.; Wang, N.; Cai, G.D.; Zhang, T.; Lin, Y.; Gui, B.S.; Liu, E.Q.; Li, Z.F.; Zhou, W. Activation of endogenous anti-inflammatory mediator cyclic AMP attenuates acute pyelonephritis in mice induced by uropathogenic Escherichia coli. Am. J. Pathol., 2015, 185(2), 472-484.
[http://dx.doi.org/10.1016/j.ajpath.2014.10.007] [PMID: 25478807]
[101]
Benedetti, C.; Waldman, M.; Zaza, G.; Riella, L.V.; Cravedi, P. COVID-19 and the Kidneys: An Update. Front. Med. (Lausanne), 2020, 7, 423.
[http://dx.doi.org/10.3389/fmed.2020.00423] [PMID: 32793615]
[102]
Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int., 2020, 97(5), 829-838.
[http://dx.doi.org/10.1016/j.kint.2020.03.005] [PMID: 32247631]
[103]
Kang, S.; Zhang, J.; Yuan, Y. Abietic acid attenuates IL-1β-induced inflammation in human osteoarthritis chondrocytes. Int. Immunopharmacol., 2018, 64, 110-115.
[http://dx.doi.org/10.1016/j.intimp.2018.07.014] [PMID: 30172103]
[104]
Chen, X.; Yu, J.; Zhong, B.; Lu, J.; Lu, J.J.; Li, S.; Lu, Y. Pharmacological activities of dihydrotanshinone I, a natural product from Salvia miltiorrhiza Bunge. Pharmacol. Res., 2019, 145104254
[http://dx.doi.org/10.1016/j.phrs.2019.104254] [PMID: 31054311]
[105]
Tang, J.; Zhou, S.; Zhou, F.; Wen, X. Inhibitory effect of tanshinone IIA on inflammatory response in rheumatoid arthritis through regulating β-arrestin 2. Exp. Ther. Med., 2019, 17(5), 3299-3306.
[http://dx.doi.org/10.3892/etm.2019.7371] [PMID: 30988705]
[106]
Ma, S.; Zhang, D.; Lou, H.; Sun, L.; Ji, J. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages. J. Ethnopharmacol., 2016, 188, 193-199.
[http://dx.doi.org/10.1016/j.jep.2016.05.018] [PMID: 27178632]
[107]
Kim, S.Y.; Moon, T.C.; Chang, H.W.; Son, K.H.; Kang, S.S.; Kim, H.P. Effects of tanshinone I isolated from Salvia miltiorrhiza bunge on arachidonic acid metabolism and in vivo inflammatory responses. Phytother. Res., 2002, 16(7), 616-620.
[http://dx.doi.org/10.1002/ptr.941] [PMID: 12410540]
[108]
Kang, B.Y.; Chung, S.W.; Kim, S.H.; Ryu, S.Y.; Kim, T.S. Inhibition of interleukin-12 and interferon-gamma production in immune cells by tanshinones from Salvia miltiorrhiza. Immunopharmacology, 2000, 49(3), 355-361.
[http://dx.doi.org/10.1016/S0162-3109(00)00256-3] [PMID: 10996033]
[109]
Barnard, D.L.; Kumaki, Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 2011, 6(5), 615-631.
[http://dx.doi.org/10.2217/fvl.11.33] [PMID: 21765859]
[110]
Park, J.Y.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, S.J.; Kim, D.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol. Pharm. Bull., 2012, 35(11), 2036-2042.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[111]
Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-inflammatory effects of curcumin in microglial cells. Front. Pharmacol., 2018, 9, 386.
[http://dx.doi.org/10.3389/fphar.2018.00386] [PMID: 29731715]
[112]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol., 2007, 595, 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3] [PMID: 17569207]
[113]
Jacob, A.; Wu, R.; Zhou, M.; Wang, P. Mechanism of the anti-inflammatory effect of curcumin: ppar-gamma activation. PPAR Res., 2007, 2007, 89369.
[http://dx.doi.org/10.1155/2007/89369] [PMID: 18274631]
[114]
Fain, J.N.; Kanu, A.; Bahouth, S.W.; Cowan, G.S.M., Jr; Hiler, M.L.; Leffler, C.W. Comparison of PGE2, prostacyclin and leptin release by human adipocytes versus explants of adipose tissue in primary culture. Prostaglandins Leukot. Essent. Fatty Acids, 2002, 67(6), 467-473.
[http://dx.doi.org/10.1054/plef.2002.0430] [PMID: 12468269]
[115]
Lee, C.S.; Jang, E.R.; Kim, Y.J.; Lee, M.S.; Seo, S.J.; Lee, M.W. Hirsutenone inhibits lipopolysaccharide-activated NF-kappaB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation. Int. Immunopharmacol., 2010, 10(4), 520-525.
[http://dx.doi.org/10.1016/j.intimp.2010.01.015] [PMID: 20138154]
[116]
Lee, C.S.; Ko, H.H.; Seo, S.J.; Choi, Y.W.; Lee, M.W.; Myung, S.C.; Bang, H. Diarylheptanoid hirsutenone prevents tumor necrosis factor-alpha-stimulated production of inflammatory mediators in human keratinocytes through NF-kappaB inhibition. Int. Immunopharmacol., 2009, 9(9), 1097-1104.
[http://dx.doi.org/10.1016/j.intimp.2009.05.006] [PMID: 19464389]
[117]
Jin, W.; Cai, X.F.; Na, M.; Lee, J.J.; Bae, K. Diarylheptanoids from Alnus hirsuta inhibit the NF-kB activation and NO and TNF-α production. Biol. Pharm. Bull., 2007, 30(4), 810-813.
[http://dx.doi.org/10.1248/bpb.30.810] [PMID: 17409527]
[118]
Chi, J.H.; Seo, G.S.; Lee, S.H. Oregonin inhibits inflammation and protects against barrier disruption in intestinal epithelial cells. Int. Immunopharmacol., 2018, 59, 134-140.
[http://dx.doi.org/10.1016/j.intimp.2018.04.006] [PMID: 29655054]
[119]
Tong, M.; Jiang, Y.; Xia, D.; Xiong, Y.; Zheng, Q.; Chen, F.; Zou, L.; Xiao, W.; Zhu, Y. Elevated expression of serum endothelial cell adhesion molecules in covid-19 patients. J. Infect. Dis., 2020, 222(6), 894-898.
[http://dx.doi.org/10.1093/infdis/jiaa349] [PMID: 32582936]
[120]
Wang, H.S.; Hwang, Y.J.; Yin, J.; Lee, M.W. Inhibitory effects on no production and dpph radicals and nbt superoxide activities of diarylheptanoid isolated from enzymatically hydrolyzed ethanolic extract of alnus sibirica. Molecules, 2019, 24, 1938.
[http://dx.doi.org/10.3390/molecules24101938]
[121]
Le, T.T.; Yin, J.; Lee, M. Anti-inflammatory and anti-oxidative activities of phenolic compounds from alnus sibirica stems fermented by lactobacillus plantarum subsp. argentoratensis. Molecules, 2017, 22(9), 1566.
[http://dx.doi.org/10.3390/molecules22091566] [PMID: 28927000]
[122]
Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[123]
Yamazaki, Y.; Kawano, Y. Inhibitory effects of herbal alkaloids on the tumor necrosis factor-α and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chem. Pharm. Bull. (Tokyo), 2011, 59(3), 388-391.
[http://dx.doi.org/10.1248/cpb.59.388] [PMID: 21372424]
[124]
Yang, C.W.; Lee, Y.Z.; Kang, I.J.; Barnard, D.L.; Jan, J.T.; Lin, D.; Huang, C.W.; Yeh, T.K.; Chao, Y.S.; Lee, S.J. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res., 2010, 88(2), 160-168.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[125]
Yang, C.W.; Chen, W.L.; Wu, P.L.; Tseng, H.Y.; Lee, S.J. Anti-inflammatory mechanisms of phenanthroindolizidine alkaloids. Mol. Pharmacol., 2006, 69(3), 749-758.
[http://dx.doi.org/10.1124/mol.105.017764] [PMID: 16332992]
[126]
Liu, N.; Zhang, G.X.; Niu, Y.T.; Wang, Q.; Zheng, J.; Yang, J.M.; Sun, T.; Niu, J.G.; Yu, J.Q. Anti-inflammatory and analgesic activities of indigo through regulating the IKKβ/IκB/NF-κB pathway in mice. Food Funct., 2020, 11(10), 8537-8546.
[http://dx.doi.org/10.1039/C9FO02574J] [PMID: 33084638]
[127]
Qi, T.; Li, H.; Li, S. Indirubin improves antioxidant and anti-inflammatory functions in lipopolysaccharide-challenged mice. Oncotarget, 2017, 8(22), 36658-36663.
[http://dx.doi.org/10.18632/oncotarget.17560] [PMID: 28525368]
[128]
He, C.L.; Huang, L.Y.; Wang, K.; Gu, C.J.; Hu, J.; Zhang, G.J.; Xu, W.; Xie, Y.H.; Tang, N.; Huang, A.L. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Signal Transduct. Target. Ther., 2021, 6(1), 131.
[http://dx.doi.org/10.1038/s41392-021-00531-5] [PMID: 33758167]
[129]
Guolan, D.; Lingli, W.; Wenyi, H.; Wei, Z.; Baowei, C.; Sen, B. Anti-inflammatory effects of neferine on LPS-induced human endothelium via MAPK, and NF-κβ pathways. Pharmazie, 2018, 73(9), 541-544.
[PMID: 30223939]
[130]
Wu, S.J.; Ng, L.T. Tetrandrine inhibits proinflammatory cytokines, iNOS and COX-2 expression in human monocytic cells. Biol. Pharm. Bull., 2007, 30(1), 59-62.
[http://dx.doi.org/10.1248/bpb.30.59] [PMID: 17202660]
[131]
Huang, H.; Hu, G.; Wang, C.; Xu, H.; Chen, X.; Qian, A. Cepharanthine, an alkaloid from Stephania cepharantha Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. Inflammation, 2014, 37(1), 235-246.
[http://dx.doi.org/10.1007/s10753-013-9734-8] [PMID: 24045962]
[132]
Li, P.; Li, X.; Wu, Y.; Li, M.; Wang, X. A novel AMPK activator hernandezine inhibits LPS-induced TNFα production. Oncotarget, 2017, 8(40), 67218-67226.
[http://dx.doi.org/10.18632/oncotarget.18365] [PMID: 28978028]
[133]
Qiao, B.; Wang, H.; Wang, C.; Liang, M.; Huang, K.; Li, Y. Dauricine negatively regulates lipopolysaccharide- or cecal ligation and puncture-induced inflammatory response via NF-κB inactivation. Arch. Biochem. Biophys., 2019, 666, 99-106.
[http://dx.doi.org/10.1016/j.abb.2019.03.018] [PMID: 30946805]
[134]
Jun, M.Y.; Karki, R.; Paudel, K.R.; Panth, N.; Devkota, H.P.; Kim, D-W. Liensinine prevents vascular inflammation by attenuating inflammatory mediators and modulating vsmc function. Appl. Sci. (Basel), 2021, 11, 386.
[http://dx.doi.org/10.3390/app11010386]
[135]
Meng, X-L.; Chen, M-L.; Chen, C-L.; Gao, C-C.; Li, C.; Wang, D.; Liu, H-S.; Xu, C-B. Bisbenzylisoquinoline alkaloids of lotus (Nelumbo nucifera Gaertn.) seed embryo inhibit lipopolysaccharide-induced macrophage activation via suppression of Ca2+-CaM/CaMKII pathway. Food Agric. Immunol., 2019, 30, 878-896.
[http://dx.doi.org/10.1080/09540105.2019.1638889]
[136]
Ryu, Y.B.; Park, S.J.; Kim, Y.M.; Lee, J.Y.; Seo, W.D.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg. Med. Chem. Lett., 2010, 20(6), 1873-1876.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[137]
Allison, A.C.; Cacabelos, R.; Lombardi, V.R.M.; Álvarez, X.A.; Vigo, C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(7), 1341-1357.
[http://dx.doi.org/10.1016/S0278-5846(01)00192-0] [PMID: 11513350]
[138]
He, P.; Ye, F.; Huang, S.; Guo, Y.; Wang, H.; Wu, Y. Anti-inflammatory effect of pristimerin on TNFα-induced inflammatory responses in murine macrophages. Int. J. Clin. Exp. Pathol., 2016, 9(2), 1186-1194.
[139]
Tsai, J.C.; Peng, W.H.; Chiu, T.H.; Lai, S.C.; Lee, C.Y. Anti-inflammatory effects of Scoparia dulcis L. and betulinic acid. Am. J. Chin. Med., 2011, 39(5), 943-956.
[http://dx.doi.org/10.1142/S0192415X11009329] [PMID: 21905284]
[140]
Valtueña, J.; Ruiz-Sánchez, D.; Volo, V.; Manchado-López, P.; Garayar-Cantero, M. Acral edema during the COVID-19 pandemic. Int. J. Dermatol., 2020, 59(9), 1155-1157.
[http://dx.doi.org/10.1111/ijd.15025] [PMID: 32608503]
[141]
Fujimoto, L.B.M.; Ferreira, S.A.D.; Santos, F.B.D.; Talhari, C. Petechial lesions in a patient with COVID-19. An. Bras. Dermatol., 2021, 96(1), 111-113.
[http://dx.doi.org/10.1016/j.abd.2020.08.007] [PMID: 33293229]
[142]
Sun, Y.; Gao, L.; Hou, W.; Wu, J. β-Sitosterol Alleviates Inflammatory Response via Inhibiting the Activation of ERK/p38 and NF-κB Pathways in LPS-Exposed BV2 Cells. BioMed Res. Int., 2020, 20207532306
[http://dx.doi.org/10.1155/2020/7532306] [PMID: 32596368]
[143]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[144]
Zhu, J.; Luo, C.; Wang, P.; He, Q.; Zhou, J.; Peng, H. Saikosaponin A mediates the inflammatory response by inhibiting the MAPK and NF-κB pathways in LPS-stimulated RAW 264.7 cells. Exp. Ther. Med., 2013, 5(5), 1345-1350.
[http://dx.doi.org/10.3892/etm.2013.988] [PMID: 23737876]
[145]
Shin, J.S. Im, H.T.; Lee, K.T. Saikosaponin B2 suppresses inflammatory responses through ikk/iκbα/nf-κb signaling inactivation in lps-induced raw 264.7 macrophages. Inflammation, 2019, 42(1), 342-353.
[http://dx.doi.org/10.1007/s10753-018-0898-0] [PMID: 30251218]
[146]
Lu, C.N.; Yuan, Z.G.; Zhang, X.L.; Yan, R.; Zhao, Y.Q.; Liao, M.; Chen, J.X. Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway. Int. Immunopharmacol., 2012, 14(1), 121-126.
[http://dx.doi.org/10.1016/j.intimp.2012.06.010] [PMID: 22728095]
[147]
Song, Y.H.; Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Zhuang, N.; Lee, K.H.; Jeon, K.S.; Park, K.H. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol. Pharm. Bull., 2014, 37(6), 1021-1028.
[http://dx.doi.org/10.1248/bpb.b14-00026] [PMID: 24882413]
[148]
Zhou, Y.; Wang, S.; Lou, H.; Fan, P. Chemical constituents of hemp (Cannabis sativa L.) seed with potential anti-neuroinflammatory activity. Phytochem. Lett., 2018, 23, 6157-6158.
[http://dx.doi.org/10.1016/j.phytol.2017.11.013]
[149]
Nchiozem-Ngnitedem, V.A.; Omosa, L.K.; Bedane, K.G.; Derese, S.; Brieger, L.; Strohmann, C.; Spiteller, M. Anti-inflammatory steroidal sapogenins and a conjugated chalcone-stilbene from Dracaena usambarensis Engl. Fitoterapia, 2020, 146104717
[http://dx.doi.org/10.1016/j.fitote.2020.104717] [PMID: 32877711]
[150]
Kim, H.S.; Lee, J.W.; Jang, H.; Le, T.P.L.; Kim, J.G.; Lee, M.S.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells. Arch. Pharm. Res., 2018, 41(2), 192-195.
[http://dx.doi.org/10.1007/s12272-017-0984-0] [PMID: 29177586]
[151]
Park, M.Y.; Kwon, H.J.; Sung, M.K. Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci. Biotechnol. Biochem., 2009, 73(4), 828-832.
[http://dx.doi.org/10.1271/bbb.80714] [PMID: 19352036]
[152]
Lee, H.W.; Lee, C.G.; Rhee, D.K.; Um, S.H.; Pyo, S. Sinigrin inhibits production of inflammatory mediators by suppressing NF-κB/MAPK pathways or NLRP3 inflammasome activation in macrophages. Int. Immunopharmacol., 2017, 45, 163-173.
[http://dx.doi.org/10.1016/j.intimp.2017.01.032] [PMID: 28219839]
[153]
Li, X.J.; Kim, K.W.; Oh, H.; Liu, X.Q.; Kim, Y.C. Chemical Constituents and an Antineuroinflammatory Lignan, Savinin from the Roots of Acanthopanax henryi. Evid. Based Complement. Alternat. Med., 2019, 20191856294
[http://dx.doi.org/10.1155/2019/1856294] [PMID: 30915141]
[154]
Lee, J.; Jung, E.; Park, J.; Jung, K.; Lee, S.; Hong, S.; Park, J.; Park, E.; Kim, J.; Park, S.; Park, D. Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med., 2005, 71(4), 338-343.
[http://dx.doi.org/10.1055/s-2005-864100] [PMID: 15856410]
[155]
Su, H.X.; Yao, S.; Zhao, W.F.; Li, M.J.; Liu, J.; Shang, W.J.; Xie, H.; Ke, C.Q.; Hu, H.C.; Gao, M.N.; Yu, K.Q.; Liu, H.; Shen, J.S.; Tang, W.; Zhang, L.K.; Xiao, G.F.; Ni, L.; Wang, D.W.; Zuo, J.P.; Jiang, H.L.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y.C. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin., 2020, 41(9), 1167-1177.
[http://dx.doi.org/10.1038/s41401-020-0483-6] [PMID: 32737471]
[156]
Jiang, W.L.; Fu, F.H.; Xu, B.M.; Tian, J.W.; Zhu, H.B. Jian-Hou, Cardioprotection with forsythoside B in rat myocardial ischemia-reperfusion injury: relation to inflammation response. Phytomedicine, 2010, 17(8-9), 635-639.
[http://dx.doi.org/10.1016/j.phymed.2009.10.017] [PMID: 19959348]
[157]
Chen, Z. Cui1, Q.; Cooper, L.; Zhang, P.; Lee, H.; Chen, Z.; Wang, Y.; Liu, X.; Rong, L.; Du, R. Ginkgolic acid and anacardic acid are specifc covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci., 2021, 11, 45.
[http://dx.doi.org/10.1186/s13578-021-00564-x] [PMID: 33640032]
[158]
Zhang, J.; Yan, J. Protective effect of ginkgolic acid in attenuating ldl induced inflammation human peripheral blood mononuclear cells via altering the nf-κb signaling pathway. Front. Pharmacol., 2019, 10, 1241.
[http://dx.doi.org/10.3389/fphar.2019.01241] [PMID: 31780924]
[159]
Önal, B.; Özen, D.; Demir, B.; Gezen Ak, D.; Dursun, E.; Demir, C.; Akkan, A.G.; Özyazgan, S. The anti-inflammatory effects of anacardic acid on a tnf-α - induced human saphenous vein endothelial cell culture model. Curr. Pharm. Biotechnol., 2020, 21(8), 710-719.
[http://dx.doi.org/10.2174/1389201020666191105154619] [PMID: 31692436]
[160]
Yu, H.P.; Chaudry, I.H.; Choudhry, M.A.; Hsing, C.H.; Liu, F.C.; Xia, Z. Inflammatory response to traumatic injury: clinical and animal researches in inflammation. Mediators Inflamm., 2015, 2015729637
[http://dx.doi.org/10.1155/2015/729637] [PMID: 26290624]
[161]
Vaillant, J.A.A.; Sabir, S.; Jan, A. Physiology, immune response.StatPearls Publishing: Treasure Island, FL, 2021. Updated 2020 Sep 27 Internet [Updated 2020 Sep 27] Available from:, https://www.ncbi.nlm.nih.gov/books/NBK539801/[Accessed March 4, 2021]
[162]
Černý, J.; Stříž, I. Adaptive innate immunity or innate adaptive immunity? Clin. Sci. (Lond.), 2019, 133(14), 1549-1565.
[http://dx.doi.org/10.1042/CS20180548] [PMID: 31315948]
[163]
Hosseini, A.; Hashemi, V.; Shomali, N.; Asghari, F.; Gharibi, T.; Akbari, M.; Gholizadeh, S.; Jafari, A. Innate and adaptive immune responses against coronavirus. Biomed. Pharmacother., 2020, 132110859
[http://dx.doi.org/10.1016/j.biopha.2020.110859] [PMID: 33120236]
[164]
Varchetta, S.; Mele, D.; Oliviero, B.; Mantovani, S.; Ludovisi, S.; Cerino, A.; Bruno, R.; Castelli, A.; Mosconi, M.; Vecchia, M.; Roda, S.; Sachs, M.; Klersy, C.; Mondelli, M.U. Unique immunological profile in patients with COVID-19. Cell. Mol. Immunol., 2021, 18(3), 604-612.
[http://dx.doi.org/10.1038/s41423-020-00557-9] [PMID: 33060840]
[165]
Zhou, R.; To, K.K.; Wong, Y.C.; Liu, L.; Zhou, B.; Li, X.; Huang, H.; Mo, Y.; Luk, T.Y.; Lau, T.T.; Yeung, P.; Chan, W.M.; Wu, A.K.; Lung, K.C.; Tsang, O.T.; Leung, W.S.; Hung, I.F.; Yuen, K.Y.; Chen, Z. Acute sars-cov-2 infection impairs dendritic cell and t cell responses. Immunity, 2020, 53(4), 864-877.e5.
[http://dx.doi.org/10.1016/j.immuni.2020.07.026] [PMID: 32791036]
[166]
Yoon, M.S.; Lee, J.S.; Choi, B.M.; Jeong, Y.I.; Lee, C.M.; Park, J.H.; Moon, Y.; Sung, S.C.; Lee, S.K.; Chang, Y.H.; Chung, H.Y.; Park, Y.M. Apigenin inhibits immunostimulatory function of dendritic cells: Implication of immunotherapeutic adjuvant. Mol. Pharmacol., 2006, 70(3), 1033-1044.
[http://dx.doi.org/10.1124/mol.106.024547] [PMID: 16782805]
[167]
Kilani-Jaziri, S.; Mustapha, N.; Mokdad-Bzeouich, I.; El Gueder, D.; Ghedira, K.; Ghedira-Chekir, L. Flavones induce immunomodulatory and anti-inflammatory effects by activating cellular anti-oxidant activity: A structure-activity relationship study. Tumour Biol., 2016, 37(5), 6571-6579.
[http://dx.doi.org/10.1007/s13277-015-4541-5] [PMID: 26638168]
[168]
Sassi, A.; Mokdad Bzéouich, I.; Mustapha, N.; Maatouk, M.; Ghedira, K.; Chekir-Ghedira, L. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response. Eur. J. Pharmacol., 2017, 812, 91-96.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.017] [PMID: 28690190]
[169]
Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A dietary molecule with diverse biological activities. Nutrients, 2016, 8(2), 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[170]
Huang, R.Y.; Yu, Y.L.; Cheng, W.C.; OuYang, C.N.; Fu, E.; Chu, C.L. Immunosuppressive effect of quercetin on dendritic cell activation and function. J. Immunol., 2010, 184(12), 6815-6821.
[http://dx.doi.org/10.4049/jimmunol.0903991] [PMID: 20483746]
[171]
Zhang, R.; Li, Y.; Wang, W. Enhancement of immune function in mice fed high doses of soy daidzein. Nutr. Cancer, 1997, 29(1), 24-28.
[http://dx.doi.org/10.1080/01635589709514597] [PMID: 9383780]
[172]
Wang, J.P.; Tsao, L.T.; Raung, S.L.; Lin, C.N. Investigation of the inhibitory effect of broussochalcone A on respiratory burst in neutrophils. Eur. J. Pharmacol., 1997, 320(2-3), 201-208.
[http://dx.doi.org/10.1016/S0014-2999(96)00888-6] [PMID: 9059855]
[173]
Lim, P.S.; Sutton, C.R.; Rao, S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology, 2015, 146(4), 508-522.
[http://dx.doi.org/10.1111/imm.12510] [PMID: 26194700]
[174]
Guo, A.; He, D.; Xu, H.B.; Geng, C.A.; Zhao, J. Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents. Sci. Rep., 2015, 5, 14046.
[http://dx.doi.org/10.1038/srep14046] [PMID: 26370586]
[175]
Wei, W.J.; Zhou, P.P.; Lin, C.J.; Wang, W.F.; Li, Y.; Gao, K. Diterpenoids from Salvia miltiorrhiza and Their Immune-Modulating Activity. J. Agric. Food Chem., 2017, 65(29), 5985-5993.
[http://dx.doi.org/10.1021/acs.jafc.7b02384] [PMID: 28679204]
[176]
Srivastava, R.M.; Singh, S.; Dubey, S.K.; Misra, K.; Khar, A. Immunomodulatory and therapeutic activity of curcumin. Int. Immunopharmacol., 2011, 11(3), 331-341.
[http://dx.doi.org/10.1016/j.intimp.2010.08.014] [PMID: 20828642]
[177]
Yu, S.; Yan, H.; Zhang, L.; Shan, M.; Chen, P.; Ding, A.; Li, S.F.Y. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules, 2017, 22(2), 299.
[http://dx.doi.org/10.3390/molecules22020299] [PMID: 28212342]
[178]
Liu, J.J.; Liu, X.K. Chemical constituents from edible part of Pistacia chinensis. Chin. Tradit. Herbal Drugs, 2009, 40, 186-189.
[179]
Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep., 2017, 3(6), 423-446.
[http://dx.doi.org/10.1007/s40495-017-0113-2] [PMID: 29399439]
[180]
McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 2006, 20(7), 519-530.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[181]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[182]
Testai, L.; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 2017, 9(5), 502.
[http://dx.doi.org/10.3390/nu9050502] [PMID: 28509871]
[183]
Kim, H.K.; Jeong, T.S.; Lee, M.K.; Park, Y.B.; Choi, M.S. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin. Chim. Acta, 2003, 327(1-2), 129-137.
[http://dx.doi.org/10.1016/S0009-8981(02)00344-3] [PMID: 12482628]
[184]
Barzegar, A. Antioxidant activity of polyphenolic myricetin in vitro cell- free and cell-based systems. Mol. Biol. Res. Commun., 2016, 5(2), 87-95.
[PMID: 28097162]
[185]
Lee, K.M.; Kang, N.J.; Han, J.H.; Lee, K.W.; Lee, H.J. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B. J. Agric. Food Chem., 2007, 55(23), 9678-9684.
[http://dx.doi.org/10.1021/jf0717945] [PMID: 17944529]
[186]
Li, W.D.; Yan, C.P.; Wu, Y.; Weng, Z.B.; Yin, F.Z.; Yang, G.M.; Cai, B.C.; Chen, Z.P. Osteoblasts proliferation and differentiation stimulating activities of the main components of Fructus Psoraleae corylifoliae. Phytomedicine, 2014, 21(4), 400-405.
[http://dx.doi.org/10.1016/j.phymed.2013.09.015] [PMID: 24220018]
[187]
Chopra, B.; Dhingra, A.K.; Dhar, K.L. Psoralea corylifolia L. (Buguchi) - folklore to modern evidence. review. Fitoterapia, 2013, 90, 44-56. [Review]
[http://dx.doi.org/10.1016/j.fitote.2013.06.016] [PMID: 23831482]
[188]
Gao, J.; Chen, G.; He, H.; Liu, C.; Xiong, X.; Li, J.; Wang, J. Therapeutic effects of breviscapine in cardiovascular diseases: A review. Front. Pharmacol., 2017, 8, 289.
[http://dx.doi.org/10.3389/fphar.2017.00289] [PMID: 28588491]
[189]
Tang, H.; Tang, Y.; Li, N.; Shi, Q.; Guo, J.; Shang, E.; Duan, J.A. Neuroprotective effects of scutellarin and scutellarein on repeatedly cerebral ischemia-reperfusion in rats. Pharmacol. Biochem. Behav., 2014, 118, 51-59.
[http://dx.doi.org/10.1016/j.pbb.2014.01.003] [PMID: 24423938]
[190]
Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[191]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[192]
Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem., 1999, 47(6), 2274-2279.
[http://dx.doi.org/10.1021/jf9811065] [PMID: 10794622]
[193]
Yang, R.Y.; Lin, S.; Kuo, G. Content and distribution of flavonoids among 91 edible plant species. Asia Pac. J. Clin. Nutr., 2008, 17(Suppl. 1), 275-279.
[PMID: 18296355]
[194]
Lee, D.; Bhat, K.P.; Fong, H.H.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod., 2001, 64(10), 1286-1293.
[http://dx.doi.org/10.1021/np010288l] [PMID: 11678652]
[195]
Feng, W.S.; Li, H.W.; Zheng, X.K.; Kuang, H.X.; Chen, S.Q.; Wang, Y.Z.; Zang, X.Y. Chemical constituents from the leaves of Broussonetia papyrifera. Yao Xue Xue Bao, 2008, 43(2), 173-180.
[PMID: 18507345]
[196]
Mencherini, T.; Picerno, P.; Scesa, C.; Aquino, R. Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. J. Nat. Prod., 2007, 70(12), 1889-1894.
[http://dx.doi.org/10.1021/np070351s] [PMID: 18004816]
[197]
Cao, X.; Yang, L.; Xue, Q.; Yao, F.; Sun, J.; Yang, F.; Liu, Y. Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci. Rep., 2020, 10(1), 4808.
[http://dx.doi.org/10.1038/s41598-020-61709-5] [PMID: 32179776]
[198]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[199]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[200]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[201]
Sargis, D.; Arthur, J. Small-Molecule Library Screening by Docking with PyRx. Chem. Biol., 2014, 1263, 243-250.
[202]
Rut, W.; Lv, Z.; Zmudzinski, M.; Patchett, S.; Nayak, D.; Snipas, S.J.; El Oualid, F.; Huang, T.T.; Bekes, M.; Drag, M.; Olsen, S.K. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug design. Sci. Adv., 2020, 6(42), 4596.
[http://dx.doi.org/10.1126/sciadv.abd4596] [PMID: 33067239]
[203]
Gao, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B, 2021, 11(1), 237-245.
[http://dx.doi.org/10.1016/j.apsb.2020.08.014] [PMID: 32895623]
[204]
Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; Brandão-Neto, J.; Carbery, A.; Davison, G.; Dias, A.; Downes, T.D.; Dunnett, L.; Fairhead, M.; Firth, J.D.; Jones, S.P.; Keeley, A.; Keserü, G.M.; Klein, H.F.; Martin, M.P.; Noble, M.E.M.; O’Brien, P.; Powell, A.; Reddi, R.N.; Skyner, R.; Snee, M.; Waring, M.J.; Wild, C.; London, N.; von Delft, F.; Walsh, M.A. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun., 2020, 11(1), 5047.
[http://dx.doi.org/10.1038/s41467-020-18709-w] [PMID: 33028810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy