Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Extracellular Vesicles Derived from Adipose-Derived Stem Cells Accelerate Diabetic Wound Healing by Suppressing the Expression of Matrix Metalloproteinase-9

Author(s): Jiang-wen Wang, Yuan-zheng Zhu, Xuan Hu, Jia-ying Nie, Zhao-hui Wang, Shu Wu* and Yang-yan Yi*

Volume 23, Issue 6, 2022

Published on: 19 July, 2021

Page: [894 - 901] Pages: 8

DOI: 10.2174/1389201022666210719154009

Price: $65

Abstract

Background: The healing of diabetic wounds is poor due to a collagen deposition disorder. Matrix metalloproteinase-9 (MMP-9) is closely related to collagen deposition in the process of tissue repair. Many studies have demonstrated that extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) promote diabetic wound healing by enhancing collagen deposition.

Objective: In this study, we explored whether ADSC-EVs could downregulate the expression of MMP-9 in diabetic wounds and promote wound healing by improving collagen deposition. The potential effects of ADSC-EVs on MMP-9 and diabetic wound healing were tested both in vitro and in vivo.

Methods: We first evaluated the effect of ADSC-EVs on the proliferation and MMP-9 secretion of HaCaT cells treated with advanced glycation end product-bovine serum albumin (AGE-BSA) using CCK-8, western blot and MMP-9 enzyme-linked immunosorbent assay(ELISA). Next, the effects of ADSC-EVs on healing, re-epithelialisation, collagen deposition, and MMP-9 concentration in diabetic wound fluids were evaluated in an immunodeficient mouse model via MMP-9 ELISA and haematoxylin and eosin, Masson’s trichrome, and immunofluorescence staining for MMP-9.

Results: In vitro, ADSC-EVs promoted the proliferation and MMP-9 secretion of HaCaT cells. In vivo, ADSC-EVs accelerated diabetic wound healing by improving re-epithelialisation and collagen deposition and by inhibiting the expression of MMP-9.

Conclusion: ADSC-EVs possess the potential of healing of diabetic wounds in a mouse model by inhibiting downregulating MMP-9 and improving collagen deposition. Thus, ADSC-EVs are a promising candidate for the treatment of diabetic wounds.

Keywords: Wound healing, diabetic wounds, adipose-derived stem cells, extracellular vesicles, matrix metalloproteinase-9, collagen deposition.

« Previous
Graphical Abstract

[1]
Ayuk, S.M.; Abrahamse, H.; Houreld, N.N. The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J. Diabetes Res., 2016, 2016, 2897656.
[http://dx.doi.org/10.1155/2016/2897656] [PMID: 27314046]
[2]
LeBert, D.C.; Squirrell, J.M.; Rindy, J.; Broadbridge, E.; Lui, Y.; Zakrzewska, A.; Eliceiri, K.W.; Meijer, A.H.; Huttenlocher, A. Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development, 2015, 142(12), 2136-2146.
[http://dx.doi.org/10.1242/dev.121160] [PMID: 26015541]
[3]
Reiss, M.J.; Han, Y.P.; Garcia, E.; Goldberg, M.; Yu, H.; Garner, W.L. Matrix metalloproteinase-9 delays wound healing in a murine wound model. Surgery, 2010, 147(2), 295-302.
[http://dx.doi.org/10.1016/j.surg.2009.10.016] [PMID: 20004432]
[4]
Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem., 2020, 194, 112260.
[http://dx.doi.org/10.1016/j.ejmech.2020.112260] [PMID: 32224379]
[5]
Huang, H. Matrix metalloproteinase-9 (mmp-9) as a cancer biomarker and mmp-9 biosensors: Recent advances. Sensors (Basel), 2018, 18(10), E3249.
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]
[6]
Nguyen, T.T.; Jones, J.I.; Wolter, W.R.; Pérez, R.L.; Schroeder, V.A.; Champion, M.M.; Hesek, D.; Lee, M.; Suckow, M.A.; Mobashery, S.; Chang, M. Hyperbaric oxygen therapy accelerates wound healing in diabetic mice by decreasing active matrix metalloproteinase-9. Wound Repair Regen., 2020, 28(2), 194-201.
[http://dx.doi.org/10.1111/wrr.12782] [PMID: 31736209]
[7]
Kang, S.U.; Choi, J.W.; Chang, J.W.; Kim, K.I.; Kim, Y.S.; Park, J.K.; Kim, Y.E.; Lee, Y.S.; Yang, S.S.; Kim, C.H. N2 non-thermal atmospheric pressure plasma promotes wound healing in vitro and in vivo: Potential modulation of adhesion molecules and matrix metalloproteinase-9. Exp. Dermatol., 2017, 26(2), 163-170.
[http://dx.doi.org/10.1111/exd.13229] [PMID: 27673439]
[8]
Sylakowski, K.; Bradshaw, A.; Wells, A. Mesenchymal stem cell/multipotent stromal cell augmentation of wound healing: lessons from the physiology of matrix and hypoxia support. Am. J. Pathol., 2020, 190(7), 1370-1381.
[9]
Kim, C.H.; Lee, J.H.; Won, J.H.; Cho, M.K. Mesenchymal stem cells improve wound healing in vivo via early activation of matrix metalloproteinase-9 and vascular endothelial growth factor. J. Korean Med. Sci., 2011, 26(6), 726-733.
[http://dx.doi.org/10.3346/jkms.2011.26.6.726] [PMID: 21655056]
[10]
Kosaric, N.; Kiwanuka, H.; Gurtner, G.C. Stem cell therapies for wound healing. Expert Opin. Biol. Ther., 2019, 19(6), 575-585.
[http://dx.doi.org/10.1080/14712598.2019.1596257] [PMID: 30900481]
[11]
Batsali, A.K.; Georgopoulou, A.; Mavroudi, I.; Matheakakis, A.; Pontikoglou, C.G.; Papadaki, H.A. The role of bone marrow mesenchymal stem cell derived extracellular vesicles (msc-evs) in normal and abnormal hematopoiesis and their therapeutic potential. J. Clin. Med., 2020, 9(3), E856.
[http://dx.doi.org/10.3390/jcm9030856] [PMID: 32245055]
[12]
Jimenez, L.; Yu, H.; McKenzie, A.J.; Franklin, J.L.; Patton, J.G.; Liu, Q.; Weaver, A.M. Quantitative proteomic analysis of small and large extracellular vesicles (evs) reveals enrichment of adhesion proteins in small evs. J. Proteome Res., 2019, 18(3), 947-959.
[http://dx.doi.org/10.1021/acs.jproteome.8b00647] [PMID: 30608700]
[13]
Zarà, M.; Guidetti, G.F.; Camera, M.; Canobbio, I.; Amadio, P.; Torti, M.; Tremoli, E.; Barbieri, S.S. Biology and role of extracellular vesicles (evs) in the pathogenesis of thrombosis. Int. J. Mol. Sci., 2019, 20(11), E2840.
[http://dx.doi.org/10.3390/ijms20112840] [PMID: 31212641]
[14]
Khawar, M.B. An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future. Oxid. Med. Cell. Longev., 2019, 2019, 9702562.
[15]
Mazini, L.; Rochette, L.; Amine, M.; Malka, G. Regenerative capacity of adipose derived stem cells (adscs), comparison with mesenchymal stem cells (mscs). Int. J. Mol. Sci., 2019, 20(10), E2523.
[http://dx.doi.org/10.3390/ijms20102523] [PMID: 31121953]
[16]
Lv, Q.; Deng, J.; Chen, Y.; Wang, Y.; Liu, B.; Liu, J. Engineered human adipose stem-cell-derived exosomes loaded with mir-21-5p to promote diabetic cutaneous wound healing. Mol. Pharm., 2020, 17(5), 1723-1733.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00177] [PMID: 32233440]
[17]
Li, Z.; Guo, S.; Yao, F.; Zhang, Y.; Li, T. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers. J. Diabetes Complications, 2013, 27(4), 380-382.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.12.007] [PMID: 23357650]
[18]
Kyriakides, T.R.; Wulsin, D.; Skokos, E.A.; Fleckman, P.; Pirrone, A.; Shipley, J.M.; Senior, R.M.; Bornstein, P. Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis. Matrix Biol., 2009, 28(2), 65-73.
[http://dx.doi.org/10.1016/j.matbio.2009.01.001] [PMID: 19379668]
[19]
Mazini, L. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int. J. Mol. Sci., 2020, 21(4)
[20]
Kulac, M.; Aktas, C.; Tulubas, F.; Uygur, R.; Kanter, M.; Erboga, M.; Ceber, M.; Topcu, B.; Ozen, O.A. The effects of topical treatment with curcumin on burn wound healing in rats. J. Mol. Histol., 2013, 44(1), 83-90.
[http://dx.doi.org/10.1007/s10735-012-9452-9] [PMID: 23054142]
[21]
Yang, L. miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2. J. Mol. Histol., 2017, 48(2), 147-155.
[22]
Xu, J.; Zgheib, C.; Hodges, M.M.; Caskey, R.C.; Hu, J.; Liechty, K.W. Mesenchymal stem cells correct impaired diabetic wound healing by decreasing ECM proteolysis. Physiol. Genomics, 2017, 49(10), 541-548.
[http://dx.doi.org/10.1152/physiolgenomics.00090.2016] [PMID: 28842435]
[23]
Zhao, B.; Zhang, Y.; Han, S.; Zhang, W.; Zhou, Q.; Guan, H.; Liu, J.; Shi, J.; Su, L.; Hu, D. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J. Mol. Histol., 2017, 48(2), 121-132.
[http://dx.doi.org/10.1007/s10735-017-9711-x] [PMID: 28229263]
[24]
Liang, Y. Matrix metalloproteinase 9 induces keratinocyte apoptosis through FasL/Fas pathway in diabetic wound. Apoptosis, 2019, 24(7-8), 542-551.
[25]
Mejía-Barradas, C.M.; Cázares-Montañez, J.E.; Guerra-Márquez, Á.; Hernández-Chávez, V.G.; Cáceres-Cortés, J.R.; Gutiérrez-Iglesias, G. Regenerative treatment with umbilical cord mesenchymal stem cells from Wharton’s jelly in chronic ulcer caused by dermolipectomy. Cir. Cir., 2019, 87(S1), 8-16.
[PMID: 31501623]
[26]
Álvarez-Viejo, M. Mesenchymal stem cells from different sources and their derived exosomes: A pre-clinical perspective. World J. Stem Cells, 2020, 12(2), 100-109.
[http://dx.doi.org/10.4252/wjsc.v12.i2.100] [PMID: 32184935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy