Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Systematic Review Article

[18F]-FDG PET/CT 上的脾葡萄糖代谢用于癌症药物的发现和开发不容忽视

卷 21, 期 11, 2021

发表于: 26 November, 2021

页: [944 - 952] 页: 9

弟呕挨: 10.2174/1568009621666210720143826

价格: $65

摘要

背景:氟-18-氟脱氧葡萄糖 ([18F]-FDG) 正电子发射断层扫描/计算机断层扫描 (PET/CT) 是一种有用的工具,可以评估肿瘤细胞中的葡萄糖代谢,以帮助指导癌症患者的治疗。然而,健康组织中葡萄糖代谢的临床相关性,包括脾脏等造血组织,可能被忽视了。最近的研究表明,脾脏葡萄糖代谢可以改善不同癌症的管理。 研究资格标准:总体而言,目前的文献包括 1,157 名患者,肿瘤类型广泛。脾代谢的预后和/或预测价值已在广泛的治疗中得到证实,包括手术和全身性癌症治疗。这些研究中的大多数表明,基线时的高脾糖代谢与不良结果相关,而治疗引起的脾糖代谢变化是癌症相关炎症的多方面替代物,这与免疫抑制性肿瘤微环境以及免疫相关激活。 结论:在本系统评价中,我们试图揭示脾脏葡萄糖代谢在 [18F]-FDG PET/CT 上的预后/预测意义,并讨论它如何潜在地指导癌症患者的未来管理。

关键词: 正电子发射断层扫描计算机断层扫描,预后,脾脏,癌症,免疫疗法,药物发现。

图形摘要

[1]
Roxburgh, C.S.D.; McMillan, D.C. Cancer and systemic inflammation: Treat the tumour and treat the host. Br. J. Cancer, 2014, 110(6), 1409-1412.
[http://dx.doi.org/10.1038/bjc.2014.90] [PMID: 24548867]
[2]
Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol., 2013, 88(1), 218-230.
[http://dx.doi.org/10.1016/j.critrevonc.2013.03.010] [PMID: 23602134]
[3]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[4]
Kamran, N.; Li, Y.; Sierra, M.; Alghamri, M.S.; Kadiyala, P.; Appelman, H.D.; Edwards, M.; Lowenstein, P.R.; Castro, M.G. Melanoma induced immunosuppression is mediated by hematopoietic dysregulation. OncoImmunology, 2017, 7(3), e1408750.
[http://dx.doi.org/10.1080/2162402X.2017.1408750] [PMID: 29399415]
[5]
Kim, S.Y.; Moon, C.M.; Yoon, H-J.; Kim, B.S.; Lim, J.Y.; Kim, T.O.; Choe, A.R.; Tae, C.H.; Kim, S-E.; Jung, H-K.; Shim, K.N.; Jung, S.A. Diffuse splenic FDG uptake is predictive of clinical outcomes in patients with rectal cancer. Sci. Rep., 2019, 9(1), 1313.
[http://dx.doi.org/10.1038/s41598-018-35912-4] [PMID: 30718566]
[6]
Seban, R-D.; Nemer, J.S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Ammari, S.; Moya-Plana, A.; Mokrane, F-Z.; Gartrell, R.D.; Finkel, G.; Barker, L.; Bigorgne, A.E.; Schwartz, L.H.; Saenger, Y.; Robert, C.; Dercle, L. Prognostic and theranostic 18F-FDG PET biomarkers for anti-PD1 immunotherapy in metastatic melanoma: Association with outcome and transcriptomics. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(11), 2298-2310.
[http://dx.doi.org/10.1007/s00259-019-04411-7] [PMID: 31346755]
[7]
Wong, A.N.M.; Callahan, J.; Beresford, J.; Herschtal, A.; Fullerton, S.; Milne, D.; Hicks, R.J.; McArthur, G.A. Spleen to liver ratio (SLR): Novel pet imaging biomarker for prediction of overall survival after ipilimumab and anti-pd1 in patients with metastatic melanoma. JCO, 2016, 34, 9523-9523.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9523]
[8]
Wong, A.; Callahan, J.; Keyaerts, M.; Neyns, B.; Mangana, J.; Aberle, S.; Herschtal, A.; Fullerton, S.; Milne, D.; Iravani, A.; McArthur, G.A.; Hicks, R.J. 18F-FDG PET/CT based spleen to liver ratio associates with clinical outcome to ipilimumab in patients with metastatic melanoma. Cancer Imaging, 2020, 20(1), 36.
[http://dx.doi.org/10.1186/s40644-020-00313-2] [PMID: 32408884]
[9]
De Jaeghere, E.A.; Laloo, F.; Lippens, L.; Van Bockstal, M.; De Man, K.; Naert, E.; Van Dorpe, J.; Van de Vijver, K.; Tummers, P.; Makar, A.; De Visschere, P.J.L.; De Wever, O.; Amant, F.; Denys, H.G.; Vandecasteele, K. Splenic 18F-FDG uptake on baseline PET/CT is associated with oncological outcomes and tumor immune state in uterine cervical cancer. Gynecol. Oncol., 2020, 159(2), 335-343.
[http://dx.doi.org/10.1016/j.ygyno.2020.08.001] [PMID: 32859399]
[10]
Pak, K.; Kim, S-J.; Kim, I.J.; Kim, D.U.; Kim, K.; Kim, H.; Kim, S.J. Splenic FDG uptake predicts poor prognosis in patients with unresectable cholangiocarcinoma. Nucl. Med. (Stuttg.), 2014, 53(2), 26-31.
[http://dx.doi.org/10.3413/Nukmed-0566-13-03] [PMID: 24305850]
[11]
Seban, R-D.; Champion, L.; Schwartz, L.H.; Dercle, L. Spleen glucose metabolism on [18F]-FDG PET/CT: A dynamic double-edged biomarker predicting outcome in cancer patients. Eur. J. Nucl. Med. Mol. Imaging, 2021.
[http://dx.doi.org/10.1007/s00259-020-05126-w] [PMID: 33420612]
[12]
Prigent, K.; Lasnon, C.; Ezine, E.; Janson, M.; Coudrais, N.; Joly, E.; Césaire, L.; Stefan, A.; Depontville, M.; Aide, N. Assessing immune organs on 18F-FDG PET/CT imaging for therapy monitoring of immune checkpoint inhibitors: Inter-observer variability, prognostic value and evolution during the treatment course of melanoma patients. Eur. J. Nucl. Med. Mol. Imaging, 2021.
[http://dx.doi.org/10.1007/s00259-020-05103-3] [PMID: 33432374]
[13]
Dercle, L.; Seban, R-D.; Lazarovici, J.; Schwartz, L.H.; Houot, R.; Ammari, S.; Danu, A.; Edeline, V.; Marabelle, A.; Ribrag, V.; Michot, J.M. 18f-fdg pet and ct scans detect new imaging patterns of response and progression in patients with hodgkin lymphoma treated by anti-programmed death 1 immune checkpoint inhibitor. J. Nucl. Med., 2018, 59(1), 15-24.
[http://dx.doi.org/10.2967/jnumed.117.193011] [PMID: 28596157]
[14]
Schwenck, J.; Schörg, B.; Fiz, F.; Sonanini, D.; Forschner, A.; Eigentler, T.; Weide, B.; Martella, M.; Gonzalez-Menendez, I.; Campi, C.; Sambuceti, G.; Seith, F.; Quintanilla-Martinez, L.; Garbe, C.; Pfannenberg, C.; Röcken, M.; la Fougere, C.; Pichler, B.J.; Kneilling, M. Cancer immunotherapy is accompanied by distinct metabolic patterns in primary and secondary lymphoid organs observed by non-invasive in vivo18F-FDG-PET. Theranostics, 2020, 10(2), 925-937.
[http://dx.doi.org/10.7150/thno.35989] [PMID: 31903160]
[15]
Seith, F.; Forschner, A.; Weide, B.; Gückel, B.; Schwartz, M.; Schwenck, J.; Othman, A.E.; Fenchel, M.; Garbe, C.; Nikolaou, K.; Schwenzer, N.; la Fougère, C.; Pfannenberg, C. Is there a link between very early changes of primary and secondary lymphoid organs in 18F-FDG-PET/MRI and treatment response to checkpoint inhibitor therapy? J. Immunother. Cancer, 2020, 8(2), e000656.
[http://dx.doi.org/10.1136/jitc-2020-000656] [PMID: 32753543]
[16]
Schüle, S.C.; Eigentler, T.; Pfannenberg, C. Multiple enlarged metabolically active lymph nodes in 18F-FDG PET/CT after anti-CTLA-4 antibody therapy in metastatic melanoma - disease progression or immunologically induced side effect? RoFo Fortschr. Geb. Rontgenstr. Nuklearmed., 2015, 187(11), 1036-1037.
[http://dx.doi.org/10.1055/s-0034-1399672] [PMID: 26062178]
[17]
Tsai, K.K.; Pampaloni, M.H.; Hope, C.; Algazi, A.P.; Ljung, B-M.; Pincus, L.; Daud, A.I. Increased FDG avidity in lymphoid tissue associated with response to combined immune checkpoint blockade. J. Immunother. Cancer, 2016, 4, 58.
[http://dx.doi.org/10.1186/s40425-016-0162-9] [PMID: 27660712]
[18]
Yoon, H-J.; Kim, B.S.; Moon, C.M.; Yoo, J.; Lee, K.E.; Kim, Y. Prognostic value of diffuse splenic FDG uptake on PET/CT in patients with gastric cancer. PLoS One, 2018, 13(4), e0196110.
[http://dx.doi.org/10.1371/journal.pone.0196110] [PMID: 29698422]
[19]
Şahin, E.; Elboğa, U. Relationship between reticuloendothelial systems’ FDG uptake level and clinicopathological features in patient with invasive ductal breast cancer. Radiol. Med. (Torino), 2017, 122(10), 785-792.
[http://dx.doi.org/10.1007/s11547-017-0779-x] [PMID: 28597239]
[20]
Bang, J-I.; Yoon, H-J.; Kim, B.S. Clinical utility of FDG uptake within reticuloendothelial system on F-18 FDG PET/CT for prediction of tumor recurrence in breast cancer. PLoS One, 2018, 13(12), e0208861.
[http://dx.doi.org/10.1371/journal.pone.0208861] [PMID: 30532215]
[21]
Núñez, R.; Rini, J.N.; Tronco, G.G.; Tomas, M.B.; Nichols, K.; Palestro, C.J. Correlation of hematologic parameters with bone marrow and spleen uptake in FDG PET. Rev. Esp. Med. Nucl., 2005, 24(2), 107-112.
[http://dx.doi.org/10.1157/13071686] [PMID: 15745681]
[22]
Sachpekidis, C.; Larribère, L.; Kopp-Schneider, A.; Hassel, J.C.; Dimitrakopoulou-Strauss, A. Can benign lymphoid tissue changes in 18F-FDG PET/CT predict response to immunotherapy in metastatic melanoma? Cancer Immunol. Immunother., 2019, 68(2), 297-303.
[http://dx.doi.org/10.1007/s00262-018-2279-9] [PMID: 30478475]
[23]
Bural, G.G.; Torigian, D.A.; Chen, W.; Houseni, M.; Basu, S.; Alavi, A. Increased 18F-FDG uptake within the reticuloendothelial system in patients with active lung cancer on PET imaging may indicate activation of the systemic immune response. Hell. J. Nucl. Med., 2010, 13(1), 23-25.
[PMID: 20411166]
[24]
Dercle, L.; Mokrane, F-Z.; Schiano de Colella, J.M.; Stamatoullas, A.; Morschhauser, F.; Brice, P.; Ghesquières, H.; Casasnovas, O.; Chen, A.; Manson, G.; Houot, R. Unconventional immune-related phenomena observed using 18F-FDG PET/CT in Hodgkin lymphoma treated with anti PD-1 monoclonal antibodies. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(6), 1391-1392.
[http://dx.doi.org/10.1007/s00259-019-04310-x] [PMID: 30888476]
[25]
Seban, R-D.; Moya-Plana, A.; Antonios, L.; Yeh, R.; Marabelle, A.; Deutsch, E.; Schwartz, L.H.; Gómez, R.G.H.; Saenger, Y.; Robert, C.; Ammari, S.; Dercle, L. Prognostic 18F-FDG PET biomarkers in metastatic mucosal and cutaneous melanoma treated with immune checkpoint inhibitors targeting PD-1 and CTLA-4. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(10), 2301-2312.
[http://dx.doi.org/10.1007/s00259-020-04757-3] [PMID: 32206839]
[26]
Nam, H.-Y.; Kim, S.-J.; Kim, I.-J.; Kim, B.-S.; Pak, K.; Kim, K. The clinical implication and prediction of diffuse splenic FDG uptake during cancer surveillance. Clin. Nucl. Med., 2010, 35(10), 759-763.
[http://dx.doi.org/10.1097/RLU.0b013e3181ef0905] [PMID: 20838282]
[27]
Aktaş, G.E.; Sarıkaya, A.; Demir, S.S. Diffusely increased splenic fluorodeoxyglucose uptake in lung cancer patients. Turk Thorac J, 2017, 18(1), 6-10.
[http://dx.doi.org/10.5152/TurkThoracJ.2017.16025] [PMID: 29404150]
[28]
Yamanaka, S.; Miyagawa, M.; Sugawara, Y.; Hasebe, S.; Fujii, T.; Takeuchi, K.; Tanaka, K.; Yakushijin, Y. The prognostic significance of whole-body and spleen MTV (metabolic tumor volume) scanning for patients with diffuse large b cell lymphoma. Int. J. Clin. Oncol., 2020.
[http://dx.doi.org/10.1007/s10147-020-01807-6] [PMID: 33097970]
[29]
Dercle, L.; Ammari, S.; Seban, R-D.; Schwartz, L.H.; Houot, R.; Labaied, N.; Mokrane, F-Z.; Lazarovici, J.; Danu, A.; Marabelle, A.; Ribrag, V.; Michot, J.M. Kinetics and nadir of responses to immune checkpoint blockade by anti-PD1 in patients with classical Hodgkin lymphoma. Eur. J. Cancer, 2018, 91, 136-144.
[http://dx.doi.org/10.1016/j.ejca.2017.12.015] [PMID: 29360605]
[30]
Chen, A.; Mokrane, F-Z.; Schwartz, L.H.; Morschhauser, F.; Stamatoullas, A.; Schiano de Colella, J-M.; Vercellino, L.; Casasnovas, O.; Chauchet, A.; Delmer, A.; Nicolas-Virelizier, E.; Ghesquières, H.; Moles-Moreau, M.P.; Schmitt, A.; Dulery, R.; Bouabdallah, K.; Borel, C.; Touati, M.; Deau-Fischer, B.; Peyrade, F.; Seban, R.D.; Manson, G.; Armand, P.; Houot, R.; Dercle, L. Early 18f-fdg pet/ct response predicts survival in relapsed or refractory hodgkin lymphoma treated with nivolumab. J. Nucl. Med., 2020, 61(5), 649-654.
[http://dx.doi.org/10.2967/jnumed.119.232827] [PMID: 31628220]
[31]
Mokrane, F-Z.; Chen, A.; Schwartz, L.H.; Morschhauser, F.; Stamatoullas, A.; Schiano de Colella, J-M.; Vercellino, L.; Casasnovas, O.; Chauchet, A.; Delmer, A.; Nicolas-Virelizier, E.; Ghesquières, H.; Moles-Moreau, M.P.; Schmitt, A.; Duléry, R.; Bouabdallah, K.; Borel, C.; Touati, M.; Deau-Fischer, B.; Peyrade, F.; Seban, R.D.; Manson, G.; Houot, R.; Dercle, L. Performance of ct compared with 18f-fdg pet in predicting the efficacy of nivolumab in relapsed or refractory hodgkin lymphoma. Radiology, 2020, 295(3), 651-661.
[http://dx.doi.org/10.1148/radiol.2020192056] [PMID: 32286191]
[32]
Old, L.J.; Clarke, D.A.; Benacerraf, B.; Goldsmith, M. The reticuloendothelial system and the neoplastic process. Ann. N. Y. Acad. Sci., 1960, 88, 264-280.
[http://dx.doi.org/10.1111/j.1749-6632.1960.tb20026.x] [PMID: 13730686]
[33]
Seban, R-D.; Rouzier, R.; Latouche, A.; Deleval, N.; Guinebretiere, J-M.; Buvat, I. Total metabolic tumor volume and spleen metabolism on baseline [18F]-FDG PET/CT as independent prognostic biomarkers of recurrence in resected breast cancer. Eur J Nucl Med Mol Imaging, 2021.
[34]
van der Veen, E.L.; Giesen, D.; Pot-de Jong, L.; Jorritsma-Smit, A.; De Vries, E.G.E.; Lub-de Hooge, M.N. 89Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs. J. Immunother. Cancer, 2020, 8(2), e000938.
[http://dx.doi.org/10.1136/jitc-2020-000938] [PMID: 33020241]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy