Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Consequences of Extracellular Matrix Remodeling in Headway and Metastasis of Cancer along with Novel Immunotherapies: A Great Promise for Future Endeavor

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 22, Issue 7, 2022

Published on: 12 July, 2021

Page: [1257 - 1271] Pages: 15

DOI: 10.2174/1871520621666210712090017

Price: $65

Abstract

Tissues are progressively molded by bidirectional correspondence between denizen cells and extracellular matrix (ECM) via cell-matrix connections along with ECM remodeling. The composition and association of ECM are spatiotemporally directed to control cell conduct and differentiation; however, dysregulation of ECM dynamics prompts the development of diseases, for example, cancer. Emerging information demonstrates that hypoxia may have decisive roles in metastasis. In addition, the sprawling nature of neoplastic cells and chaotic angiogenesis are increasingly influencing microcirculation as well as altering the concentration of oxygen. In various regions of the tumor microenvironment, hypoxia, an essential player in the multistep phase of cancer metastasis, is necessary. Hypoxia can be turned into an advantage for selective cancer therapy because it is much more severe in tumors than in normal tissues. Cellular matrix gives signaling cues that control cell behavior and organize cells' elements in tissue development and homeostasis. The interplay between intrinsic factors of cancer cells themselves, including their genotype and signaling networks, and extrinsic factors of tumor stroma, for example, ECM and ECM remodeling, together decide the destiny and behavior of tumor cells. Tumor matrix encourages the development, endurance, and invasion of neoplastic and immune cell activities to drive metastasis and debilitate treatment. Incipient evidence recommends essential parts of tumor ECM segments and their remodeling in controlling each progression of the cancer-immunity cycle. Scientists have discovered that tumor matrix dynamics as well as matrix remodeling in perspective to anti-tumor immune reactions are especially important for matrix-based biomarkers recognition and followed by immunotherapy and targeting specific drugs.

Keywords: Extracellular matrix, cell-matrix interactions, matrix remodeling, hypoxia, tumor stroma, cancer-immunity cycle.

Graphical Abstract

[1]
Kai, F.; Laklai, H.; Weaver, V.M. Force matters: Biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol., 2016, 26(7), 486-497.
[http://dx.doi.org/10.1016/j.tcb.2016.03.007] [PMID: 27056543]
[2]
Kim, S.H.; Turnbull, J.; Guimond, S. Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol., 2011, 209(2), 139-151.
[http://dx.doi.org/10.1530/JOE-10-0377] [PMID: 21307119]
[3]
Naba, A.; Clauser, K.R.; Ding, H.; Whittaker, C.A.; Carr, S.A.; Hynes, R.O. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biol., 2016, 49, 10-24.
[http://dx.doi.org/10.1016/j.matbio.2015.06.003] [PMID: 26163349]
[4]
Hastings, J.F.; Skhinas, J.N.; Fey, D.; Croucher, D.R.; Cox, T.R. The extracellular matrix as a key regulator of intracellular signalling net-works. Br. J. Pharmacol., 2019, 176(1), 82-92.
[http://dx.doi.org/10.1111/bph.14195] [PMID: 29510460]
[5]
Humphrey, J.D.; Dufresne, E.R.; Schwartz, M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 802-812.
[http://dx.doi.org/10.1038/nrm3896] [PMID: 25355505]
[6]
Chong, H.C.; Tan, C.K.; Huang, R.L.; Tan, N.S. Matricellular proteins: A sticky affair with cancers. J. Oncol., 2012, 2012, 351089.
[http://dx.doi.org/10.1155/2012/351089] [PMID: 22481923]
[7]
Egeblad, M.; Rasch, M.G.; Weaver, V.M. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol., 2010, 22(5), 697-706.
[http://dx.doi.org/10.1016/j.ceb.2010.08.015] [PMID: 20822891]
[8]
Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep., 2014, 15(12), 1243-1253.
[http://dx.doi.org/10.15252/embr.201439246] [PMID: 25381661]
[9]
Acerbi, I.; Cassereau, L.; Dean, I.; Shi, Q.; Au, A.; Park, C.; Chen, Y.Y.; Liphardt, J.; Hwang, E.S.; Weaver, V.M. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol., 2015, 7(10), 1120-1134.
[http://dx.doi.org/10.1039/c5ib00040h] [PMID: 25959051]
[10]
Rizki, A.; Weaver, V.M.; Lee, S.Y.; Rozenberg, G.I.; Chin, K.; Myers, C.A.; Bascom, J.L.; Mott, J.D.; Semeiks, J.R.; Grate, L.R.; Mian, I.S.; Borowsky, A.D.; Jensen, R.A.; Idowu, M.O.; Chen, F.; Chen, D.J.; Petersen, O.W.; Gray, J.W.; Bissell, M.J. A human breast cell model of preinvasive to invasive transition. Cancer Res., 2008, 68(5), 1378-1387.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2225] [PMID: 18316601]
[11]
Levental, K.R.; Yu, H.; Kass, L.; Lakins, J.N.; Egeblad, M.; Erler, J.T.; Fong, S.F.; Csiszar, K.; Giaccia, A.; Weninger, W.; Yamauchi, M.; Gasser, D.L.; Weaver, V.M. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009, 139(5), 891-906.
[http://dx.doi.org/10.1016/j.cell.2009.10.027] [PMID: 19931152]
[12]
Micalizzi, D.S.; Maheswaran, S.; Haber, D.A. A conduit to metastasis: Circulating tumor cell biology. Genes Dev., 2017, 31(18), 1827-1840.
[http://dx.doi.org/10.1101/gad.305805.117] [PMID: 29051388]
[13]
Sainio, A.; Järveläinen, H. Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell. Signal., 2020, 66, 109487.
[http://dx.doi.org/10.1016/j.cellsig.2019.109487] [PMID: 31778739]
[14]
Radotra, B.; McCormick, D.; Crockard, A. CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix com-ponents. Neuropathol. Appl. Neurobiol., 1994, 20(4), 399-405.
[http://dx.doi.org/10.1111/j.1365-2990.1994.tb00986.x] [PMID: 7528901]
[15]
Afratis, N.A.; Bouris, P.; Skandalis, S.S.; Multhaupt, H.A.; Couchman, J.R.; Theocharis, A.D.; Karamanos, N.K. IGF-IR cooperates with ERα to inhibit breast cancer cell aggressiveness by regulating the expression and localisation of ECM molecules. Sci. Rep., 2017, 7, 40138.
[http://dx.doi.org/10.1038/srep40138] [PMID: 28079144]
[16]
Järveläinen, H.; Sainio, A.; Koulu, M.; Wight, T.N.; Penttinen, R. Extracellular matrix molecules: Potential targets in pharmacotherapy. Pharmacol. Rev., 2009, 61(2), 198-223.
[http://dx.doi.org/10.1124/pr.109.001289] [PMID: 19549927]
[17]
Ricard-Blum, S.; Vallet, S.D. Matricryptins network with matricellular receptors at the surface of endothelial and tumor cells. Front. Pharmacol., 2016, 7, 11.
[http://dx.doi.org/10.3389/fphar.2016.00011] [PMID: 26869928]
[18]
Sanderson, R.D.; Elkin, M.; Rapraeger, A.C.; Ilan, N.; Vlodavsky, I. Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. FEBS J., 2017, 284(1), 42-55.
[http://dx.doi.org/10.1111/febs.13932] [PMID: 27758044]
[19]
Vigetti, D.; Karousou, E.; Viola, M.; Deleonibus, S.; De Luca, G.; Passi, A. Hyaluronan: Biosynthesis and signaling. Biochim. Biophys. Acta, 2014, 1840(8), 2452-2459.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.001] [PMID: 24513306]
[20]
Shekhar, M.P.; Pauley, R.; Heppner, G. Host microenvironment in breast cancer development: Extracellular matrix-stromal cell contribu-tion to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res., 2003, 5(3), 130-135.
[http://dx.doi.org/10.1186/bcr580] [PMID: 12793893]
[21]
Gilkes, D.M.; Bajpai, S.; Wong, C.C.; Chaturvedi, P.; Hubbi, M.E.; Wirtz, D.; Semenza, G.L. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res., 2013, 11(5), 456-466. a
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0629] [PMID: 23378577]
[22]
Gilkes, D.M.; Chaturvedi, P.; Bajpai, S.; Wong, C.C.; Wei, H.; Pitcairn, S.; Hubbi, M.E.; Wirtz, D.; Semenza, G.L. Collagen prolyl hydrox-ylases are essential for breast cancer metastasis. Cancer Res., 2013, 73(11), 3285-3296. b
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3963] [PMID: 23539444]
[23]
Cox, T.R.; Bird, D.; Baker, A.M.; Barker, H.E.; Ho, M.W.; Lang, G.; Erler, J.T. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res., 2013, 73(6), 1721-1732.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2233] [PMID: 23345161]
[24]
Chen, Y.; Guo, H.; Terajima, M.; Banerjee, P.; Liu, X.; Yu, J.; Momin, A.A.; Katayama, H.; Hanash, S.M.; Burns, A.R.; Fields, G.B.; Yamauchi, M.; Kurie, J.M. Lysyl hydroxylase 2 is secreted by tumor cells and can modify collagen in the extracellular space. J. Biol. Chem., 2016, 291(50), 25799-25808.
[http://dx.doi.org/10.1074/jbc.M116.759803] [PMID: 27803159]
[25]
Eisinger-Mathason, T.S.; Zhang, M.; Qiu, Q.; Skuli, N.; Nakazawa, M.S.; Karakasheva, T.; Mucaj, V.; Shay, J.E.; Stangenberg, L.; Sadri, N.; Puré, E.; Yoon, S.S.; Kirsch, D.G.; Simon, M.C. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov., 2013, 3(10), 1190-1205.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0118] [PMID: 23906982]
[26]
Xiong, G.; Deng, L.; Zhu, J.; Rychahou, P.G.; Xu, R. Prolyl-4-hydroxylase α subunit 2 promotes breast cancer progression and metasta-sis by regulating collagen deposition. BMC Cancer, 2014, 14, 1.
[http://dx.doi.org/10.1186/1471-2407-14-1] [PMID: 24383403]
[27]
Colpaert, C.G.; Vermeulen, P.B.; Fox, S.B.; Harris, A.L.; Dirix, L.Y.; Van Marck, E.A. The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res. Treat., 2003, 81(2), 137-147.
[http://dx.doi.org/10.1023/A:1025702330207] [PMID: 14572156]
[28]
Trastour, C.; Benizri, E.; Ettore, F.; Ramaioli, A.; Chamorey, E.; Pouysségur, J.; Berra, E. HIF-1α and CA IX staining in invasive breast carcinomas: Prognosis and treatment outcome. Int. J. Cancer, 2007, 120(7), 1451-1458.
[http://dx.doi.org/10.1002/ijc.22436] [PMID: 17245699]
[29]
Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer, 2014, 14(6), 430-439.
[http://dx.doi.org/10.1038/nrc3726] [PMID: 24827502]
[30]
Hasebe, T.; Tsuda, H.; Tsubono, Y.; Imoto, S.; Mukai, K. Fibrotic focus in invasive ductal carcinoma of the breast: A histopathological prognostic parameter for tumor recurrence and tumor death within three years after the initial operation. Jpn. J. Cancer Res., 1997, 88(6), 590-599.
[http://dx.doi.org/10.1111/j.1349-7006.1997.tb00423.x] [PMID: 9263537]
[31]
Ferreira, L.P.; Gaspar, V.M.; Mano, J.F. Decellularized extracellular matrix for bioengineering physiomimetic 3d in vitro tumor models. Trends Biotechnol., 2020, 38(12), 1397-1414.
[http://dx.doi.org/10.1016/j.tibtech.2020.04.006] [PMID: 32416940]
[32]
Nallanthighal, S.; Heiserman, J.P.; Cheon, D-J. The role of the extracellular matrix in cancer stemness. Front. Cell Dev. Biol., 2019, 7, 86.
[http://dx.doi.org/10.3389/fcell.2019.00086] [PMID: 31334229]
[33]
Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and me-tastasis. Nat. Commun., 2020, 11(1), 5120.
[http://dx.doi.org/10.1038/s41467-020-18794-x] [PMID: 33037194]
[34]
Erler, J.T.; Bennewith, K.L.; Cox, T.R.; Lang, G.; Bird, D.; Koong, A.; Le, Q.T.; Giaccia, A.J. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 2009, 15(1), 35-44.
[http://dx.doi.org/10.1016/j.ccr.2008.11.012] [PMID: 19111879]
[35]
Barker, H.E.; Cox, T.R.; Erler, J.T. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer, 2012, 12(8), 540-552.
[http://dx.doi.org/10.1038/nrc3319] [PMID: 22810810]
[36]
Wolf, K.; Friedl, P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol., 2011, 21(12), 736-744.
[http://dx.doi.org/10.1016/j.tcb.2011.09.006] [PMID: 22036198]
[37]
Nguyen-Ngoc, K.V.; Cheung, K.J.; Brenot, A.; Shamir, E.R.; Gray, R.S.; Hines, W.C.; Yaswen, P.; Werb, Z.; Ewald, A.J. ECM microenvi-ronment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc. Natl. Acad. Sci. USA, 2012, 109(39), E2595-E2604.
[http://dx.doi.org/10.1073/pnas.1212834109] [PMID: 22923691]
[38]
Rosen, S.D.; Lemjabbar-Alaoui, H. Sulf-2: An extracellular modulator of cell signaling and a cancer target candidate. Expert Opin. Ther. Targets, 2010, 14(9), 935-949.
[http://dx.doi.org/10.1517/14728222.2010.504718] [PMID: 20629619]
[39]
Vivès, R.R.; Seffouh, A.; Lortat-Jacob, H. Post-synthetic regulation of HS structure: The yin and yang of the sulfs in cancer. Front. Oncol., 2014, 3, 331.
[http://dx.doi.org/10.3389/fonc.2013.00331] [PMID: 24459635]
[40]
Lanzi, C.; Zaffaroni, N.; Cassinelli, G. Targeting heparan sulfate proteoglycans and their modifying enzymes to enhance anticancer chemo-therapy efficacy and overcome drug resistance. Curr. Med. Chem., 2017, 24(26), 2860-2886.
[http://dx.doi.org/10.2174/0929867324666170216114248] [PMID: 28215163]
[41]
Bemis, L.T.; Schedin, P. Reproductive state of rat mammary gland stroma modulates human breast cancer cell migration and invasion. Cancer Res, 2000, 60, 3414e8
[42]
McDaniel, S.M.; Rumer, K.K.; Biroc, S.L.; Metz, R.P.; Singh, M.; Porter, W.; Schedin, P. Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. American Journal of Pathol., 2006, 168, 608e20.
[http://dx.doi.org/10.2353/ajpath.2006.050677]
[43]
Lyons, T.R.; O'Brien, J.; Borges, V.F.; Conklin, M.W.; Keely, P.J.; Eliceiri, K.W.; Marusyk, A.; Tan, A.C.; Schedin, P. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nature Med, 2011, 171109e15
[44]
Schedin, P. Pregnancy-associated breast cancer and metastasis. Nat Rev Can, 2006, 6, 281e91.
[http://dx.doi.org/10.1038/nrc1839]
[45]
Turley, E.A.; Noble, PW; Bourguignon, LY. Signaling properties of hyaluronan receptors. J of Bio Chem., 2002, 277, 4589e92.
[46]
Oskarsson, T. Extracellular matrix components in breast cancer progression and metastasis. The Breast, 2013, 22, S66eS72.
[http://dx.doi.org/10.1016/j.breast.2013.07.012]
[47]
Okuda, H.; Kobayashi, A.; Xia, B.; Watabe, M.; Pai, S.K.; Hirota, S.; Xing, F; Liu, W.; Pandey, P.R.; Fukuda, K.; Modur, V.; Ghosh, A.; Wilber, A.; Watabe, K. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res, 2012, 72, 537e47.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1678]
[48]
Kauppila, S.; Stenbäck, F.; Risteli, J.; Jukkola, A.; Risteli, L. Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J. Pathol., 1998, 186(3), 262-268.
[http://dx.doi.org/10.1002/(SICI)1096-9896(1998110)186:3<262:AID-PATH191>3.0.CO;2-3] [PMID: 10211114]
[49]
Poltavets, V.; Kochetkova, M.; Pitson, S.M.; Samuel, M.S. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front. Oncol., 2018, 8, 431.
[http://dx.doi.org/10.3389/fonc.2018.00431] [PMID: 30356678]
[50]
Kai, F.; Drain, A.P.; Weaver, V.M. The extracellular matrix modulates the metastatic journey. Dev. Cell, 2019, 49(3), 332-346.
[http://dx.doi.org/10.1016/j.devcel.2019.03.026] [PMID: 31063753]
[51]
Hinz, B.; Phan, S.H.; Thannickal, V.J.; Prunotto, M.; Desmoulière, A.; Varga, J.; De Wever, O.; Mareel, M.; Gabbiani, G. Recent develop-ments in myofibroblast biology: Paradigms for connective tissue remodeling. Am. J. Pathol., 2012, 180(4), 1340-1355.
[http://dx.doi.org/10.1016/j.ajpath.2012.02.004] [PMID: 22387320]
[52]
Lemoinne, S.; Cadoret, A.; El Mourabit, H.; Thabut, D.; Housset, C. Origins and functions of liver myofibroblasts. Biochim. Biophys. Acta, 2013, 1832(7), 948-954.
[http://dx.doi.org/10.1016/j.bbadis.2013.02.019] [PMID: 23470555]
[53]
Dooley, S.; ten Dijke, P. TGF-β in progression of liver disease. Cell Tissue Res., 2012, 347(1), 245-256.
[http://dx.doi.org/10.1007/s00441-011-1246-y] [PMID: 22006249]
[54]
Heneberg, P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit. Rev. Oncol. Hematol., 2016, 97, 303-311.
[http://dx.doi.org/10.1016/j.critrevonc.2015.09.008] [PMID: 26467073]
[55]
Orimo, A.; Gupta, P.B.; Sgroi, D.C.; Arenzana-Seisdedos, F.; Delaunay, T.; Naeem, R.; Carey, V.J.; Richardson, A.L.; Weinberg, R.A. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121(3), 335-348.
[http://dx.doi.org/10.1016/j.cell.2005.02.034] [PMID: 15882617]
[56]
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer, 2016, 16(9), 582-598.
[http://dx.doi.org/10.1038/nrc.2016.73] [PMID: 27550820]
[57]
Ishii, G.; Ochiai, A.; Neri, S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv. Drug Deliv. Rev., 2016, 99(Pt B), 186-196.
[http://dx.doi.org/10.1016/j.addr.2015.07.007] [PMID: 26278673]
[58]
Barbazán, J.; Matic Vignjevic, D. Cancer associated fibroblasts: Is the force the path to the dark side? Curr. Opin. Cell Biol., 2019, 56, 71-79.
[http://dx.doi.org/10.1016/j.ceb.2018.09.002] [PMID: 30308331]
[59]
Mavrogonatou, E.; Pratsinis, H.; Papadopoulou, A.; Karamanos, N.K.; Kletsas, D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol., 2019, 75-76, 27-42.
[http://dx.doi.org/10.1016/j.matbio.2017.10.004] [PMID: 29066153]
[60]
Bohaumilitzky, L.; Huber, A.K.; Stork, E.M.; Wengert, S.; Woelfl, F.; Boehm, H. A trickster in disguise: Hyaluronan’s ambivalent roles in the matrix. Front. Oncol., 2017, 7, 242.
[http://dx.doi.org/10.3389/fonc.2017.00242] [PMID: 29062810]
[61]
Ropponen, K.; Tammi, M.; Parkkinen, J.; Eskelinen, M.; Tammi, R.; Lipponen, P.; Agren, U.; Alhava, E.; Kosma, V.M. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res., 1998, 58(2), 342-347.
[PMID: 9443415]
[62]
Anttila, M.A.; Tammi, R.H.; Tammi, M.I.; Syrjänen, K.J.; Saarikoski, S.V.; Kosma, V.M. High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res., 2000, 60(1), 150-155.
[PMID: 10646867]
[63]
Auvinen, P.; Tammi, R.; Parkkinen, J.; Tammi, M.; Agren, U.; Johansson, R.; Hirvikoski, P.; Eskelinen, M.; Kosma, V.M. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol., 2000, 156(2), 529-536.
[http://dx.doi.org/10.1016/S0002-9440(10)64757-8] [PMID: 10666382]
[64]
Lipponen, P.; Aaltomaa, S.; Tammi, R.; Tammi, M.; Agren, U.; Kosma, V.M. High stromal hyaluronan level is associated with poor differ-entiation and metastasis in prostate cancer. Eur. J. Cancer, 2001, 37(7), 849-856.
[http://dx.doi.org/10.1016/S0959-8049(00)00448-2] [PMID: 11313172]
[65]
Schmaus, A.; Bauer, J.; Sleeman, J.P. Sugars in the microenvironment: The sticky problem of HA turnover in tumors. Cancer Metastasis Rev., 2014, 33(4), 1059-1079.
[http://dx.doi.org/10.1007/s10555-014-9532-2] [PMID: 25324146]
[66]
Schinzel, R.T.; Higuchi-Sanabria, R.; Shalem, O.; Moehle, E.A.; Webster, B.M.; Joe, L.; Bar-Ziv, R.; Frankino, P.A.; Durieux, J.; Pender, C.; Kelet, N.; Kumar, S.S.; Savalia, N.; Chi, H.; Simic, M.; Nguyen, N.T.; Dillin, A. The hyaluronidase, TMEM2, promotes ER homeosta-sis and longevity independent of the UPRER. Cell, 2019, 179(6), 1306-1318.e18.
[http://dx.doi.org/10.1016/j.cell.2019.10.018] [PMID: 31761535]
[67]
Graham, H.K.; Hodson, N.W.; Hoyland, J.A.; Millward-Sadler, S.J.; Garrod, D.; Scothern, A.; Griffiths, C.E.; Watson, R.E.; Cox, T.R.; Erler, J.T.; Trafford, A.W.; Sherratt, M.J. Tissue section AFM: In situ ultrastructural imaging of native biomolecules. Matrix Biol., 2010, 29(4), 254-260.
[http://dx.doi.org/10.1016/j.matbio.2010.01.008] [PMID: 20144712]
[68]
Barbone, P.E.; Bamber, J.C. Quantitative elasticity imaging: What can and cannot be inferred from strain images. Phys. Med. Biol., 2002, 47(12), 2147-2164.
[http://dx.doi.org/10.1088/0031-9155/47/12/310] [PMID: 12118606]
[69]
Jiang, T.; Olson, E.S.; Nguyen, Q.T.; Roy, M.; Jennings, P.A.; Tsien, R.Y. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA, 2004, 101(51), 17867-17872.
[http://dx.doi.org/10.1073/pnas.0408191101] [PMID: 15601762]
[70]
Scherer, R.L.; McIntyre, J.O.; Matrisian, L.M. Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev., 2008, 27(4), 679-690. a
[http://dx.doi.org/10.1007/s10555-008-9152-9] [PMID: 18465089]
[71]
Scherer, R.L.; VanSaun, M.N.; McIntyre, J.O.; Matrisian, L.M. Optical imaging of matrix metalloproteinase-7 activity in vivo using a pro-teolytic nanobeacon. Mol. Imaging, 2008, 7(3), 118-131. b
[http://dx.doi.org/10.2310/7290.2008.00010] [PMID: 19123982]
[72]
Littlepage, L.E.; Sternlicht, M.D.; Rougier, N.; Phillips, J.; Gallo, E.; Yu, Y.; Williams, K.; Brenot, A.; Gordon, J.I.; Werb, Z. Matrix metal-loproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res., 2010, 70(6), 2224-2234.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3515] [PMID: 20215503]
[73]
Huveneers, S.; Danen, E.H. Adhesion signaling - crosstalk between integrins, Src and Rho. J. Cell Sci., 2009, 122(Pt 8), 1059-1069.
[http://dx.doi.org/10.1242/jcs.039446] [PMID: 19339545]
[74]
Discher, D.E.; Mooney, D.J.; Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science, 2009, 324(5935), 1673-1677.
[http://dx.doi.org/10.1126/science.1171643] [PMID: 19556500]
[75]
Calvo, F.; Ege, N.; Grande-Garcia, A.; Hooper, S.; Jenkins, R.P.; Chaudhry, S.I.; Harrington, K.; Williamson, P.; Moeendarbary, E.; Char-ras, G.; Sahai, E. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol., 2013, 15(6), 637-646.
[http://dx.doi.org/10.1038/ncb2756] [PMID: 23708000]
[76]
Varelas, X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development, 2014, 141(8), 1614-1626.
[http://dx.doi.org/10.1242/dev.102376] [PMID: 24715453]
[77]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[78]
Ivaska, J.; Heino, J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu. Rev. Cell Dev. Biol., 2011, 27, 291-320.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154017] [PMID: 21663443]
[79]
Hamidi, H.; Pietilä, M.; Ivaska, J. The complexity of integrins in cancer and new scopes for therapeutic targeting. Br. J. Cancer, 2016, 115(9), 1017-1023.
[http://dx.doi.org/10.1038/bjc.2016.312] [PMID: 27685444]
[80]
Erdogan, B.; Webb, D.J. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem. Soc. Trans., 2017, 45(1), 229-236.
[http://dx.doi.org/10.1042/BST20160387] [PMID: 28202677]
[81]
Takai, K.; Drain, A.P.; Lawson, D.A.; Littlepage, L.E.; Karpuj, M.; Kessenbrock, K.; Le, A.; Inoue, K.; Weaver, V.M.; Werb, Z. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev., 2018, 32(3-4), 244-257.
[http://dx.doi.org/10.1101/gad.301366.117] [PMID: 29483153]
[82]
Badiola, I.; Olaso, E.; Crende, O.; Friedman, S.L.; Vidal-Vanaclocha, F. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut, 2012, 61(10), 1465-1472.
[http://dx.doi.org/10.1136/gutjnl-2011-300810] [PMID: 22071959]
[83]
Sun, Z.; Guo, S.S.; Fässler, R. Integrin-mediated mechanotransduction. J. Cell Biol., 2016, 215(4), 445-456.
[http://dx.doi.org/10.1083/jcb.201609037] [PMID: 27872252]
[84]
Rozario, T.; DeSimone, D.W. The extracellular matrix in development and morphogenesis: A dynamic view. Dev. Biol., 2010, 341(1), 126-140.
[http://dx.doi.org/10.1016/j.ydbio.2009.10.026] [PMID: 19854168]
[85]
Pankova, D.; Chen, Y.; Terajima, M.; Schliekelman, M.J.; Baird, B.N.; Fahrenholtz, M.; Sun, L.; Gill, B.J.; Vadakkan, T.J.; Kim, M.P.; Ahn, Y.H.; Roybal, J.D.; Liu, X.; Parra Cuentas, E.R.; Rodriguez, J.; Wistuba, I.I.; Creighton, C.J.; Gibbons, D.L.; Hicks, J.M.; Dickinson, M.E.; West, J.L.; Grande-Allen, K.J.; Hanash, S.M.; Yamauchi, M.; Kurie, J.M. Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol. Cancer Res., 2016, 14(3), 287-295.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0307] [PMID: 26631572]
[86]
Wolf, K.; Te Lindert, M.; Krause, M.; Alexander, S.; Te Riet, J.; Willis, A.L.; Hoffman, R.M.; Figdor, C.G.; Weiss, S.J.; Friedl, P. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol., 2013, 201(7), 1069-1084.
[http://dx.doi.org/10.1083/jcb.201210152] [PMID: 23798731]
[87]
Hoshino, D.; Kirkbride, K.C.; Costello, K.; Clark, E.S.; Sinha, S.; Grega-Larson, N.; Tyska, M.J.; Weaver, A.M. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep., 2013, 5(5), 1159-1168.
[http://dx.doi.org/10.1016/j.celrep.2013.10.050] [PMID: 24290760]
[88]
Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel), 2019, 11(1), 38.
[http://dx.doi.org/10.3390/cancers11010038] [PMID: 30609850]
[89]
Barbosa, A.M.; Gomes-Gonçalves, A.; Castro, A.G.; Torrado, E. Immune system efficiency in cancer and the microbiota influence. Pathobiology, 2021, 88(2), 170-186.
[http://dx.doi.org/10.1159/000512326] [PMID: 33588418]
[90]
Alfano, M.; Canducci, F.; Nebuloni, M.; Clementi, M.; Montorsi, F.; Salonia, A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat. Rev. Urol., 2016, 13(2), 77-90.
[http://dx.doi.org/10.1038/nrurol.2015.292] [PMID: 26666363]
[91]
Choi, J.Y.; Jang, Y.S.; Min, S.Y.; Song, J.Y. Overexpression of MMP9 and HIF1α in breast cancer cells under hypoxic conditions. J. Breast Cancer, 2011, 14(2), 88-95.
[http://dx.doi.org/10.4048/jbc.2011.14.2.88] [PMID: 21847402]
[92]
Petrella, B.L.; Lohi, J.; Brinckerhoff, C.E. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 α in von Hippel-Lindau renal cell carcinoma. Oncogene, 2005, 24(6), 1043-1052.
[http://dx.doi.org/10.1038/sj.onc.1208305] [PMID: 15592504]
[93]
Graham, C.H.; Forsdike, J.; Fitzgerald, C.J.; Macdonald-Goodfellow, S. Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int. J. Cancer, 1999, 80(4), 617-623.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990209)80:4<617:AID-IJC22>3.0.CO;2-C] [PMID: 9935166]
[94]
Büchler, P.; Reber, H.A.; Tomlinson, J.S.; Hankinson, O.; Kallifatidis, G.; Friess, H.; Herr, I.; Hines, O.J. Transcriptional regulation of urokinase-type plasminogen activator receptor by hypoxia-inducible factor 1 is crucial for invasion of pancreatic and liver cancer. Neoplasia, 2009, 11(2), 196-206.
[http://dx.doi.org/10.1593/neo.08734] [PMID: 19177204]
[95]
Kim, J.; Yu, W.; Kovalski, K.; Ossowski, L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semi-quantitative PCR-based assay. Cell, 1998, 94(3), 353-362.
[http://dx.doi.org/10.1016/S0092-8674(00)81478-6] [PMID: 9708737]
[96]
Naba, A.; Clauser, K.R.; Hoersch, S.; Liu, H.; Carr, S.A.; Hynes, R.O. The matrisome: In silico definition and In vivo characterization by proteomics of normal and tumor extracellular matrices. Mol cell proteomics, 2012, 11, M111.014647.
[97]
Naba, A.; Clauser, K.R.; Lamar, J.M.; Carr, S.A.; Hynes, R.O. Extracellular matrix signatures of human mammary carcinoma identify nov-el metastasis promoters. eLife, 2014, 3, e01308.
[http://dx.doi.org/10.7554/eLife.01308] [PMID: 24618895]
[98]
Xiong, G.F.; Xu, R.R. Function of cancer cell-derived extracellular matrix in tumor progression. Cancer Metastasis Treat., 2016, 2, 357-364.
[http://dx.doi.org/10.20517/2394-4722.2016.08]
[99]
Januchowski, R.; Zawierucha, P.; Ruciński, M.; Nowicki, M.; Zabel, M. Extracellular matrix proteins expression profiling in chemo-resistant variants of the A2780 ovarian cancer cell line. BioMed Res. Int., 2014, 2014, 365867.
[http://dx.doi.org/10.1155/2014/365867] [PMID: 24804215]
[100]
Pyke, C.; Rømer, J.; Kallunki, P.; Lund, L.R.; Ralfkiaer, E.; Danø, K.; Tryggvason, K. The gamma 2 chain of kalinin/laminin 5 is preferen-tially expressed in invading malignant cells in human cancers. Am. J. Pathol., 1994, 145(4), 782-791.
[PMID: 7943170]
[101]
Patarroyo, M.; Tryggvason, K.; Virtanen, I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin. Cancer Biol., 2002, 12(3), 197-207.
[http://dx.doi.org/10.1016/S1044-579X(02)00023-8] [PMID: 12083850]
[102]
Seftor, R.E.; Seftor, E.A.; Koshikawa, N.; Meltzer, P.S.; Gardner, L.M.; Bilban, M.; Stetler-Stevenson, W.G.; Quaranta, V.; Hendrix, M.J. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are re-quired for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res., 2001, 61(17), 6322-6327.
[PMID: 11522618]
[103]
Kostourou, V.; Papalazarou, V. Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochim. Biophys. Acta, 2014, 1840(8), 2403-2413.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.018] [PMID: 24576673]
[104]
Calabro, A.; Oken, M.M.; Hascall, V.C.; Masellis, A.M. Characterization of hyaluronan synthase expression and hyaluronan synthesis in bone marrow mesenchymal progenitor cells: Predominant expression of HAS1 mRNA and up-regulated hyaluronan synthesis in bone marrow cells derived from multiple myeloma patients. Blood, 2002, 100(7), 2578-2585.
[http://dx.doi.org/10.1182/blood-2002-01-0030] [PMID: 12239172]
[105]
Yu, M.; Bardia, A.; Wittner, B.S.; Stott, S.L.; Smas, M.E.; Ting, D.T.; Isakoff, S.J.; Ciciliano, J.C.; Wells, M.N.; Shah, A.M.; Concannon, K.F.; Donaldson, M.C.; Sequist, L.V.; Brachtel, E.; Sgroi, D.; Baselga, J.; Ramaswamy, S.; Toner, M.; Haber, D.A.; Maheswaran, S. Circu-lating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 2013, 339(6119), 580-584.
[http://dx.doi.org/10.1126/science.1228522] [PMID: 23372014]
[106]
Lozar, T.; Gersak, K.; Cemazar, M.; Kuhar, C.G.; Jesenko, T. The biology and clinical potential of circulating tumor cells. Radiol. Oncol., 2019, 53(2), 131-147.
[http://dx.doi.org/10.2478/raon-2019-0024] [PMID: 31104002]
[107]
Nieswandt, B.; Hafner, M.; Echtenacher, B.; Männel, D.N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res., 1999, 59(6), 1295-1300.
[PMID: 10096562]
[108]
Cheung, K.J.; Padmanaban, V.; Silvestri, V.; Schipper, K.; Cohen, J.D.; Fairchild, A.N.; Gorin, M.A.; Verdone, J.E.; Pienta, K.J.; Bader, J.S.; Ewald, A.J. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl. Acad. Sci. USA, 2016, 113(7), E854-E863.
[http://dx.doi.org/10.1073/pnas.1508541113] [PMID: 26831077]
[109]
Huang, Y.; Song, N.; Ding, Y.; Yuan, S.; Li, X.; Cai, H.; Shi, H.; Luo, Y. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res., 2009, 69(19), 7529-7537.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4382] [PMID: 19773447]
[110]
Yang, N.; Mosher, R.; Seo, S.; Beebe, D.; Friedl, A. Syndecan-1 in breast cancer stroma fibroblasts regulates extracellular matrix fiber organization and carcinoma cell motility. Am. J. Pathol., 2011, 178(1), 325-335.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.039] [PMID: 21224069]
[111]
Semenza, G.L. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim. Biophys. Acta, 2016, 1863(3), 382-391.
[http://dx.doi.org/10.1016/j.bbamcr.2015.05.036] [PMID: 26079100]
[112]
Muñoz-Nájar, U.M.; Neurath, K.M.; Vumbaca, F.; Claffey, K.P. Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene, 2006, 25(16), 2379-2392.
[http://dx.doi.org/10.1038/sj.onc.1209273] [PMID: 16369494]
[113]
Hofbauer, K.H.; Gess, B.; Lohaus, C.; Meyer, H.E.; Katschinski, D.; Kurtz, A. Oxygen tension regulates the expression of a group of pro-collagen hydroxylases. Eur. J. Biochem., 2003, 270(22), 4515-4522.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03846.x] [PMID: 14622280]
[114]
Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 2003, 3(6), 401-410.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[115]
Du, R.; Lu, K.V.; Petritsch, C.; Liu, P.; Ganss, R.; Passegué, E.; Song, H.; Vandenberg, S.; Johnson, R.S.; Werb, Z.; Bergers, G. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 2008, 13(3), 206-220.
[http://dx.doi.org/10.1016/j.ccr.2008.01.034] [PMID: 18328425]
[116]
Sottile, J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta, 2004, 1654(1), 13-22.
[PMID: 14984764]
[117]
Elvidge, G.P.; Glenny, L.; Appelhoff, R.J.; Ratcliffe, P.J.; Ragoussis, J.; Gleadle, J.M. Concordant regulation of gene expression by hypox-ia and 2-oxoglutarate-dependent dioxygenase inhibition: The role of HIF-1α, HIF-2α, and other pathways. J. Biol. Chem., 2006, 281(22), 15215-15226.
[http://dx.doi.org/10.1074/jbc.M511408200] [PMID: 16565084]
[118]
Aro, E.; Khatri, R.; Gerard-O’Riley, R.; Mangiavini, L.; Myllyharju, J.; Schipani, E. Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes. J. Biol. Chem., 2012, 287(44), 37134-37144.
[http://dx.doi.org/10.1074/jbc.M112.352872] [PMID: 22930750]
[119]
Bentovim, L.; Amarilio, R.; Zelzer, E. HIF1α is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development, 2012, 139(23), 4473-4483.
[http://dx.doi.org/10.1242/dev.083881] [PMID: 23095889]
[120]
Mushtaq, M.U.; Papadas, A.; Pagenkopf, A.; Flietner, E.; Morrow, Z.; Chaudhary, S.G.; Asimakopoulos, F. Tumor matrix remodeling and novel immunotherapies: The promise of matrix-derived immune biomarkers. J. Immunother. Cancer, 2018, 6(1), 65.
[http://dx.doi.org/10.1186/s40425-018-0376-0] [PMID: 29970158]
[121]
Frevert, C.W.; Felgenhauer, J.; Wygrecka, M.; Nastase, M.V.; Schaefer, L. Danger-associated molecular patterns derived from the extracel-lular matrix provide temporal control of innate immunity. J. Histochem. Cytochem., 2018, 66(4), 213-227.
[http://dx.doi.org/10.1369/0022155417740880] [PMID: 29290139]
[122]
Ouyang, X.; Ghani, A.; Mehal, W.Z. Inflammasome biology in fibrogenesis. Biochim. Biophys. Acta, 2013, 1832(7), 979-988.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.020] [PMID: 23562491]
[123]
Zajac, E.; Schweighofer, B.; Kupriyanova, T.A.; Juncker-Jensen, A.; Minder, P.; Quigley, J.P.; Deryugina, E.I. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood, 2013, 122(25), 4054-4067.
[http://dx.doi.org/10.1182/blood-2013-05-501494] [PMID: 24174628]
[124]
Madsen, D.H.; Jürgensen, H.J.; Siersbæk, M.S.; Kuczek, D.E.; Grey Cloud, L.; Liu, S.; Behrendt, N.; Grøntved, L.; Weigert, R.; Bugge, T.H. Tumor-associated macrophages derived from circulating inflammatory monocytes degrade collagen through cellular uptake. Cell Rep., 2017, 21(13), 3662-3671.
[http://dx.doi.org/10.1016/j.celrep.2017.12.011] [PMID: 29281816]
[125]
Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[126]
Hope, C.; Foulcer, S.; Jagodinsky, J.; Chen, S.X.; Jensen, J.L.; Patel, S.; Leith, C.; Maroulakou, I.; Callander, N.; Miyamoto, S.; Hematti, P.; Apte, S.S.; Asimakopoulos, F. Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. Blood, 2016, 128(5), 680-685.
[http://dx.doi.org/10.1182/blood-2016-03-705780] [PMID: 27259980]
[127]
Hope, C.; Emmerich, P.B.; Papadas, A.; Pagenkopf, A.; Matkowskyj, K.A.; Van De Hey, D.R.; Payne, S.N.; Clipson, L.; Callander, N.S.; Hematti, P.; Miyamoto, S.; Johnson, M.G.; Deming, D.A.; Asimakopoulos, F. Versican-derived matrikines regulate batf3-dendritic cell dif-ferentiation and promote t cell infiltration in colorectal cancer. J. Immunol., 2017, 199(5), 1933-1941.
[http://dx.doi.org/10.4049/jimmunol.1700529] [PMID: 28754680]
[128]
Cramer, T.; Yamanishi, Y.; Clausen, B.E.; Förster, I.; Pawlinski, R.; Mackman, N.; Haase, V.H.; Jaenisch, R.; Corr, M.; Nizet, V.; Firestein, G.S.; Gerber, H.P.; Ferrara, N.; Johnson, R.S. HIF-1α is essential for myeloid cell-mediated inflammation. Cell, 2003, 112(5), 645-657.
[http://dx.doi.org/10.1016/S0092-8674(03)00154-5] [PMID: 12628185]
[129]
Murdoch, C.; Giannoudis, A.; Lewis, C.E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 2004, 104(8), 2224-2234.
[http://dx.doi.org/10.1182/blood-2004-03-1109] [PMID: 15231578]
[130]
Wels, J.; Kaplan, R.N.; Rafii, S.; Lyden, D. Migratory neighbors and distant invaders: Tumor-associated niche cells. Genes Dev., 2008, 22(5), 559-574.
[http://dx.doi.org/10.1101/gad.1636908] [PMID: 18316475]
[131]
Wynn, T.A.; Barron, L. Macrophages: Master regulators of inflammation and fibrosis. Semin. Liver Dis., 2010, 30(3), 245-257.
[http://dx.doi.org/10.1055/s-0030-1255354] [PMID: 20665377]
[132]
Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer, 2009, 9(4), 239-252.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[133]
Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 2002, 295(5564), 2387-2392.
[http://dx.doi.org/10.1126/science.1067100] [PMID: 11923519]
[134]
Friedman, S.L.; Maher, J.J.; Bissell, D.M. Mechanisms and therapy of hepatic fibrosis: Report of the AASLD single topic basic research conference. Hepatology, 2000, 32(6), 1403-1408.
[http://dx.doi.org/10.1053/jhep.2000.20243] [PMID: 11093750]
[135]
Mossman, B.T.; Churg, A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med., 1998, 157(5 Pt 1), 1666-1680.
[http://dx.doi.org/10.1164/ajrccm.157.5.9707141] [PMID: 9603153]
[136]
Jacobs, T.W.; Byrne, C.; Colditz, G.; Connolly, J.L.; Schnitt, S.J. Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N. Engl. J. Med., 1999, 340(6), 430-436.
[http://dx.doi.org/10.1056/NEJM199902113400604] [PMID: 9971867]
[137]
Henke, E.; Nandigama, R.; Ergün, S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front. Mol. Biosci., 2020, 6, 160.
[http://dx.doi.org/10.3389/fmolb.2019.00160] [PMID: 32118030]
[138]
Gordon-Weeks, A.; Yuzhalin, A.E. Cancer extracellular matrix proteins regulate tumour immunity. Cancers (Basel), 2020, 12(11), 3331.
[http://dx.doi.org/10.3390/cancers12113331] [PMID: 33187209]
[139]
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003, 3(10), 721-732.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[140]
Shen, C.; Beroukhim, R.; Schumacher, S.E.; Zhou, J.; Chang, M.; Signoretti, S.; Kaelin, W.G. Jr Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov., 2011, 1(3), 222-235.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0098] [PMID: 22037472]
[141]
Keith, B.; Johnson, R.S.; Simon, M.C. HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer, 2011, 12(1), 9-22.
[http://dx.doi.org/10.1038/nrc3183] [PMID: 22169972]
[142]
Liao, D.; Corle, C.; Seagroves, T.N.; Johnson, R.S. Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res., 2007, 67(2), 563-572.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2701] [PMID: 17234764]
[143]
Zhang, H.; Wong, C.C.; Wei, H.; Gilkes, D.M.; Korangath, P.; Chaturvedi, P.; Schito, L.; Chen, J.; Krishnamachary, B.; Winnard, P.T., Jr; Raman, V.; Zhen, L.; Mitzner, W.A.; Sukumar, S.; Semenza, G.L. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM medi-ates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene, 2012, 31(14), 1757-1770.
[http://dx.doi.org/10.1038/onc.2011.365] [PMID: 21860410]
[144]
Tang, N.; Wang, L.; Esko, J.; Giordano, F.J.; Huang, Y.; Gerber, H.P.; Ferrara, N.; Johnson, R.S. Loss of HIF-1α in endothelial cells dis-rupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell, 2004, 6(5), 485-495.
[http://dx.doi.org/10.1016/j.ccr.2004.09.026] [PMID: 15542432]
[145]
Yamashita, T.; Ohneda, K.; Nagano, M.; Miyoshi, C.; Kaneko, N.; Miwa, Y.; Yamamoto, M.; Ohneda, O.; Fujii-Kuriyama, Y. Hypoxia-inducible transcription factor-2α in endothelial cells regulates tumor neovascularization through activation of ephrin A1. J. Biol. Chem., 2008, 283(27), 18926-18936.
[http://dx.doi.org/10.1074/jbc.M709133200] [PMID: 18434321]
[146]
Mazzone, M.; Dettori, D.; de Oliveira, R.L.; Loges, S.; Schmidt, T.; Jonckx, B.; Tian, Y.M.; Lanahan, A.A.; Pollard, P.; de Almodovar, C.R.; De Smet, F.; Vinckier, S.; Aragonés, J.; Debackere, K.; Luttun, A.; Wyns, S.; Jordan, B.; Pisacane, A.; Gallez, B.; Lampugnani, M.G.; Dejana, E.; Simons, M.; Ratcliffe, P.; Maxwell, P.; Carmeliet, P. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell, 2009, 136(5), 839-851.
[http://dx.doi.org/10.1016/j.cell.2009.01.020] [PMID: 19217150]
[147]
Leite de Oliveira, R.; Deschoemaeker, S.; Henze, A.T.; Debackere, K.; Finisguerra, V.; Takeda, Y.; Roncal, C.; Dettori, D.; Tack, E.; Jöns-son, Y.; Veschini, L.; Peeters, A.; Anisimov, A.; Hofmann, M.; Alitalo, K.; Baes, M.; D’hooge, J.; Carmeliet, P.; Mazzone, M. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell, 2012, 22(2), 263-277.
[http://dx.doi.org/10.1016/j.ccr.2012.06.028] [PMID: 22897855]
[148]
Acker, T.; Diez-Juan, A.; Aragones, J.; Tjwa, M.; Brusselmans, K.; Moons, L.; Fukumura, D.; Moreno-Murciano, M.P.; Herbert, J.M.; Burger, A.; Riedel, J.; Elvert, G.; Flamme, I.; Maxwell, P.H.; Collen, D.; Dewerchin, M.; Jain, R.K.; Plate, K.H.; Carmeliet, P. Genetic evidence for a tumor suppressor role of HIF-2α. Cancer Cell, 2005, 8(2), 131-141.
[http://dx.doi.org/10.1016/j.ccr.2005.07.003] [PMID: 16098466]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy