Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Staphylococcus aureus: Biofilm Formation and Strategies Against it

Author(s): Ahmad Nasser *, Mohammad Mehdi Soltan Dallal, Shiva Jahanbakhshi, Taher Azimi and Leila Nikouei

Volume 23, Issue 5, 2022

Published on: 08 July, 2021

Page: [664 - 678] Pages: 15

DOI: 10.2174/1389201022666210708171123

Price: $65

Abstract

Abstract: Formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation is completed in a series of steps, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors, and affect cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation, because in case pathogens abort the attachment, the next stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best knowing inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These effective factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed.

Keywords: Biofilm, Staphylococcus, biofilm inhibitor, dispersion, antibiofilm agent, EPS, PIA.

Graphical Abstract

[1]
Cortés, M.E.; Bonilla, J.C.; Sinisterra, R.D. Biofilm formation, control and novel strategies for eradication.In: Science against microbial pathogens: Communicating current research and technological advances; A Mendez-Vilas, , Ed.; FORMATEX, 2011, Vol. 2, pp. 896-905.
[2]
Moormeier, D.E.; Bayles, K.W. Staphylococcus aureus biofilm: A complex developmental organism. Mol. Microbiol., 2017, 104(3), 365-376.
[http://dx.doi.org/10.1111/mmi.13634] [PMID: 28142193]
[3]
Yan, Z.; Huang, M.; Melander, C.; Kjellerup, B.V. Dispersal and inhibition of biofilms associated with infections. J. Appl. Microbiol., 2020, 128(5), 1279-1288.
[http://dx.doi.org/10.1111/jam.14491] [PMID: 31618796]
[4]
Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med., 2013, 3(4)a010306
[http://dx.doi.org/10.1101/cshperspect.a010306] [PMID: 23545571]
[5]
Flemming, H-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol., 2010, 8(9), 623-633.
[http://dx.doi.org/10.1038/nrmicro2415] [PMID: 20676145]
[6]
Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Höök, M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol., 2014, 12(1), 49-62.
[http://dx.doi.org/10.1038/nrmicro3161] [PMID: 24336184]
[7]
Zapotoczna, M.; McCarthy, H.; Rudkin, J.K.; O’Gara, J.P.; O’Neill, E. An essential role for coagulase in Staphylococcus aureus biofilm development reveals new therapeutic possibilities for device-related infections. J. Infect. Dis., 2015, 212(12), 1883-1893.
[http://dx.doi.org/10.1093/infdis/jiv319] [PMID: 26044292]
[8]
O’Gara, J.P. Ica and beyond: Biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett., 2007, 270(2), 179-188.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00688.x] [PMID: 17419768]
[9]
Qin, Z.; Yang, L.; Qu, D.; Molin, S.; Tolker-Nielsen, T. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology (Reading), 2009, 155(Pt 7), 2148-2156.
[http://dx.doi.org/10.1099/mic.0.028001-0] [PMID: 19389780]
[10]
Lister, J.L.; Horswill, A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol., 2014, 4, 178.
[http://dx.doi.org/10.3389/fcimb.2014.00178] [PMID: 25566513]
[11]
Bhattacharya, M.; Wozniak, D.J.; Stoodley, P.; Hall-Stoodley, L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev. Anti Infect. Ther., 2015, 13(12), 1499-1516.
[http://dx.doi.org/10.1586/14787210.2015.1100533] [PMID: 26646248]
[12]
Otto, M. Staphylococcal infections: Mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu. Rev. Med., 2013, 64, 175-188.
[http://dx.doi.org/10.1146/annurev-med-042711-140023] [PMID: 22906361]
[13]
Merino, N.; Toledo-Arana, A.; Vergara-Irigaray, M.; Valle, J.; Solano, C.; Calvo, E.; Lopez, J.A.; Foster, T.J.; Penadés, J.R.; Lasa, I. Protein A-mediated multicellular behavior in Staphylococcus aureus. J. Bacteriol., 2009, 191(3), 832-843.
[http://dx.doi.org/10.1128/JB.01222-08] [PMID: 19047354]
[14]
Boles, B.R.; Thoendel, M.; Roth, A.J.; Horswill, A.R. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One, 2010, 5(4)e10146
[http://dx.doi.org/10.1371/journal.pone.0010146] [PMID: 20418950]
[15]
Gerke, C.; Kraft, A.; Süssmuth, R.; Schweitzer, O.; Götz, F. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem., 1998, 273(29), 18586-18593.
[http://dx.doi.org/10.1074/jbc.273.29.18586] [PMID: 9660830]
[16]
Vuong, C.; Kocianova, S.; Voyich, J.M.; Yao, Y.; Fischer, E.R.; DeLeo, F.R.; Otto, M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J. Biol. Chem., 2004, 279(52), 54881-54886.
[http://dx.doi.org/10.1074/jbc.M411374200] [PMID: 15501828]
[17]
Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J., 2020, 18, 3324-3334.
[http://dx.doi.org/10.1016/j.csbj.2020.10.027] [PMID: 33240473]
[18]
Kot, B.; Sytykiewicz, H.; Sprawka, I. Expression of the biofilm-associated genes in methicillin-resistant Staphylococcus aureus in biofilm and planktonic conditions. Int. J. Mol. Sci., 2018, 19(11), 3487.
[http://dx.doi.org/10.3390/ijms19113487] [PMID: 30404183]
[19]
Mann, E.E.; Rice, K.C.; Boles, B.R.; Endres, J.L.; Ranjit, D.; Chandramohan, L.; Tsang, L.H.; Smeltzer, M.S.; Horswill, A.R.; Bayles, K.W. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One, 2009, 4(6)e5822
[http://dx.doi.org/10.1371/journal.pone.0005822] [PMID: 19513119]
[20]
Geoghegan, J.A.; Monk, I.R.; O’Gara, J.P.; Foster, T.J. Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J. Bacteriol., 2013, 195(11), 2675-2683.
[http://dx.doi.org/10.1128/JB.02128-12] [PMID: 23564165]
[21]
Schilcher, K.; Horswill, A.R. Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev., 2020, 84(3), e00026-e19.
[http://dx.doi.org/10.1128/MMBR.00026-19] [PMID: 32792334]
[22]
Maira-Litran, T.; Kropec, A.; Goldmann, D.; Pier, G.B. Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine, 2004, 22(7), 872-879.
[http://dx.doi.org/10.1016/j.vaccine.2003.11.033] [PMID: 15040940]
[23]
Stemberk, V.; Jones, R.P.O.; Moroz, O.; Atkin, K.E.; Edwards, A.M.; Turkenburg, J.P.; Leech, A.P.; Massey, R.C.; Potts, J.R. Evidence for steric regulation of fibrinogen binding to Staphylococcus aureus fibronectin-binding protein A (FnBPA). J. Biol. Chem., 2014, 289(18), 12842-12851.
[http://dx.doi.org/10.1074/jbc.M113.543546] [PMID: 24627488]
[24]
Nasser, A.; Moradi, M.; Jazireian, P.; Safari, H.; Alizadeh-Sani, M.; Pourmand, M.R.; Azimi, T. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat. Microb. Pathog., 2019, 131, 259-269.
[http://dx.doi.org/10.1016/j.micpath.2019.04.026] [PMID: 31002964]
[25]
Herman-Bausier, P.; Pietrocola, G.; Foster, T.J.; Speziale, P.; Dufrêne, Y.F. Fibrinogen activates the capture of human plasminogen by staphylococcal fibronectin-binding proteins. MBio, 2017, 8(5), e01067-e17.
[http://dx.doi.org/10.1128/mBio.01067-17] [PMID: 28874469]
[26]
Tormo, M.Á.; Úbeda, C.; Martí, M.; Maiques, E.; Cucarella, C.; Valle, J.; Foster, T.J.; Lasa, Í.; Penadés, J.R. Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus. Microbiology (Reading), 2007, 153(Pt 6), 1702-1710.
[http://dx.doi.org/10.1099/mic.0.2006/005744-0] [PMID: 17526828]
[27]
Úbeda, C.; Tormo, M.Á.; Cucarella, C.; Trotonda, P.; Foster, T.J.; Lasa, I.; Penadés, J.R. Sip. An integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Mol. Microbiol., 2003, 49(1), 193-210.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03577.x] [PMID: 12823821]
[28]
Cucarella, C.; Tormo, M.Á.; Knecht, E.; Amorena, B.; Lasa, I.; Foster, T.J.; Penadés, J.R. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect. Immun., 2002, 70(6), 3180-3186.
[http://dx.doi.org/10.1128/IAI.70.6.3180-3186.2002] [PMID: 12011013]
[29]
Taglialegna, A.; Navarro, S.; Ventura, S.; Garnett, JA; Matthews, S.; Penades, JR Staphylococcal bap proteins build amyloid scaffold biofilm matrices in response to environmental signals. PLoS Pathogens, 2016, 12(6)e1005711 -ee.
[30]
Valle, J.; Latasa, C.; Gil, C.; Toledo-Arana, A.; Solano, C.; Penadés, J.R.; Lasa, I. Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog., 2012, 8(8)e1002843
[http://dx.doi.org/10.1371/journal.ppat.1002843] [PMID: 22876182]
[31]
Lasa, I.; Penadés, J.R. Bap: A family of surface proteins involved in biofilm formation. Res. Microbiol., 2006, 157(2), 99-107.
[http://dx.doi.org/10.1016/j.resmic.2005.11.003] [PMID: 16427771]
[32]
Geoghegan, J.A.; Corrigan, R.M.; Gruszka, D.T.; Speziale, P.; O’Gara, J.P.; Potts, J.R.; Foster, T.J. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J. Bacteriol., 2010, 192(21), 5663-5673.
[http://dx.doi.org/10.1128/JB.00628-10] [PMID: 20817770]
[33]
Formosa-Dague, C.; Speziale, P.; Foster, T.J.; Geoghegan, J.A.; Dufrêne, Y.F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc. Natl. Acad. Sci. USA, 2016, 113(2), 410-415.
[http://dx.doi.org/10.1073/pnas.1519265113] [PMID: 26715750]
[34]
Yonemoto, K.; Chiba, A.; Sugimoto, S.; Sato, C.; Saito, M.; Kinjo, Y.; Marumo, K.; Mizunoe, Y. Redundant and distinct roles of secreted protein eap and cell wall-anchored protein SasG in biofilm formation and pathogenicity of Staphylococcus aureus. Infect. Immun., 2019, 87(4), e00894-e18.
[http://dx.doi.org/10.1128/IAI.00894-18] [PMID: 30670553]
[35]
Schroeder, K; Jularic, M; Horsburgh, SM; Hirschhausen, N; Neumann, C Bertling, A Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PloS one, 2009, ():-e 4(10), e7567-ee.,
[36]
Zhu, Q.; Liu, B.; Sun, B. SpoVG modulates cell aggregation in Staphylococcus aureus by regulating sasC expression and extracellular DNA release. Appl. Environ. Microbiol., 2020, 86(15), e00591-e20.
[http://dx.doi.org/10.1128/AEM.00591-20] [PMID: 32444467]
[37]
Perkins, S.; Walsh, E.J.; Deivanayagam, C.C.; Narayana, S.V.; Foster, T.J.; Höök, M. Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus. J. Biol. Chem., 2001, 276(48), 44721-44728.
[http://dx.doi.org/10.1074/jbc.M106741200] [PMID: 11568183]
[38]
McAleese, F.M.; Walsh, E.J.; Sieprawska, M.; Potempa, J.; Foster, T.J. Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J. Biol. Chem., 2001, 276(32), 29969-29978.
[http://dx.doi.org/10.1074/jbc.M102389200] [PMID: 11399757]
[39]
Soltani, E.; Farrokhi, E.; Zamanzad, B.; Shahini Shams Abadi, M.; Deris, F.; Soltani, A.; Gholipour, A. Prevalence and distribution of adhesins and the expression of fibronectin-binding protein (FnbA and FnbB) among Staphylococcus aureus isolates from Shahrekord Hospitals. BMC Res. Notes, 2019, 12(1), 49.
[http://dx.doi.org/10.1186/s13104-019-4055-0] [PMID: 30670071]
[40]
Parastan, R.; Kargar, M.; Solhjoo, K.; Kafilzadeh, F. A synergistic association between adhesion-related genes and multidrug resistance patterns of Staphylococcus aureus isolates from different patients and healthy individuals. J. Glob. Antimicrob. Resist., 2020, 22, 379-385.
[http://dx.doi.org/10.1016/j.jgar.2020.02.025] [PMID: 32169685]
[41]
Kim, H.K.; Cheng, A.G.; Kim, H-Y.; Missiakas, D.M.; Schneewind, O. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J. Exp. Med., 2010, 207(9), 1863-1870.
[http://dx.doi.org/10.1084/jem.20092514] [PMID: 20713595]
[42]
Yeswanth, S.; Chaudhury, A.; Sarma, P.V.G.K. Quantitative expression analysis of SpA, FnbA and Rsp genes in Staphylococcus aureus: Actively associated in the formation of biofilms. Curr. Microbiol., 2017, 74(12), 1394-1403.
[http://dx.doi.org/10.1007/s00284-017-1331-x] [PMID: 28821946]
[43]
Thurlow, L.R.; Hanke, M.L.; Fritz, T.; Angle, A.; Aldrich, A.; Williams, S.H.; Engebretsen, I.L.; Bayles, K.W.; Horswill, A.R.; Kielian, T. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol., 2011, 186(11), 6585-6596.
[http://dx.doi.org/10.4049/jimmunol.1002794] [PMID: 21525381]
[44]
Boles, BR; Horswill, AR Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens, 2008, 4(4)e1000052 -ee.
[45]
Lauderdale, K.J.; Boles, B.R.; Cheung, A.L.; Horswill, A.R. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect. Immun., 2009, 77(4), 1623-1635.
[http://dx.doi.org/10.1128/IAI.01036-08] [PMID: 19188357]
[46]
Novick, R.P.; Projan, S.J.; Kornblum, J.; Ross, H.F.; Ji, G.; Kreiswirth, B.; Vandenesch, F.; Moghazeh, S. The Agr P2 operon: An autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet., 1995, 248(4), 446-458.
[http://dx.doi.org/10.1007/BF02191645] [PMID: 7565609]
[47]
Gor, V.; Takemura, A.J.; Nishitani, M.; Higashide, M.; Medrano Romero, V.; Ohniwa, R.L.; Morikawa, K. Finding of Agr phase variants in Staphylococcus aureus. MBio, 2019, 10(4), e00796-e19.
[http://dx.doi.org/10.1128/mBio.00796-19] [PMID: 31387900]
[48]
Kong, K-F.; Vuong, C.; Otto, M. Staphylococcus quorum sensing in biofilm formation and infection. Int. J. Med. Microbiol., 2006, 296(2-3), 133-139.
[http://dx.doi.org/10.1016/j.ijmm.2006.01.042] [PMID: 16487744]
[49]
Paluch, E.; Rewak-Soroczyńska, J.; Jędrusik, I.; Mazurkiewicz, E.; Jermakow, K. Prevention of biofilm formation by quorum quenching. Appl. Microbiol. Biotechnol., 2020, 104(5), 1871-1881.
[http://dx.doi.org/10.1007/s00253-020-10349-w] [PMID: 31927762]
[50]
Cheung, A.L.; Nishina, K.; Manna, A.C. SarA of Staphylococcus aureus binds to the sarA promoter to regulate gene expression. J. Bacteriol., 2008, 190(6), 2239-2243.
[http://dx.doi.org/10.1128/JB.01826-07] [PMID: 18178734]
[51]
Hagag, Y.A.; Elgaml, A.; Hassan, R.; Kenawy, H.I. Impact of sara mutation on immune system evasion and stress response in Staphylococcus aureus.,
[52]
Valle, J.; Toledo-Arana, A.; Berasain, C.; Ghigo, J-M.; Amorena, B.; Penadés, J.R.; Lasa, I. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol. Microbiol., 2003, 48(4), 1075-1087.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03493.x] [PMID: 12753197]
[53]
Cramton, S.E.; Ulrich, M.; Götz, F.; Döring, G. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun., 2001, 69(6), 4079-4085.
[http://dx.doi.org/10.1128/IAI.69.6.4079-4085.2001] [PMID: 11349079]
[54]
Liu, L.; Shen, X.; Yu, J.; Cao, X.; Zhan, Q.; Guo, Y.; Yu, F. Subinhibitory concentrations of fusidic acid may reduce the virulence of S. aureus by down-regulating sara and saers to reduce biofilm formation and α-toxin expression. Front. Microbiol., 2020, 11, 25.
[http://dx.doi.org/10.3389/fmicb.2020.00025] [PMID: 32117092]
[55]
Lin, M-H.; Shu, J-C.; Huang, H-Y.; Cheng, Y-C. Involvement of iron in biofilm formation by Staphylococcus aureus. PLoS One, 2012, 7(3)e34388
[http://dx.doi.org/10.1371/journal.pone.0034388] [PMID: 22479621]
[56]
Shukla, S.K.; Rao, T.S. Effect of calcium on Staphylococcus aureus biofilm architecture: A confocal laser scanning microscopic study. Colloids Surf. B Biointerfaces, 2013, 103, 448-454.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.003] [PMID: 23261565]
[57]
Rachid, S.; Ohlsen, K.; Wallner, U.; Hacker, J.; Hecker, M.; Ziebuhr, W. Alternative transcription factor ς(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol., 2000, 182(23), 6824-6826.
[http://dx.doi.org/10.1128/JB.182.23.6824-6826.2000] [PMID: 11073930]
[58]
Agostinho, A.; James, G.; Wazni, O.; Citron, M.; Wilkoff, B.D. Inhibition of Staphylococcus aureus biofilms by a novel antibacterial envelope for use with implantable cardiac devices. Clin. Transl. Sci., 2009, 2(3), 193-198.
[http://dx.doi.org/10.1111/j.1752-8062.2009.00123.x] [PMID: 20443892]
[59]
Vasu, D.; Kumar, P.S.; Prasad, U.V.; Swarupa, V.; Yeswanth, S.; Srikanth, L.; Sunitha, M.M.; Choudhary, A.; Sarma, P.V. Phosphorylation of Staphylococcus aureus protein-tyrosine kinase affects the function of glucokinase and biofilm formation. Iran. Biomed. J., 2017, 21(2), 94-105.
[http://dx.doi.org/10.18869/acadpub.ibj.21.2.94] [PMID: 27695030]
[60]
Fey, P.D.; Olson, M.E. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol., 2010, 5(6), 917-933.
[http://dx.doi.org/10.2217/fmb.10.56] [PMID: 20521936]
[61]
Beenken, K.E.; Dunman, P.M.; McAleese, F.; Macapagal, D.; Murphy, E.; Projan, S.J.; Blevins, J.S.; Smeltzer, M.S. Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol., 2004, 186(14), 4665-4684.
[http://dx.doi.org/10.1128/JB.186.14.4665-4684.2004] [PMID: 15231800]
[62]
Bore, E.; Langsrud, S.; Langsrud, Ø.; Rode, T.M.; Holck, A. Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology (Reading), 2007, 153(Pt 7), 2289-2303.
[http://dx.doi.org/10.1099/mic.0.2007/005942-0] [PMID: 17600073]
[63]
Shrestha, L.B.; Baral, R.; Khanal, B. Comparative study of antimicrobial resistance and biofilm formation among Gram-positive uropathogens isolated from community-acquired urinary tract infections and catheter-associated urinary tract infections. Infect. Drug Resist., 2019, 12, 957-963.
[http://dx.doi.org/10.2147/IDR.S200988] [PMID: 31118702]
[64]
Nasser, A.; Azimi, T.; Ostadmohammadi, S.; Ostadmohammadi, S. A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb. Pathog., 2020, 148104431
[http://dx.doi.org/10.1016/j.micpath.2020.104431] [PMID: 32801004]
[65]
McConoughey, S.J.; Howlin, R.; Granger, J.F.; Manring, M.M.; Calhoun, J.H.; Shirtliff, M.; Kathju, S.; Stoodley, P. Biofilms in periprosthetic orthopedic infections. Future Microbiol., 2014, 9(8), 987-1007.
[http://dx.doi.org/10.2217/fmb.14.64] [PMID: 25302955]
[66]
Darouiche, R.O. Treatment of infections associated with surgical implants. N. Engl. J. Med., 2004, 350(14), 1422-1429.
[http://dx.doi.org/10.1056/NEJMra035415] [PMID: 15070792]
[67]
Cuesta, A.I.; Jewtuchowicz, V.; Brusca, M.I.; Nastri, M.L.; Rosa, A.C. Prevalence of Staphylococcus spp. and Candida spp. in the oral cavity and periodontal pockets of periodontal disease patients. Acta Odontol. Latinoam.,, 2010, 23(1), 20-26.
[PMID: 20645638]
[68]
Schierle, C.F.; De la Garza, M.; Mustoe, T.A.; Galiano, R.D. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen., 2009, 17(3), 354-359.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00489.x] [PMID: 19660043]
[69]
Teixeira, V.; Feio, M.J.; Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res., 2012, 51(2), 149-177.
[http://dx.doi.org/10.1016/j.plipres.2011.12.005] [PMID: 22245454]
[70]
Mandell, J.B.A.; A Koch, J.; Deslouches, B.; Urish, K.L. Direct antimicrobial activity of cationic amphipathic peptide WLBU2 against Staphylococcus aureus biofilms is enhanced in physiologic buffered saline. J. Orthop. Res., 2020, 38(12), 2657-2663.
[http://dx.doi.org/10.1002/jor.24765] [PMID: 32484998]
[71]
Li, D.; Chen, S.; Dou, H.; Wu, W.; Liu, Q.; Zhang, L.; Shen, Y.; Shu, G.; Yuan, Z.; Lin, J.; Zhang, W.; Peng, G.; Zhong, Z.; Yin, L.; Fu, H. Preparation of cefquinome sulfate cationic proliposome and evaluation of its efficacy on Staphylococcus aureus biofilm. Colloids Surf. B Biointerfaces, 2019, 182110323
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.053] [PMID: 31323449]
[72]
Ran, H-H.; Cheng, X.; Bao, Y-W.; Hua, X-W.; Gao, G.; Zhang, X.; Jiang, Y.W.; Zhu, Y.X.; Wu, F.G. Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(33), 5104-5114.
[http://dx.doi.org/10.1039/C9TB00681H] [PMID: 31432881]
[73]
Richter, K.; Van den Driessche, F.; Coenye, T. Innovative approaches to treat Staphylococcus aureus biofilm-related infections. Essays Biochem., 2017, 61(1), 61-70.
[http://dx.doi.org/10.1042/EBC20160056] [PMID: 28258230]
[74]
Lakshmi, S.A.; Bhaskar, J.P.; Krishnan, V.; Sethupathy, S.; Pandipriya, S.; Aruni, W.; Pandian, S.K. Inhibition of biofilm and biofilm-associated virulence factor production in methicillin-resistant Staphylococcus aureus by docosanol. J. Biotechnol., 2020, 317, 59-69.
[http://dx.doi.org/10.1016/j.jbiotec.2020.04.014] [PMID: 32353392]
[75]
Valliammai, A.; Selvaraj, A.; Yuvashree, U.; Aravindraja, C.; Karutha Pandian, S. sarA-dependent antibiofilm activity of thymol enhances the antibacterial efficacy of rifampicin against Staphylococcus aureus. Front. Microbiol., 2020, 11, 1744.
[http://dx.doi.org/10.3389/fmicb.2020.01744] [PMID: 32849374]
[76]
Hogan, S.; Zapotoczna, M.; Stevens, N.T.; Humphreys, H.; O’Gara, J.P.; O’Neill, E. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J. Hosp. Infect., 2017, 96(2), 177-182.
[http://dx.doi.org/10.1016/j.jhin.2017.02.008] [PMID: 28351512]
[77]
Mnif, S.; Jardak, M.; Graiet, I.; Abid, S.; Driss, D.; Kharrat, N. The novel cationic cell-penetrating peptide PEP-NJSM is highly active against Staphylococcus epidermidis biofilm. Int. J. Biol. Macromol., 2019, 125, 262-269.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.008] [PMID: 30521892]
[78]
Manukumar, H.M.; Chandrasekhar, B.; Rakesh, K.P.; Ananda, A.P.; Nandhini, M.; Lalitha, P.; Sumathi, S.; Qin, H.L.; Umesha, S. Novel T-C@AgNPs mediated biocidal mechanism against biofilm associated methicillin-resistant Staphylococcus aureus (Bap-MRSA) 090, cytotoxicity and its molecular docking studies. MedChemComm, 2017, 8(12), 2181-2194.
[http://dx.doi.org/10.1039/C7MD00486A] [PMID: 30108735]
[79]
Shukla, S.K.; Rao, T.S. Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins. Indian J. Med. Res., 2017, 146(Suppl.), S1-S8.
[http://dx.doi.org/10.4103/ijmr.IJMR_410_15] [PMID: 29205189]
[80]
Rogers, S.A.; Huigens, R.W., III; Melander, C. A 2-aminobenzimidazole that inhibits and disperses gram-positive biofilms through a zinc-dependent mechanism. J. Am. Chem. Soc., 2009, 131(29), 9868-9869.
[http://dx.doi.org/10.1021/ja9024676] [PMID: 19621946]
[81]
Reyes, S.; Huigens, R.W., III; Su, Z.; Simon, M.L.; Melander, C. Synthesis and biological activity of 2-aminoimidazole triazoles accessed by Suzuki-Miyaura cross-coupling. Org. Biomol. Chem., 2011, 9(8), 3041-3049.
[http://dx.doi.org/10.1039/c0ob00925c] [PMID: 21394327]
[82]
Glatthardt, T.; Campos, J.C.M.; Chamon, R.C.; de Sá Coimbra, T.F.; Rocha, G.A.; de Melo, M.A.F.; Parente, T.E.; Lobo, L.A.; Antunes, L.C.M.; Dos Santos, K.R.N.; Ferreira, R.B.R. Small molecules produced by commensal Staphylococcus epidermidis disrupt formation of biofilms by Staphylococcus aureus. Appl. Environ. Microbiol., 2020, 86(5), e02539-e19.
[http://dx.doi.org/10.1128/AEM.02539-19] [PMID: 31862721]
[83]
Qian, Y.; Xia, L.; Wei, L.; Li, D.; Jiang, W. Artesunate inhibits Staphylococcus aureus biofilm formation by reducing alpha-toxin synthesis. Arch. Microbiol., 2020, 1-11.
[http://dx.doi.org/10.1007/s00203-020-02077-6] [PMID: 33040179]
[84]
Lee, J-H.; Kim, Y-G.; Yong Ryu, S.; Lee, J. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci. Rep., 2016, 6, 19267.
[http://dx.doi.org/10.1038/srep19267] [PMID: 26763935]
[85]
Kota, R.K.; Reddy, P.N.; Sreerama, K. Application of IgY antibodies against staphylococcal protein A (SpA) of Staphylococcus aureus for detection and prophylactic functions. Appl. Microbiol. Biotechnol., 2020, 104(21), 9387-9398.
[http://dx.doi.org/10.1007/s00253-020-10912-5] [PMID: 32960294]
[86]
Arciola, C.R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J.W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012, 33(26), 5967-5982.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.031] [PMID: 22695065]
[87]
Li, H.; Goh, B.N.; Teh, W.K.; Jiang, Z.; Goh, J.P.Z.; Goh, A.; Wu, G.; Hoon, S.S.; Raida, M.; Camattari, A.; Yang, L.; O’Donoghue, A.J.; Dawson, T.L. Jr Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol., 2018, 138(5), 1137-1145.
[http://dx.doi.org/10.1016/j.jid.2017.11.034] [PMID: 29246799]
[88]
Shanks, R.M.Q.; Sargent, J.L.; Martinez, R.M.; Graber, M.L.; O’Toole, G.A. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol. Dial. Transplant., 2006, 21(8), 2247-2255.
[http://dx.doi.org/10.1093/ndt/gfl170] [PMID: 16627606]
[89]
Raad, I.I.; Fang, X.; Keutgen, X.M.; Jiang, Y.; Sherertz, R.; Hachem, R. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr. Opin. Infect. Dis., 2008, 21(4), 385-392.
[http://dx.doi.org/10.1097/QCO.0b013e32830634d8] [PMID: 18594291]
[90]
Raad, I.; Chatzinikolaou, I.; Chaiban, G.; Hanna, H.; Hachem, R.; Dvorak, T.; Cook, G.; Costerton, W. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob. Agents Chemother., 2003, 47(11), 3580-3585.
[http://dx.doi.org/10.1128/AAC.47.11.3580-3585.2003] [PMID: 14576121]
[91]
Ibrahim, Y.M.; Abouwarda, A.M.; Nasr, T.; Omar, F.A.; Bondock, S. Antibacterial and anti-quorum sensing activities of a substituted thiazole derivative against methicillin-resistant Staphylococcus aureus and other multidrug-resistant bacteria. Microb. Pathog., 2020, 149104500
[http://dx.doi.org/10.1016/j.micpath.2020.104500] [PMID: 32926996]
[92]
Parlet, C.P.; Kavanaugh, J.S.; Crosby, H.A.; Raja, H.A.; El Elimat, T.; Todd, D.A.; Pearce, C.J.; Cech, N.B.; Oberlies, N.H.; Horswill, A.R. Apicidin attenuates MRSA virulence through quorum-sensing inhibition and enhanced host defense. Cell Rep., 2019, 27(1), 187-198.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.03.018] [PMID: 30943400]
[93]
Greenberg, M.; Kuo, D.; Jankowsky, E.; Long, L.; Hager, C.; Bandi, K.; Ma, D.; Manoharan, D.; Shoham, Y.; Harte, W.; Ghannoum, M.A.; Shoham, M. Small-molecule AgrA inhibitors F12 and F19 act as antivirulence agents against Gram-positive pathogens. Sci. Rep., 2018, 8(1), 14578.
[http://dx.doi.org/10.1038/s41598-018-32829-w] [PMID: 30275455]
[94]
Bouyahya, A.; Dakka, N.; Et-Touys, A.; Abrini, J.; Bakri, Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac. J. Trop. Med., 2017, 10(8), 729-743.
[http://dx.doi.org/10.1016/j.apjtm.2017.07.021] [PMID: 28942821]
[95]
Huber, B.; Eberl, L.; Feucht, W.; Polster, J. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z. Natforsch. C J. Biosci., 2003, 58(11-12), 879-884.
[http://dx.doi.org/10.1515/znc-2003-11-1224] [PMID: 14713169]
[96]
Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 2012, 28(7), 755-767.
[http://dx.doi.org/10.1080/08927014.2012.706751] [PMID: 22823343]
[97]
Chusri, S.; Phatthalung, P.N.; Voravuthikunchai, S.P. Anti-biofilm activity of Quercus infectoria G. Olivier against methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol., 2012, 54(6), 511-517.
[http://dx.doi.org/10.1111/j.1472-765X.2012.03236.x] [PMID: 22486208]
[98]
Brackman, G.; Breyne, K.; De Rycke, R.; Vermote, A.; Van Nieuwerburgh, F.; Meyer, E.; Van Calenbergh, S.; Coenye, T. The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci. Rep., 2016, 6, 20321.
[http://dx.doi.org/10.1038/srep20321] [PMID: 26828772]
[99]
Campbell, M.; Cho, C-Y.; Ho, A.; Huang, J-Y.; Martin, B.; Gilbert, E.S. 4-Ethoxybenzoic acid inhibits Staphylococcus aureus biofilm formation and potentiates biofilm sensitivity to vancomycin. Int. J. Antimicrob. Agents, 2020, 56(3)106086
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106086] [PMID: 32663508]
[100]
Nakayama, J.; Uemura, Y.; Nishiguchi, K.; Yoshimura, N.; Igarashi, Y.; Sonomoto, K. Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria. Antimicrob. Agents Chemother., 2009, 53(2), 580-586.
[http://dx.doi.org/10.1128/AAC.00995-08] [PMID: 19015326]
[101]
Dong, Y-H.; Xu, J-L.; Li, X-Z.; Zhang, L-H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3526-3531.
[http://dx.doi.org/10.1073/pnas.97.7.3526] [PMID: 10716724]
[102]
Sully, E.K.; Malachowa, N.; Elmore, B.O.; Alexander, S.M.; Femling, J.K.; Gray, B.M.; DeLeo, F.R.; Otto, M.; Cheung, A.L.; Edwards, B.S.; Sklar, L.A.; Horswill, A.R.; Hall, P.R.; Gresham, H.D. Selective chemical inhibition of Agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog., 2014, 10(6)e1004174
[http://dx.doi.org/10.1371/journal.ppat.1004174] [PMID: 24945495]
[103]
Paharik, A.E.; Parlet, C.P.; Chung, N.; Todd, D.A.; Rodriguez, E.I.; Van Dyke, M.J.; Cech, N.B.; Horswill, A.R. Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe, 2017, 22(6), 746-756.e5.
[http://dx.doi.org/10.1016/j.chom.2017.11.001] [PMID: 29199097]
[104]
Vijayakumar, K.; Bharathidasan, V.; Manigandan, V.; Jeyapragash, D. Quebrachitol inhibits biofilm formation and virulence production against methicillin-resistant Staphylococcus aureus. Microb. Pathog., 2020, 149104286
[http://dx.doi.org/10.1016/j.micpath.2020.104286] [PMID: 32502632]
[105]
Brown, M.M.; Kwiecinski, J.M.; Cruz, L.M.; Shahbandi, A.; Todd, D.A.; Cech, N.B.; Horswill, A.R. Novel peptide from commensal Staphylococcus simulans blocks methicillin-resistant Staphylococcus aureus quorum sensing and protects host skin from damage. Antimicrob. Agents Chemother., 2020, 64(6), e00172-e20.
[http://dx.doi.org/10.1128/AAC.00172-20] [PMID: 32253213]
[106]
Liu, C.; Zhao, Y.; Su, W.; Chai, J.; Xu, L.; Cao, J.; Liu, Y. Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(20), 4395-4401.
[http://dx.doi.org/10.1039/D0TB00441C] [PMID: 32400814]
[107]
Okshevsky, M.; Regina, V.R.; Meyer, R.L. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol., 2015, 33, 73-80.
[http://dx.doi.org/10.1016/j.copbio.2014.12.002] [PMID: 25528382]
[108]
Nasser, A.; Azizian, R.; Tabasi, M.; Khezerloo, J.K.; Heravi, F.S.; Kalani, M.T.; Sadeghifard, N.; Amini, R.; Pakzad, I.; Radmanesh, A.; Jalilian, F.A. Specification of bacteriophage isolated against clinical methicillin-resistant Staphylococcus aureus. Osong Public Health Res. Perspect., 2019, 10(1), 20-24.
[http://dx.doi.org/10.24171/j.phrp.2019.10.1.05] [PMID: 30847267]
[109]
Reza, A.; Farid, A.J.; Zamberi, S.; Amini, R.; Sajedeh, K.; Ahmad, N. Dynamics of bacteriophages as a promising antibiofilm agents. J. Pure Appl. Microbiol., 2014, 8(2), 1015-1019.
[110]
Rezaei, F.; Nasser, A.; Azizi Jalilian, F.; Hobbs, Z.; Azizian, R. Using phage as a highly specific antibiotic alternative against methicillin resistance Staphylococcus aureus (MRSA). Biosci. Biotechnol. Res. Asia, 2014, 11(2), 523-529.
[http://dx.doi.org/10.13005/bbra/1302]
[111]
Cha, Y.; Son, B.; Ryu, S. Effective removal of staphylococcal biofilms on various food contact surfaces by Staphylococcus aureus phage endolysin LysCSA13. Food Microbiol., 2019, 84103245
[http://dx.doi.org/10.1016/j.fm.2019.103245] [PMID: 31421782]
[112]
Schuch, R.; Khan, B.K.; Raz, A.; Rotolo, J.A.; Wittekind, M. Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob. Agents Chemother., 2017, 61(7), e02666-e16.
[http://dx.doi.org/10.1128/AAC.02666-16] [PMID: 28461319]
[113]
Kifelew, L.G.; Warner, M.S.; Morales, S.; Thomas, N.; Gordon, D.L.; Mitchell, J.G.; Speck, P.G. Efficacy of lytic phage cocktails on Staphylococcus aureus and Pseudomonas aeruginosa in mixed-species planktonic cultures and biofilms. Viruses, 2020, 12(5), 559.
[http://dx.doi.org/10.3390/v12050559] [PMID: 32443619]
[114]
Bouchart, F.; Vidal, O.; Lacroix, J-M.; Spriet, C.; Chamary, S.; Brutel, A.; Hornez, J.C. 3D printed bioceramic for phage therapy against bone nosocomial infections. Mater. Sci. Eng. C, 2020, 111110840
[http://dx.doi.org/10.1016/j.msec.2020.110840] [PMID: 32279737]
[115]
Tkhilaishvili, T.; Wang, L.; Perka, C.; Trampuz, A.; Gonzalez Moreno, M. Using bacteriophages as a trojan horse to the killing of dual-species biofilm formed by Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus. Front. Microbiol., 2020, 11, 695.
[http://dx.doi.org/10.3389/fmicb.2020.00695] [PMID: 32351494]
[116]
Dickey, J.; Perrot, V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One, 2019, 14(1)e0209390
[http://dx.doi.org/10.1371/journal.pone.0209390] [PMID: 30650088]
[117]
Kumaran, D.; Taha, M.; Yi, Q.; Ramirez-Arcos, S.; Diallo, J-S.; Carli, A.; Abdelbary, H. Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front. Microbiol., 2018, 9, 127.
[http://dx.doi.org/10.3389/fmicb.2018.00127] [PMID: 29459853]
[118]
Tkhilaishvili, T.; Lombardi, L.; Klatt, A-B.; Trampuz, A.; Di Luca, M. Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int. J. Antimicrob. Agents, 2018, 52(6), 842-853.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.09.006] [PMID: 30236955]
[119]
Dong, J.; Fang, D.; Zhang, L.; Shan, Q.; Huang, Y. Gallium-doped titania nanotubes elicit anti-bacterial efficacy in vivo against Escherichia coli and Staphylococcus aureus biofilm. Materialia., 2019, 5100209
[http://dx.doi.org/10.1016/j.mtla.2019.100209]
[120]
Grunenwald, C.M.; Bennett, M.R.; Skaar, E.P. Nonconventional therapeutics against Staphylococcus aureus; Gram‐Positive Pathogens, 2019, pp. 776-789.
[121]
Dong, G.; Liu, H.; Yu, X.; Zhang, X.; Lu, H.; Zhou, T.; Cao, J. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat. Prod. Res., 2018, 32(18), 2225-2228.
[http://dx.doi.org/10.1080/14786419.2017.1366485] [PMID: 28826250]
[122]
Ghaly, M.F.; Shaheen, A.A.; Bouhy, A.M.; Bendary, M.M. Alternative therapy to manage otitis media caused by multidrug-resistant fungi. Arch. Microbiol., 2020, 202(5), 1231-1240.
[http://dx.doi.org/10.1007/s00203-020-01832-z] [PMID: 32108246]
[123]
Neopane, P.; Nepal, H.P.; Shrestha, R.; Uehara, O.; Abiko, Y. in vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med., 2018, 11, 25-32.
[http://dx.doi.org/10.2147/IJGM.S153268] [PMID: 29403304]
[124]
Abd El-Hamid, M.I.; Y El-Naenaeey, E.S.; M Kandeel, T.; Hegazy, W.A.H.; Mosbah, R.A.; Nassar, M.S.; Bakhrebah, M.A.; Abdulaal, W.H.; Alhakamy, N.A.; Bendary, M.M. Promising antibiofilm agents: Recent breakthrough against biofilm producing methicillin-resistant Staphylococcus aureus. Antibiotics (Basel), 2020, 9(10), 667.
[http://dx.doi.org/10.3390/antibiotics9100667] [PMID: 33022915]
[125]
Zhou, L.; Zhang, Y.; Ge, Y.; Zhu, X.; Pan, J. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front. Microbiol., 2020, 11589640
[http://dx.doi.org/10.3389/fmicb.2020.589640] [PMID: 33178172]
[126]
Tasia, W.; Lei, C.; Cao, Y.; Ye, Q.; He, Y.; Xu, C. Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale, 2020, 12(4), 2328-2332.
[http://dx.doi.org/10.1039/C9NR08467C] [PMID: 31808770]
[127]
Karygianni, L.; Attin, T.; Thurnheer, T. Combined DNase and proteinase treatment interferes with composition and structural integrity of multispecies oral biofilms. J. Clin. Med., 2020, 9(4), 983.
[http://dx.doi.org/10.3390/jcm9040983] [PMID: 32244784]
[128]
Duc, H.M.; Son, H.M.; Ngan, P.H.; Sato, J.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus. Appl. Microbiol. Biotechnol., 2020, 104(11), 5145-5158.
[http://dx.doi.org/10.1007/s00253-020-10581-4] [PMID: 32248441]
[129]
Wang, Y.; Tan, X.; Xi, C.; Phillips, K.S. Removal of Staphylococcus aureus from skin using a combination antibiofilm approach. NPJ Biofilms Microbiomes, 2018, 4(1), 16.
[http://dx.doi.org/10.1038/s41522-018-0060-7] [PMID: 30155267]
[130]
Tschang, C-Y.T.; Thoma, M. Biofilm inactivation by synergistic treatment of atmospheric pressure plasma and chelating agents. Clin. Plasma Med., 2019, 15100091
[http://dx.doi.org/10.1016/j.cpme.2019.100091]
[131]
Coraça-Huber, D.C.; Dichtl, S.; Steixner, S.; Nogler, M.; Weiss, G. Iron chelation destabilizes bacterial biofilms and potentiates the antimicrobial activity of antibiotics against coagulase-negative Staphylococci. Pathog. Dis., 2018, 76(5)fty052
[http://dx.doi.org/10.1093/femspd/fty052] [PMID: 29860413]
[132]
Vinuesa, V.; McConnell, M.J. Recent advances in iron chelation and gallium-based therapies for antibiotic resistant bacterial infections. Int. J. Mol. Sci., 2021, 22(6), 2876.
[http://dx.doi.org/10.3390/ijms22062876] [PMID: 33809032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy