Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Carbon Nanotubes Flow Induced by Rotating Stretching Disk with Non- Linear Radiations and Slip

Author(s): Uzma Sultana, Muhammad Mushtaq and Ilyas Khan*

Volume 25, Issue 14, 2022

Published on: 09 July, 2021

Page: [2498 - 2508] Pages: 11

DOI: 10.2174/1386207324666210709095532

Price: $65

Abstract

Background: The phenomenon of rotating disks involving flows serves as a crucial element in the field of fluid mechanics. Owing to its massive practical importance in engineering and industry, considerable attention is being paid to the extension of the problems associated with rotating stretching disks. In this regard, Carbon Nanotubes (CNT) are chosen as the best example of true nano technology. CNTs have an incredible range of applications due to their extraordinary characteristics. But single rotating-stretching disk with CNTs fluid flow has not been plowed yet.

Objective: The objective of this work is to outstretch the study of viscous fluid with Carbon Nanotubes (CNTs) and transfer of heat due to radially stretching and rotating disk contingent to Navier slip, nonlinear radiations and convective boundary conditions.

Methods: Cylindrical coordinates are utilized in the modeling and the mathematical formulation of the flow equations. These flow equations take the form of ordinary differential equations by means of similarity transformations. The emanated equations are solved by two numerical methods i.e. the shooting method and the Keller box method respectively. Xue model of carbon nanotubes is incorporated to carry out the research.

Results: The acquired solutions are tabulated and precise values of the physical parameters with excellent matching results are shown. These results are juxtaposed with CNTs of multi-wall and single-wall carbon nanotubes, while water is taken as a base fluid.

Conclusion: Results reveal a significant depletion in skin friction with an increase in the slip parameter. Slip, nonlinear radiation and Biot number proved as liable factors in escalating the rate of heat transfer.

Keywords: Axially rotating-stretching disk, non-linear radiations, carbon nanotubes, Navier slip, Keller box method, shooting technique.

[1]
Karman, T.V. Uber laminate und turbulente Reibung. J. Appl. Math. Mech., 1921, 1(1), 233-252.
[http://dx.doi.org/10.1002/zamm.19210010401]
[2]
Cochran, W.G.; Goldstein, S. The flow due to a rotating disc. Math. Proc. Camb. Philos. Soc., 1934, 30(3), 365-375.
[http://dx.doi.org/10.1017/S0305004100012561]
[3]
Hannah, D.M. Forced flow against a rotating disc; UK. HM Stationery Office: National government publication, 1952.
[4]
Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys., 1970, 21(4), 645-647.
[http://dx.doi.org/10.1007/BF01587695]
[5]
Wang, C.Y. Stretching a surface in a rotating fluid. Z. Angew. Math. Phys., 1988, 39(2), 177-185.
[http://dx.doi.org/10.1007/BF00945764]
[6]
Rajeswari, V.; Nath, G. Unsteady flow over a stretching surface in a rotating fluid. Int. J. Eng. Sci., 1992, 30(6), 747-756.
[http://dx.doi.org/10.1016/0020-7225(92)90104-O]
[7]
Nazar, R.; Amin, N.; Pop, I. Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mech. Res. Commun., 2004, 31(1), 121-128.
[http://dx.doi.org/10.1016/j.mechrescom.2003.09.004]
[8]
Fang, T.G. Flow over a stretchable disk. Phys. Fluids, 2007, 19(12), 128105.
[http://dx.doi.org/10.1063/1.2823572]
[9]
Asghar, S.; Jalil, M.; Hussan, M.; Turkyilmazoglu, M. Lie group analysis of flow and heat transfer over a stretching rotating disk. Int. J. Heat Mass Transf., 2014, 69, 140-146.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.061]
[10]
Weidman, P. Axisymmetric stagnation point flow on a spiraling disk. Phys. Fluids, 2014, 26(7), 073603.
[http://dx.doi.org/10.1063/1.4887260]
[11]
Turkyilmazoglu, M. Bo¨dewadt flow and heat transfer over a stretching stationary disk. Int. J. Mech. Sci., 2015, 90, 246-250.
[http://dx.doi.org/10.1016/j.ijmecsci.2014.10.022]
[12]
Hayat, T.; Javed, T.; Sajid, M. Analytic solution for MHD rotating flow of a second-grade fluid over a shrinking surface. Phys. Lett. A, 2008, 372(18), 3264-3273.
[http://dx.doi.org/10.1016/j.physleta.2008.01.069]
[13]
Zaimi, K.; Ishak, A.; Pop, I. Stretching surface in rotating viscoelastic fluid. Appl. Math. Mech., 2013, 34(8), 945-952.
[http://dx.doi.org/10.1007/s10483-013-1719-9]
[14]
Rashidi, M.M.; Abelman, S.; Mehr, N.F. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transf., 2013, 62, 515-525.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.004]
[15]
Mustafa, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AIP Adv., 2015, 5(4), 047149.
[http://dx.doi.org/10.1063/1.4917306]
[16]
Rashidi, M.M.; Ganesh, N.V.; Hakeem, A.K.A.; Ganga, B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Mol. Liq., 2014, 198, 234-238.
[http://dx.doi.org/10.1016/j.molliq.2014.06.037]
[17]
Mukhopadhyay, S. Effect of thermal radiation and variable fluid viscosity on stagnation point flow past a porous stretching sheet. Meccanica, 2013, 48(7), 1717-1730.
[http://dx.doi.org/10.1007/s11012-013-9704-0]
[18]
Pal, D. Hall current and MHD effects on heat transfer over an unsteady stretching permeable surface with thermal radiation. Comput. Math. Appl., 2013, 66(7), 1161-1180.
[http://dx.doi.org/10.1016/j.camwa.2013.07.010]
[19]
Hayat, T.; Qayyum, S.; Alseadi, A. Comparative study of silver copper water nanofluids with mixed convection and nonlinear thermal radiation. Int. J. Heat Mass Transf., 2016, 102, 723-732.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.06.059]
[20]
Sheikholeslami, M.; Ganji, D.D.; Javed, M.Y.; Ellahi, R. Effects of thermal radiation on MHD nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater., 2015, 374, 36-43.
[http://dx.doi.org/10.1016/j.jmmm.2014.08.021]
[21]
Rashidi, M.M.; Ali, M.; Freidoonimehr, N.; Rostami, B.; Hossain, M.A. Mixed convection heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv. Mech. Eng., 2014, 6, 735939.
[http://dx.doi.org/10.1155/2014/735939]
[22]
Hayat, T.; Imtiaz, M.; Alseadi, A.; Kutbi, M.A. MHD three dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. J. Magn. Magn. Mater., 2015, 396, 31-37.
[http://dx.doi.org/10.1016/j.jmmm.2015.07.091]
[23]
Shahzad, S.A.; Abdullah, Z.; Abbasi, F.M.; Hayat, T.; Alseadi, A. Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface. J. Magn. Magn. Mater., 2016, 399, 97-108.
[http://dx.doi.org/10.1016/j.jmmm.2015.09.001]
[24]
Bhattacharyya, K.; Mukhopadhyay, S.; Lavek, G.C.; Pop, I. Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int. J. Heat Mass Transf., 2012, 55(11-12), 2945-2952.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.01.051]
[25]
Choi, S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Ezposition, 1995, pp. 99-105.
[26]
Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increasedeffective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett., 2001, 78(6), 718-720.
[http://dx.doi.org/10.1063/1.1341218]
[27]
Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwood, F.E.; Grulke, E.A. Anomalous thermal conductivity enhancement in nanotube suspension. Appl. Phys. Lett., 2001, 79(14), 2252-2254.
[http://dx.doi.org/10.1063/1.1408272]
[28]
Nabwey, H.A.; Boumazgour, M.; Rashad, A.M. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface. Indian J. Phys., 2017, 91, 731-742.
[http://dx.doi.org/10.1007/s12648-017-0978-2]
[29]
Alwawi, F. A.; Alkasasbeh, H. T.; Rashad, A. M.; Idris, R. MHD natural convection of Sodium alginate casson nanofluid over a solid sphere. Results phys., 2020, 16, 102818.
[30]
Eid, M.R. Chemical reaction effect on MHD boundary layer flow of two phase nanofluid model over an exponentially stretching sheet with a heat generation. J. Mol. Liq., 2016, 220, 718-725.
[http://dx.doi.org/10.1016/j.molliq.2016.05.005]
[31]
Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A. Rotating flow of magnetite-water nanofluid over a stretching surface inspired by non-linear thermal radiation., 2016, 11(2), e0149304.
[http://dx.doi.org/10.1371/journal.pone.0149304]
[32]
Khan, W.A.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf., 2010, 53(11), 2477-2483.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032]
[33]
Hassan, M.; Tabar, M.M.; Nemati, H. An analytical solution for boundary layer flow of a nanofluid past a stretching sheet. Int. J. Therm. Sci., 2011, 50(11), 2256-2263.
[http://dx.doi.org/10.1016/j.ijthermalsci.2011.05.015]
[34]
Kunznetsov, A.V.; Nield, D.A. Natural convective boundary-layer flow of a past a vertical plate: A revised model. Int. J. Therm. Sci., 2014, 77, 126-129.
[http://dx.doi.org/10.1016/j.ijthermalsci.2013.10.007]
[35]
Sheikholeslami, M.; Sheykholeslami, F.B.; Khoshhal, S.; Mole-Abasia, H.; Ganji, D.D.; Rokni, H.B. Effect of magnetic field on Cu-water nanofluid heat transfer using GMDH-type neural network. Neural Comput. Appl., 2014, 2014(25), 171-178.
[http://dx.doi.org/10.1007/s00521-013-1459-y]
[36]
Malvandi, A.; Ganji, D.D. Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel. J. Magn. Magn. Mater., 2014, 362, 172-179.
[http://dx.doi.org/10.1016/j.jmmm.2014.03.014]
[37]
Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A. Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study. J. Taiwan Inst. Chem. Eng., 2014, 45(4), 1176-1183.
[http://dx.doi.org/10.1016/j.jtice.2013.11.008]
[38]
Rashidi, M.M.; Freidoonimehr, N.; Hosseini, A.; Bég, O.A.; Hung, T.K. Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccan, 2014, 49(2), 469-482.
[http://dx.doi.org/10.1007/s11012-013-9805-9]
[39]
Nield, D.A.; Kuznetsov, A.V. Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf., 2014, 70, 430-433.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.016]
[40]
Mustafa, M.; Khan, J.A. Model for flow of Casson ferrofluid past a non-linearly stretching sheet considering magnetic field effects. AIP Adv., 2015, 5(7), 077148.
[http://dx.doi.org/10.1063/1.4927449]
[41]
Khan, J.A.; Mustafa, M.; Hayat, T.; Sheikholeslami, M.; Alsaedi, A. Three-dimensional flow of nanofluid induced by an exponentially stretching sheet: an application to solar energy. PLoS One, 2015, 10(3), e0116603.
[http://dx.doi.org/10.1371/journal.pone.0116603] [PMID: 25785857]
[42]
Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A. On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. J. Mol. Liq., 2015, 211, 119-125.
[http://dx.doi.org/10.1016/j.molliq.2015.06.065]
[43]
Shehzad, S.A.; Mabood, F.; Rauf, A.; Tlili, I. Forced convective Maxwell fluid flow through rotating disk under the thermophoretic particles motion. Int. Commun. Heat Mass Transf., 2020, 116, 104693.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104693]
[44]
Khan, U.; Ahmed, N.; Mohyud-Din, S.T. Influence of viscous dissipation and Joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticles and gyrotactic microorganisms. Springerplus, 2016, 5(1), 2043.
[http://dx.doi.org/10.1186/s40064-016-3718-8] [PMID: 27995020]
[45]
Hayat, T.; Ashraf, M.B.; Alsulami, H.H.; Alhuthali, M.S. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions. PLoS One, 2014, 9(3), e90038.
[http://dx.doi.org/10.1371/journal.pone.0090038] [PMID: 24608594]
[46]
Wang, T.; Luo, Z.; Shou, C.; Zhang, S.; Cen, K. Experimental study on convection heat transfer of nanocolloidal dispersion in a turbulent flow. In: Challenges of Power Engineering and Environment; Cen, K.; Chi, Y.; Wang, F., Eds.; Springer: Berlin, Heidelberg, 2007.
[47]
Sabiha, M.A.; Mostafizur, R.M.; Saidur, R.; Mekhilef, S. Experimental investigation on thermophysical properties of single walled carbon nanotube nanofluids. Int. J. Heat Mass Transf., 2016, 93, 862-871.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.10.071]
[48]
Patil, M.S.; Seo, J.; Kang, S.; Lee, M. Review on synthesis, thermos-physical property, and heat transfer mechanism of nanofluids. Energies, 2016, 9(10), 840.
[http://dx.doi.org/10.3390/en9100840]
[49]
Chiavazzo, E.; Asinari, P. Enhancing heat transfer in nanofluids by carbon nanofins: towards an alternative to nanofluids? Nanoscale Res. Lett., 2011, 6(1), 249.
[http://dx.doi.org/10.1186/1556-276X-6-249] [PMID: 21711780]
[50]
Yazid, M.; Sidik, N.; Yahya, W. Heat and mass transfer characteristics of carbon nanotube nanofluids: a review. Renew. Sustain. Energy Rev., 2017, 80, 914-941.
[http://dx.doi.org/10.1016/j.rser.2017.05.192]
[51]
Murshed, S.; Castro, C.N. Superior thermal features of carbon nanotubes-based nanofluids– a review. Renew. Sustain. Energy Rev., 2014, 37, 155-167.
[http://dx.doi.org/10.1016/j.rser.2014.05.017]
[52]
Sidik, N.; Yazid, M.; Samion, S. A review on the use of carbon nanotubes nanofluid for energy harvesting system. Int. J. Heat Mass Transf., 2017, 111, 782-794.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.047]
[53]
Dharmalingam, R.; Sivagnanaprabhu, K.K.; Kumar, B.S.; Thirumalia, R. Nano materials and nanofluids: an innovative technology study for new paradigms for technology enhancement. Proc. Engr., 2014, 97, 1434-1441.
[http://dx.doi.org/10.1016/j.proeng.2014.12.425]
[54]
Khan, W.A.; Khan, Z.H.; Rahi, M. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl. Nanosci., 2014, 4(5), 633-641.
[http://dx.doi.org/10.1007/s13204-013-0242-9]
[55]
Seth, G.S.; Kumar, R.; Bhattachay, A. Entropy generation of dissipative flow of carbon nanotubes in rotating frame with Darcy-Forchheimer porous medium: A numerical study. J. Mol. Liq., 2018, 268, 637-646.
[http://dx.doi.org/10.1016/j.molliq.2018.07.071]
[56]
Hayat, T.; Hussain, Z.; Alsaedi, A.; Ashghar, S. Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness. Adv. Powder Technol., 2016, 27(4), 1677-1688.
[http://dx.doi.org/10.1016/j.apt.2016.06.001]
[57]
Ghadikolaei, S.S.; Hosseinzadeh, K.; Hatami, M.; Ganji, D.D.; Armin, M. Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. J. Mol. Liq., 2018, 263, 10-21.
[http://dx.doi.org/10.1016/j.molliq.2018.04.141]
[58]
Zhang, Y.; Lv, Y.; Wang, L.; Zhang, A.; Song, Y.; Li, G. Synthesis and electrochemical properties of Li3V2 (PO4) 3/MWCNTs composite cathodes. Synth. Met., 2011, 161(19-20), 2170-2173.
[http://dx.doi.org/10.1016/j.synthmet.2011.08.022]
[59]
Zhang, Y.; Yao, Q.Q.; Gao, H.L.; Wang, L.Z.; Jia, X.L.; Zhang, A.Q.; Song, Y.H.; Xia, T.C.; Dong, H.C. Facile synthesis and electrochemical performance of manganese dioxide doped by activated carbon, carbon nanofiber and carbon nanotube. Powder Technol., 2014, 262, 150-155.
[http://dx.doi.org/10.1016/j.powtec.2014.04.080]
[60]
Liu, S.; Zhang, L.; Zhou, J.; Wu, R. Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J. Phys. Chem. C, 2008, 112(12), 4538-4544.
[http://dx.doi.org/10.1021/jp711431h]
[61]
Han, J.; Li, L.; Fang, P.; Guo, R. Ultrathin MnO2 nanorods on conducting polymer nanofibers as a new class of hierarchical nanostructures for high-performance supercapacitors. J. Phys. Chem. C, 2012, 116(30), 15900-15907.
[http://dx.doi.org/10.1021/jp303324x]
[62]
Maxwell, J.C. Electricity and magnetism, 3rd ed; NewYark: Dover, 1904.
[63]
Jeffery, D. J. Conduction through a random suspension of spheres. Proc. Math. Phys. Eng. Sci. P Roy Soc A-Math Phy, 1973, 335(1602), 355-367.
[64]
Davis, R. The effective thermal conductivity of a composite material with spherical inclusions. Int. J. Thermophys., 1986, 7(3), 609-620.
[http://dx.doi.org/10.1007/BF00502394]
[65]
Hamilton, R.L.; Crosser, O.K. Thermal conductivity of hetrogeneous two-componant systems. Ind. Eng. Chem. Fund., 1962, 1(3), 187-191.
[66]
Xue, Q. Model for thermal conductivity of carbon nanotube based composites. Physica B, 2005, 368(1-4), 302-307.
[http://dx.doi.org/10.1016/j.physb.2005.07.024]
[67]
Hone, J. Carbon nanotubes: Thermal properties. Dekker Encycl. Nanosci. Nanotechnol, 2004, 7, 603-610.
[68]
Antar, Z.; Noel, H.; Feller, J.F.; Glouannec, P.; Elleuch, K. Thermophysical and radiative properties of conductive biopolymer composite. Mater. Sci. Forum, 2012, 714, 115-122.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.714.115]
[69]
Bejan, A. Convection heat transfer, 3rd ed; John Wiley: New York, 2004.
[70]
Keller, H.B.; Cebeci, T. Accurate numerical methods for boundary-layer flow, II: Two dimensional turbulent flows. AIAA J., 1972, 10(9), 1193-1199.
[http://dx.doi.org/10.2514/3.50349]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy