Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Application and Antimicrobial Activity of New Acid Dyes Based on 3-Amino-2-thioxo-4-thiazolidinone Nucleus on Wool and Silk Fabrics

Author(s): Fatma A. Mohamed*, Shaban Elkhabiry, Ismail A. Ismail and Attia O. Attia

Volume 19, Issue 1, 2022

Published on: 13 July, 2021

Page: [166 - 176] Pages: 11

DOI: 10.2174/1570179418666210713145959

Price: $65

Abstract

Abstract: The dyes are synthesized by 3-Amino-2-thioxo-4thiazolidinone (N-Amino rhodanine) with glutaraldehyde or terephthalaldehyde by 2:1 mole to form a and b then coupled with diazonium salts p- Amino benzenesulfonic acid and 4-Amino 3,4-disulfoazobenzeneazobenzene by 2:1 to form new different bis-mono-azo a1 and b1 and diazo a2 and b2 acid dyes. Therefore, the synthesized dyes were applied to both silk and wool fabric materials. We also evaluated the antimicrobial susceptivity of these dyed fabrics to two model gram-negative and gram-positive bacteria. Further, the chemical composition of these dyes is emphasized by an elemental analysis.

Aims: This paper aims to synthesize and apply dye and antimicrobial to four new acid dyes based on derivatives of N-Amino rhodanine as a chromophoric group. Then, these dyes are used in dyeing silk and wool which have good lightfastness, and are also excellent for washing, rubbing and sweating fastness. Also, we measure antimicrobial susceptivity of silk and wool fabrics to Gram-negative and Gram-positive bacteria.

Background: The new synthetic acid dyes, which have antimicrobial susceptivity to gram-negative and gram-positive bacteria, are mostly used on silk and wool fabrics which are excellent for lightfastness, washing, rubbing and sweating fastness.

Objectives: The present studies aimed at synthesis, characterization and antimicrobial susceptivity to gramnegative and gram-positive bacteria.

Methods: The infra-red spectrum was recorded using an Infra-red spectrometer, Perkin Elmer/1650 FTIR. The 1H-NMR spectra were recorded using a Varian 400MHz spectrometer. The absorbance of the dyes was measured in the ultraviolet-visible region between 300 and 700 nm by a UNICAM UV spectrophotometer. The dye uptake by wool and silk fabrics was measured using a Shimadzu UV-2401PC (UV/V is spectrophotometer at λmax) before and after dyeing. The produced dyes were found to have a good antimicrobial susceptivity to a variety of bacteria.

Results and Discussion: The compounds a1, b1, a2 &b2 show good antimicrobial activity toward gramnegative (E. coli), gram-positive (S. aurous) bacteria. The data showed that exhaustion and fastness activities of silk and wool dyed fabrics were both very high.

Conclusion: In this work, we prepared newly synthesized acid dyes based on 3-Amino-2-thioxo-4- thiazolidinone derivatives and used them for dyeing wool and silk fabrics. Both synthetic dyes have shown good lightfastness and fastness properties. Also, all dyes have shown a good antimicrobial effect.

Keywords: Acid dyes, wool, silk, dyeing, antimicrobial, thiazolidinone.

Graphical Abstract

[1]
Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Babapoor, A.; Amani, A.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1132-1148.
[http://dx.doi.org/10.1080/21691401.2019.1573824] [PMID: 30942110]
[2]
Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75, 406-423.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.014] [PMID: 29102723]
[3]
Trotsko, N.; Kosikowska, U.; Paneth, A.; Wujec, M.; Malm, A. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moieties. Saudi Pharm. J., 2018, 26(4), 568-577.
[http://dx.doi.org/10.1016/j.jsps.2018.01.016] [PMID: 29844729]
[4]
Ibrahim, H.M.; Aly, A.A.; Taha, G.M.; El-Alfy, E.A. Production of antibacterial cotton fabrics via green treatment with nontoxic natural biopolymer gelatin. Egypt. J. Chem., 2020, 63, 655-696.
[5]
Campos, M.L.; Cerqueira, L.B.; Silva, B.C.U.; Franchin, T.B.; Galdino-Pitta, M.R.; Pitta, I.R.; Peccinini, R.G.; Pontarolo, R. Disposition, new pioglitazone metabolites and absence of opened-ring metabolites in new n-substituted thiazolidinedione. Drug Metab. Dispos., 2018, 46(6), 879-887.
[http://dx.doi.org/10.1124/dmd.117.079012] [PMID: 29618574]
[6]
Koppireddi, S.; Komsani, J.R.; Avula, S.; Pombala, S.; Vasamsetti, S.; Kotamraju, S.; Yadla, R. Novel 2-(2,4-dioxo-1,3-thiazolidin-5-yl)acetamides as antioxidant and/or anti-inflammatory compounds. Eur. J. Med. Chem., 2013, 66, 305-313.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.005] [PMID: 23811092]
[7]
Ibrahim, H. El- Zairy, E.M.R.; Emam, E.A.M.; Adel, E. Combined antimicrobial finishing dyeing properties of cotton, polyester fabrics and their blends with acid and disperse dyes. Egypt. J. Chem., 2019, 62(5), 965-976.
[8]
Farag, S.; Ibrahim, H.M.; Amr, A.; Asker, M.S.; El-Shafai, A. Preparation and characterization of ion exchanger based on bacterial cellulose for heavy metal cation removal. Egypt. J. Chem., 2019, 62, 457-466.
[http://dx.doi.org/10.21608/ejchem.2019.12622.1787]
[9]
Mohamed, F.A.; Ibrahim, H.M.; Aly, A.A.; El-Alfy, E.A. Improvement of dyeability and antibacterial properties of gelatin treated cotton fabrics with synthesized reactive dye. Biosci. Res, 2018, 15(4), 4403-4408.
[10]
Desai, N.C.; Satodiya, H.M.; Rajpara, K.M.; Joshi, V.V.; Bhatt, K.; Vaghani, H.V. Synthesis and evaluation of N-substituted thiazolidine-2, 4-dione containing pyrazole as a potent antimicrobial agents. Antiinfect. Agents, 2014, 12(1), 85-94.
[http://dx.doi.org/10.2174/22113525113119990117]
[11]
Desai, N.C.; Satodiya, H.M.; Kotadiya, G.M.; Vaghani, H.V. Synthesis and antibacterial and cytotoxic activities of new N‐3 substituted thiazolidine‐2, 4‐dione derivatives bearing the pyrazole moiety. Arch. Pharm., 2014, 347(7), 523-532.
[12]
Lavoie, J.; Srinivasan, S.; Nagarajan, R. Using cheminformatics to find simulants for chemical warfare agents. J. Hazard. Mater., 2011, 194, 85-91.
[http://dx.doi.org/10.1016/j.jhazmat.2011.07.077] [PMID: 21872989]
[13]
Liu, X-F.; Zheng, C-J.; Sun, L-P.; Liu, X-K.; Piao, H.R. Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Eur. J. Med. Chem., 2011, 46(8), 3469-3473.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.012] [PMID: 21624712]
[14]
Ibrahim, H.M.; Saad, M.M.; Aly, N.M. Preparation of single layer nonwoven fabric treated with chitosan nanoparticles and its utilization in gas filtration. Int. J. Chemtech Res., 2016, 9(6), 1-16.
[15]
Abdel Sayed, N.I.; El Badry, K.; Abdel Mohsen, H.M. Conductimetric Studies of Charge Transfer Complexes of p‐Chloranil with Some Alicyclic Amines in Polar Media. J. Chin. Chem. Soc. (Taipei), 2003, 50(2), 193-199.
[http://dx.doi.org/10.1002/jccs.200300028]
[16]
Mosaad, R.M.; Samir, A.; Ibrahim, H.M. Median lethal dose (LD50) and cytotoxicity of Adriamycin in female albino mice. J. Appl. Pharm. Sci., 2017, 7(3), 77-80.
[17]
Patil, V.; Tilekar, K.; Mehendale-Munj, S.; Mohan, R.; Ramaa, C.S. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur. J. Med. Chem., 2010, 45(10), 4539-4544.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.014] [PMID: 20667627]
[18]
Ibrahim, H.M.; Farid, O.A.; Samir, A.; Mosaad, R.M. Preparation of chitosan antioxidant nanoparticles as drug delivery system for enhancing of anti-cancer drug. Key Eng. Mater., 2018, 759, 92-97.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.759.92]
[19]
Salamone, S.; Colin, C.; Grillier-Vuissoz, I.; Kuntz, S.; Mazerbourg, S.; Flament, S.; Martin, H.; Richert, L.; Chapleur, Y.; Boisbrun, M. Synthesis of new troglitazone derivatives: Anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Eur. J. Med. Chem., 2012, 51, 206-215.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.044] [PMID: 22409968]
[20]
Rostam, A.B.; Peyravi, M.; Ghorbani, M.; Jahanshahi, M.J.A.S.S. Antibacterial surface modified of novel nanocomposite sulfonated polyethersulfone/polyrhodanine membrane. Appl. Surf. Sci., 2018, 427, 17-28.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.025]
[21]
Bouloussa, O.; Rondelez, F.; Semetey, V. A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem. Commun. (Camb.), 2008, (8), 951-953.
[http://dx.doi.org/10.1039/b716026g] [PMID: 18283346]
[22]
Waschinski, C.J.; Zimmermann, J.; Salz, U.; Hutzler, R.; Sadowski, G.; Tiller, J.C.J.A.M. Design of contact‐active antimicrobial acrylate‐based materials using biocidal macromers. Adv. Mater., 2008, 20(1), 104-108.
[http://dx.doi.org/10.1002/adma.200701095]
[23]
Mohamed, F.A.; Ibrahim, H.M.; Reda, M.M. Eco friendly dyeing of wool and cotton fabrics with reactive dyes (bifunctional) and its antibacterial activity. Pharma Chem., 2016, 8(16), 159-167.
[24]
Ibrahim, N.A.; Kadry, G.A.; Eid, B.M.; Ibrahim, H.M. Enhanced antibacterial properties of polyester and polyacrylonitrile fabrics using Ag-Np dispersion/microwave treatment. AATCC J. Res., 2014, 1(2), 13-19.
[http://dx.doi.org/10.14504/ajr.1.2.2]
[25]
Farouk, R.; Youssef, Y.A.; Mousa, A.A.; Ibrahim, H.M. Simultaneous dyeing and antibacterial finishing of nylon 6 fabric using reactive cationic dyes. World Appl. Sci. J., 2013, 26(10), 1280-1287.
[26]
Mohamed, F.A.; Abd El-Megied, S.A.; Bashandy, M.S.; Ibrahim, H.M. Synthesis, application and antibacterial activity of new reactive dyes based on thiazole moiety. Pigm. Resin Technol., 2018, 47(3), 246-254.
[http://dx.doi.org/10.1108/PRT-12-2016-0117]
[27]
De Giorgi, M.R.; Carpignano, R.; Crisponi, G.J.D. pigments, Structure optimization in a series of acid dyes for wool and nylon. Dyes Pigments, 1997, 34(1), 1-12.
[http://dx.doi.org/10.1016/S0143-7208(96)00063-0]
[28]
Satam, M.A.; Raut, R.K.; Telore, R.D.; Sekar, N.J.D. Pigments, Fluorescent acid azo dyes from 3-(1, 3-benzothiazol-2-yl) naphthalen-2-ol and comparison with 2-naphthol analogs. Dyes Pigments, 2013, 97(1), 32-42.
[http://dx.doi.org/10.1016/j.dyepig.2012.11.007]
[29]
Mohamed, F.A.; Bashandy, M.S.; Abd El-Wahab, H.; Sheier, M.B.; El-Molla, M.M.; Bedair, A.H.J.I.J. Synthesis of several newly acid dyes and their application in textile dyeing. Int. J. Adv. Res. (Indore), 2014, 2(7), 248-260.
[30]
Rajagopal, R.; Bhatia, S.; Seshadri, S.J.D. Pigments, New synthesis of 3-substituted 7-nitro-2H-1, 2-benzothiazine-1, 1-dioxides: Potential precursors for dyestuffs and optical whiteners. Dyes Pigments, 1991, 17(3), 193-202.
[http://dx.doi.org/10.1016/0143-7208(91)80026-6]
[31]
Nawwar, G.A.; Zaher, K.S.A.; Shaban, E.; El-Ebiary, N.M.J.F. Polymers, Utilizing semi-natural antibacterial cellulose to prepare safe azo disperse dyes and their application in textile printing. Fibers Polym., 2020, 21(6), 1293-1299.
[http://dx.doi.org/10.1007/s12221-020-9083-9]
[32]
Cai, J.; Jiang, H.; Chen, W.; Cui, Z.J.D. Pigments, design, synthesis, characterization of water-soluble indophenine dyes and their application for dyeing of wool, silk and nylon fabrics. Dyes Pigments, 2020, 179108385
[http://dx.doi.org/10.1016/j.dyepig.2020.108385]
[33]
Khamisa, N.; Oldenburg, B.; Peltzer, K.; Ilic, D. Work related stress, burnout, job satisfaction and general health of nurses. Int. J. Environ. Res. Public Health, 2015, 12(1), 652-666.
[http://dx.doi.org/10.3390/ijerph120100652] [PMID: 25588157]
[34]
Shinde, S.; Sekar, N.J.D. Pigments, synthesis, spectroscopic characteristics, dyeing performance and TD-DFT study of quinolone based red emitting acid azo dyes. Dyes Pigm., 2019, 168, 12-27.
[http://dx.doi.org/10.1016/j.dyepig.2019.04.028]
[35]
Maji, B.; Yamamoto, H. Catalytic enantioselective nitroso Diels–Alder reaction. J. Am. Chem. Soc., 2015, 137(50), 15957-15963.
[http://dx.doi.org/10.1021/jacs.5b11273] [PMID: 26609961]
[36]
Benkhaya, S.; M’rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 2020, 6(1)e03271
[http://dx.doi.org/10.1016/j.heliyon.2020.e03271] [PMID: 32042981]
[37]
Satam, M.A.; Raut, R.K.; Telore, R.D.; Sekar, N. Fluorescent acid azo dyes from 3-(1,3-benzothiazol-2-yl)naphthalen-2-ol and comparison with 2-naphthol analogs. Dyes Pigm., 2013, 97(1), 32-42.
[http://dx.doi.org/10.1016/j.dyepig.2012.11.007]
[38]
Umape, P.G.; Patil, V.S.; Padalkar, V.S.; Phatangare, K.R.; Gupta, V.D.; Thate, A.B.; Sekar, N.J.D. Pigments, synthesis and characterization of novel yellow azo dyes from 2-morpholin-4-yl-1, 3-thiazol-4 (5H)-one and study of their azo–hydrazone tautomerism. Dyes Pigm., 2013, 99(2), 291-298.
[http://dx.doi.org/10.1016/j.dyepig.2013.05.002]
[39]
Wang, X-Y.; Yao, X.; Müllen, K.J.S.C.C. Polycyclic aromatic hydrocarbons in the graphene era. Sci. China Chem., 2019, 62(9), 1099-1144.
[http://dx.doi.org/10.1007/s11426-019-9491-2]
[40]
Marinado, T.; Hagberg, D.P.; Hedlund, M.; Edvinsson, T.; Johansson, E.M.; Boschloo, G.; Rensmo, H.; Brinck, T.; Sun, L.; Hagfeldt, A. Rhodanine dyes for dye-sensitized solar cells: Spectroscopy, energy levels and photovoltaic performance. Phys. Chem. Chem. Phys., 2009, 11(1), 133-141.
[http://dx.doi.org/10.1039/B812154K] [PMID: 19081916]
[41]
El Mekkawi, D.; Abdel-Mottaleb, M.J.I.J.P. The interaction and photostability of some xanthenes and selected azo sensitizing dyes with TiO2 nanoparticles. Int. J. Photoenergy, 2005, 7(2), 95-101.
[http://dx.doi.org/10.1155/S1110662X05000140]
[42]
Tao, T.; Xu, F.; Chen, X-C.; Liu, Q-Q.; Huang, W.; You, X-Z.J.D. Pigments, comparisons between azo dyes and Schiff bases having the same benzothiazole/phenol skeleton: Syntheses, crystal structures and spectroscopic properties. Dyes Pigm., 2012, 92(3), 916-922.
[http://dx.doi.org/10.1016/j.dyepig.2011.09.008]
[43]
Mohamed, F.A.; Abd El-Megied, S.A.; Mohareb, R.M. Synthesis and application of novel reactive dyes based on dimedone moiety. Egypt. J. Chem., 2020, 63(11), 4447-4455.
[44]
Dhaka, G.; Kaur, N.; Singh, J.J.I.C.A. Spectral studies on benzimidazole-based “bare-eye” probe for the detection of Ni2+: Application as a solid state sensor. Inorg. Chim. Acta, 2017, 464, 18-22.
[http://dx.doi.org/10.1016/j.ica.2017.04.042]
[45]
Mohamed, F.A. Eco-friendly dyeing of wool and silk fabrics using mixed synthesized acid and natural dyes and antibacterial activity for the dyed fabrics. Bioscience Research, 2018, 15(3), 1480-1486.
[46]
Khattab, T.A.; Rehan, M.J.E.J.C. A review on synthesis of nitrogen-containing heterocyclic dyes for textile Fibers-Part 2: Fused heterocycles. Egypt. J. Chem., 2018, 61(6), 989-1018.
[http://dx.doi.org/10.21608/ejchem.2018.4131.1363]
[47]
Gaffer, H.E.; Althagafi, I.I.J.P.; Technology, R. Synthesis of new azobenzene dyes clubbed with thiazolidinone moiety and their applications. Pigm. Resin Technol., 2020, 49(3), 207-214.
[http://dx.doi.org/10.1108/PRT-02-2019-0022]
[48]
Ibrahim, H.M.; El-Zairy, E.M.R. Carboxymethylchitosan nanofibers containing silver nanoparticles: Preparation, characterization and antibacterial activity. J. Appl. Pharm. Sci., 2016, 6(7), 43-48.
[http://dx.doi.org/10.7324/JAPS.2016.60706]
[49]
El-Bisi, M.K.; Ibrahim, H.M.; Rabie, A.M.; Elnagar, K.; Taha, G.M.; El-Alfy, E.A. Super hydrophobic cotton fabrics via green techniques. Pharma Chem., 2016, 8(19), 57-69.
[50]
Zhang, S.; Ma, W.; Ju, B.; Dang, N.; Zhang, M.; Wu, S.; Yang, J.J.C.t. Continuous dyeing of cationised cotton with reactive dyes. Color. Technol., 2005, 121(4), 183-186.
[http://dx.doi.org/10.1111/j.1478-4408.2005.tb00270.x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy