Research Article

靶向 p38 MAP 激酶 A 环调控位点的新型二取代 [1,2,5] 恶二唑并 [3,4-b] 吡嗪类似物的结构-活性研究

卷 29, 期 9, 2022

发表于: 12 July, 2021

页: [1640 - 1653] 页: 14

弟呕挨: 10.2174/0929867328666210712165659

价格: $65

摘要

简介:在寻找新的 p38 MAP 激酶变构抑制剂的过程中,我们最近描述了 A 环调节位点,该位点是通过分子模型研究确定的,同时披露了一个具有中度抑制谱的小分子。从这个结构开始,我们随后使用 SciFinder 数据库中的子结构搜索,从计算机筛选研究中确定了另外两个具有更简单分子结构的命中。在证实了它们的抑制谱后,对其结构的分析允许得出关于[1,2,5]恶二唑并[3,4-b]吡嗪(呋喃[3,4-b]吡嗪)支架对开发的适用性的结论有效的 A 环调节位点 p38 MAP 激酶抑制剂。因此,我们报告了一系列具有 p38 MAP 激酶有效抑制谱的二取代类似物的合成和药理学评估,如体外测定它们抑制人单核细胞衍生的巨噬细胞中 IL-1β 分泌的能力所示。目的:寻找p38 MAP激酶A环调控位点的小分子有效抑制剂。 方法:从这个结构开始,我们随后使用 SciFinder 数据库中的子结构搜索从计算机筛选研究中确定了另外两个具有更简单分子结构的命中。在证实了它们的抑制谱后,我们使用 [1,2,5]oxadiazolo[3,4-b]pyrazine (furazano[3,4-b]pyrazine) 支架在分子建模的指导下进行了 hit-tolead 优化过程. 结果:我们报告了一系列具有 p38 MAP 激酶有效抑制谱的二取代类似物的合成和药理学评估,如体外测定它们抑制人单核细胞衍生的巨噬细胞中 IL-1β 分泌的能力所示。 结论:我们在目前的工作中描述了一系列 [1,2,5]恶二唑并[3,4-b]吡嗪(呋喃并[3,4-b]吡嗪),它们是人类 IL-1β 分泌的有效抑制剂p38 MAP 激酶 A 环调节位点的单核细胞衍生巨噬细胞变构调节剂。

关键词: 非竞争性激酶抑制剂、呋喃并[3,4-b]吡嗪衍生物、1,2,5-恶二唑衍生物、MAPK抑制剂、IL-1β抑制剂、激酶组、正构配体。

« Previous
[1]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[2]
Nolen, B.; Taylor, S.; Ghosh, G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell, 2004, 15(5), 661-675.
[http://dx.doi.org/10.1016/j.molcel.2004.08.024] [PMID: 15350212]
[3]
Cohen, P. The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur. J. Biochem., 2001, 268(19), 5001-5010.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02473.x] [PMID: 11589691]
[4]
Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotype-phenotype relationships. Nat. Rev. Genet., 2010, 11(1), 60-74.
[http://dx.doi.org/10.1038/nrg2707] [PMID: 20019687]
[5]
Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Small-molecule inhibitors binding to protein kinases. Part I: Exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opin. Drug Discov., 2008, 3(12), 1409-1425.
[http://dx.doi.org/10.1517/17460440802579975] [PMID: 23506106]
[6]
Morphy, R. Selectively nonselective kinase inhibition: Striking the right balance. J. Med. Chem., 2010, 53(4), 1413-1437.
[http://dx.doi.org/10.1021/jm901132v] [PMID: 20166671]
[7]
Eglen, R.M.; Reisine, T. Human kinome drug discovery and the emerging importance of atypical allosteric inhibitors. Expert Opin. Drug Discov., 2010, 5(3), 277-290.
[http://dx.doi.org/10.1517/17460441003636820] [PMID: 22823023]
[8]
Palmieri, L.; Rastelli, G. αC helix displacement as a general approach for allosteric modulation of protein kinases. Drug Discov. Today, 2013, 18(7-8), 407-414.
[http://dx.doi.org/10.1016/j.drudis.2012.11.009] [PMID: 23195331]
[9]
Fang, Z.; Grütter, C.; Rauh, D. Strategies for the selective regulation of kinases with allosteric modulators: Exploiting exclusive structural features. ACS Chem. Biol., 2013, 8(1), 58-70.
[http://dx.doi.org/10.1021/cb300663j] [PMID: 23249378]
[10]
Lu, S.; He, X.; Ni, D.; Zhang, J. Allosteric modulator discovery: From serendipity to structure-based design. J. Med. Chem., 2019, 62(14), 6405-6421.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01749] [PMID: 30817889]
[11]
Lu, S.; Shen, Q.; Zhang, J. Allosteric methods and their applications: Facilitating the discovery of allosteric drugs and the investigation of allosteric mechanisms. Acc. Chem. Res., 2019, 52(2), 492-500.
[http://dx.doi.org/10.1021/acs.accounts.8b00570] [PMID: 30688063]
[12]
Jenardhanan, P.; Panneerselvam, M.; Mathur, P.P. Targeting kinase interaction networks: A new paradigm in ppi based design of kinase inhibitors. Curr. Top. Med. Chem., 2019, 19(6), 467-485.
[http://dx.doi.org/10.2174/1568026619666190304155711] [PMID: 31184298]
[13]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
[14]
Zhang, J.; Shen, B.; Lin, A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol. Sci., 2007, 28(6), 286-295.
[http://dx.doi.org/10.1016/j.tips.2007.04.008] [PMID: 17482683]
[15]
Bühler, S.; Laufer, S.A. p38 MAPK inhibitors: A patent review (2012 - 2013). Expert Opin. Ther. Pat., 2014, 24(5), 535-554.
[http://dx.doi.org/10.1517/13543776.2014.894977] [PMID: 24611721]
[16]
Goldstein, D.M.; Kuglstatter, A.; Lou, Y.; Soth, M.J. Selective p38α inhibitors clinically evaluated for the treatment of chronic inflammatory disorders. J. Med. Chem., 2010, 53(6), 2345-2353.
[http://dx.doi.org/10.1021/jm9012906] [PMID: 19950901]
[17]
Fiore, M.; Forli, S.; Manetti, F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (mapkapk2, mk2): Medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J. Med. Chem., 2016, 59(8), 3609-3634.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01457] [PMID: 26502061]
[18]
Hammaker, D.; Firestein, G.S. “Go upstream, young man”: Lessons learned from the p38 saga. Ann. Rheum. Dis., 2010, 69(Suppl. 1), i77-i82.
[http://dx.doi.org/10.1136/ard.2009.119479] [PMID: 19995751]
[19]
Paunovic, V.; Harnett, M.M. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs, 2013, 73(2), 101-115.
[http://dx.doi.org/10.1007/s40265-013-0014-6] [PMID: 23371304]
[20]
Lu, X.; Smaill, J.B.; Ding, K. New promise and opportunities for allosteric kinase inhibitors. Angew. Chem. Int. Ed. Engl., 2020, 59(33), 13764-13776.
[http://dx.doi.org/10.1002/anie.201914525] [PMID: 31889388]
[21]
Rabiller, M.; Getlik, M.; Klüter, S.; Richters, A.; Tückmantel, S.; Simard, J.R.; Rauh, D. Proteus in the world of proteins: Conformational changes in protein kinases. Arch. Pharm. (Weinheim), 2010, 343(4), 193-206.
[http://dx.doi.org/10.1002/ardp.201000028] [PMID: 20336692]
[22]
Prikas, E.; Poljak, A.; Ittner, A. Mapping p38α mitogen-activated protein kinase signaling by proximity-dependent labeling. Protein Sci., 2020, 29(5), 1196-1210.
[http://dx.doi.org/10.1002/pro.3854] [PMID: 32189389]
[23]
Canovas, B.; Nebreda, A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol., 2021, 22(5), 346-366.
[http://dx.doi.org/10.1038/s41580-020-00322-w] [PMID: 33504982]
[24]
Gomez-Gutierrez, P.; Rubio-Martinez, J.; Perez, J.J. Identification of potential small molecule binding pockets in p38α map kinase. J. Chem. Inf. Model., 2017, 57(10), 2566-2574.
[http://dx.doi.org/10.1021/acs.jcim.7b00439] [PMID: 28872880]
[25]
Gomez-Gutierrez, P.; Campos, P.M.; Vega, M.; Perez, J.J. Identification of a novel inhibitory allosteric site in p38α. PLoS One, 2016, 11(11)e0167379
[http://dx.doi.org/10.1371/journal.pone.0167379] [PMID: 27898710]
[26]
Gabrielson, S.W. SciFinder. J. Med. Libr. Assoc., 2018, 106, 588-590.
[http://dx.doi.org/10.5195/JMLA.2018.515]
[27]
Mancini, R.S.; Barden, C.J.; Weaver, D.F.; Reed, M.A. Furazans in medicinal chemistry. J. Med. Chem., 2021, 64(4), 1786-1815.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01901] [PMID: 33569941]
[28]
Starchenkov, I.; Andrianov, V. Chemistry of furazano [3,4-b] pyrazines. Chem. Heterocycl. Compd., 1997, 33, 1219-1233.
[http://dx.doi.org/10.1007/BF02290874]
[29]
MOE (the molecular operating environment) version 2009 10. Chemical Computing Group Inc.: 1010 Sherbrooke Street West. Suite 910. Montreal, Canada H3A 2R7 2009.
[30]
Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen., 2019, 39, 12.
[http://dx.doi.org/10.1186/s41232-019-0101-5] [PMID: 31182982]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy