Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Organic Cation Transporters are Involved in Fluoxetine Transport Across the Blood-Brain Barrier In Vivo and In Vitro.

Author(s): Min Wang, Yingying Sun, Bingying Hu, Zhisheng He, Shanshan Chen, Dake Qi, Hai An and Yang Wei*

Volume 19, Issue 4, 2022

Published on: 11 January, 2022

Page: [508 - 517] Pages: 10

DOI: 10.2174/1567201818666210708122326

Price: $65

Abstract

Background: The research and development of drugs for the treatment of central nervous system diseases faces many challenges at present. One of the most important questions to be answered is, how does the drug cross the blood-brain barrier to get to the target site for pharmacological action. Fluoxetine is widely used in clinical antidepressant therapy. However, the mechanism by which fluoxetine passes through the BBB also remains unclear. Under physiological pH conditions, fluoxetine is an organic cation with a relatively small molecular weight (<500), which is in line with the substrate characteristics of organic cation transporters (OCTs). Therefore, this study aimed to investigate the interaction of fluoxetine with OCTs at the BBB and BBB-associated efflux transporters. This is of great significance for fluoxetine to better treat depression. Moreover, it can provide a theoretical basis for clinical drug combination.

Methods: In vitro BBB model was developed using human brain microvascular endothelial cells (hCMEC/D3), and the cellular accumulation was tested in the presence or absence of transporter inhibitors. In addition, an in vivo trial was performed in rats to investigate the effect of OCTs on the distribution of fluoxetine in the brain tissue. Fluoxetine concentration was determined by a validated UPLC-MS/MS method.

Results: The results showed that amantadine (an OCT1/2 inhibitor) and prazosin (an OCT1/3 inhibitor) significantly decreased the cellular accumulation of fluoxetine (P <.001). Moreover, we found that N-methylnicotinamide (an OCT2 inhibitor) significantly inhibited the cellular uptake of 100 and 500 ng/mL fluoxetine (P <.01 and P <.05 respectively). In contrast, corticosterone (an OCT3 inhibitor) only significantly inhibited the cellular uptake of 1000 ng/mL fluoxetine (P <.05). The P-glycoprotein (P-gp) inhibitor, verapamil, and the multidrug resistance associated proteins (MRPs) inhibitor, MK571, significantly decreased the cellular uptake of fluoxetine. However, intracellular accumulation of fluoxetine was not significantly changed when fluoxetine was incubated with the breast cancer resistance protein (BCRP) inhibitor Ko143. Furthermore, in vivo experiments proved that corticosterone and prazosin significantly inhibited the brain-plasma ratio of fluoxetine at 5.5 h and 12 h, respectively.

Conclusion: OCTs might play a significant role in the transport of fluoxetine across the BBB. In addition, P-gp, BCRP, and MRPs seemed not to mediate the efflux transport of fluoxetine.

Keywords: Fluoxetine, blood-brain barrier, hCMEC/D3, OCTs, amantadine, prazosin.

« Previous
Graphical Abstract

[1]
O’Brien, F.E.; Dinan, T.G.; Griffin, B.T.; Cryan, J.F. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br. J. Pharmacol., 2012, 165(2), 289-312.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01557.x] [PMID: 21718296]
[2]
Rahman, S.; Alzarea, S. Glial mechanisms underlying major depressive disorder: Potential therapeutic opportunities. Prog. Mol. Biol. Transl. Sci., 2019, 167, 159-178.
[http://dx.doi.org/10.1016/bs.pmbts.2019.06.010] [PMID: 31601403]
[3]
Kato, M.; Chang, C.M. Augmentation treatments with second-generation antipsychotics to antidepressants in treatment-resistant depression. CNS Drugs, 2013, 27(1)(Suppl. 1), S11-S19.
[http://dx.doi.org/10.1007/s40263-012-0029-7] [PMID: 23709358]
[4]
Selph, S.S.; McDonagh, M.S. Depression in children and adolescents: evaluation and treatment. Am. Fam. Physician, 2019, 100(10), 609-617.
[PMID: 31730312]
[5]
Feng, S.; Zheng, L.; Tang, S.; Gu, J.; Jiang, X.; Wang, L. In-vitro and in situ assessment of the efflux of five antidepressants by breast cancer resistance protein. J. Pharm. Pharmacol., 2019, 71(7), 1133-1141.
[http://dx.doi.org/10.1111/jphp.13100] [PMID: 31037729]
[6]
Feng, B.; Mills, J.B.; Davidson, R.E.; Mireles, R.J.; Janiszewski, J.S.; Troutman, M.D.; de Morais, S.M. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab. Dispos., 2008, 36(2), 268-275.
[http://dx.doi.org/10.1124/dmd.107.017434] [PMID: 17962372]
[7]
Couroussé, T.; Gautron, S. Role of organic cation transporters (OCTs) in the brain. Pharmacol. Ther., 2015, 146, 94-103.
[http://dx.doi.org/10.1016/j.pharmthera.2014.09.008] [PMID: 25251364]
[8]
Boxberger, K.H.; Hagenbuch, B.; Lampe, J.N. Ligand-dependent modulation of hOCT1 transport reveals discrete ligand binding sites within the substrate translocation channel. Biochem. Pharmacol., 2018, 156, 371-384.
[http://dx.doi.org/10.1016/j.bcp.2018.08.028] [PMID: 30138624]
[9]
Sekhar, G.N.; Georgian, A.R.; Sanderson, L.; Vizcay-Barrena, G.; Brown, R.C.; Muresan, P.; Fleck, R.A.; Thomas, S.A. Organic cation transporter 1 (OCT1) is involved in pentamidine transport at the human and mouse blood-brain barrier (BBB). PLoS One, 2017, 12(3), e0173474.
[http://dx.doi.org/10.1371/journal.pone.0173474] [PMID: 28362799]
[10]
Cong, J.; Ruan, Y.; Lyu, Q.; Qin, X.; Qi, X.; Liu, W.; Kang, L.; Zhang, J.; Wu, C. A proton-coupled organic cation antiporter is involved in the blood-brain barrier transport of Aconitum alkaloids. J. Ethnopharmacol., 2020, 252, 112581.
[http://dx.doi.org/10.1016/j.jep.2020.112581] [PMID: 31968215]
[11]
Carl, S.M.; Lindley, D.J.; Das, D.; Couraud, P.O.; Weksler, B.B.; Romero, I.; Mowery, S.A.; Knipp, G.T. ABC and SLC transporter expression and proton oligopeptide transporter (POT) mediated permeation across the human blood--brain barrier cell line, hCMEC/D3 [corrected]. Mol. Pharm., 2010, 7(4), 1057-1068.
[http://dx.doi.org/10.1021/mp900178j] [PMID: 20524699]
[12]
Sommi, R.W.; Crismon, M.L.; Bowden, C.L. Fluoxetine: a serotonin-specific, second-generation antidepressant. Pharmacotherapy, 1987, 7(1), 1-15.
[http://dx.doi.org/10.1002/j.1875-9114.1987.tb03496.x] [PMID: 3554156]
[13]
Mostert, J.P.; Koch, M.W.; Heerings, M.; Heersema, D.J.; De Keyser, J. Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci. Ther., 2008, 14(2), 153-164.
[http://dx.doi.org/10.1111/j.1527-3458.2008.00040.x] [PMID: 18482027]
[14]
O’Brien, F.E.; Clarke, G.; Dinan, T.G.; Cryan, J.F.; Griffin, B.T. Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood-brain barrier permeability. Int. J. Neuropsychopharmacol., 2013, 16(10), 2259-2272.
[http://dx.doi.org/10.1017/S1461145713000692] [PMID: 23931269]
[15]
Haenisch, B.; Drescher, E.; Thiemer, L.; Xin, H.; Giros, B.; Gautron, S.; Bönisch, H. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(10), 1017-1023.
[http://dx.doi.org/10.1007/s00210-012-0781-8] [PMID: 22806583]
[16]
Ahlin, G.; Karlsson, J.; Pedersen, J.M.; Gustavsson, L.; Larsson, R.; Matsson, P.; Norinder, U.; Bergström, C.A.S.; Artursson, P. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J. Med. Chem., 2008, 51(19), 5932-5942.
[http://dx.doi.org/10.1021/jm8003152] [PMID: 18788725]
[17]
Cho, S.K.; Kim, C.O.; Park, E.S.; Chung, J.Y. Verapamil decreases the glucose-lowering effect of metformin in healthy volunteers. Br. J. Clin. Pharmacol., 2014, 78(6), 1426-1432.
[http://dx.doi.org/10.1111/bcp.12476] [PMID: 25060604]
[18]
Leier, I.; Jedlitschky, G.; Buchholz, U.; Cole, S.P.; Deeley, R.G.; Keppler, D. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem., 1994, 269(45), 27807-27810.
[http://dx.doi.org/10.1016/S0021-9258(18)46856-1] [PMID: 7961706]
[19]
Reid, G.; Wielinga, P.; Zelcer, N.; De Haas, M.; Van Deemter, L.; Wijnholds, J.; Balzarini, J.; Borst, P. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol. Pharmacol., 2003, 63(5), 1094-1103.
[http://dx.doi.org/10.1124/mol.63.5.1094] [PMID: 12695538]
[20]
Yamazaki, M.; Li, B.; Louie, S.W.; Pudvah, N.T.; Stocco, R.; Wong, W.; Abramovitz, M.; Demartis, A.; Laufer, R.; Hochman, J.H.; Prueksaritanont, T.; Lin, J.H. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica, 2005, 35(7), 737-753.
[http://dx.doi.org/10.1080/00498250500136676] [PMID: 16316932]
[21]
Tfelt-Hansen, P.; Tfelt-Hansen, J. Verapamil for cluster headache. Clinical pharmacology and possible mode of action. Headache, 2009, 49(1), 117-125.
[http://dx.doi.org/10.1111/j.1526-4610.2008.01298.x] [PMID: 19125880]
[22]
Watson, C.P.; Dogruel, M.; Mihoreanu, L.; Begley, D.J.; Weksler, B.B.; Couraud, P.O.; Romero, I.A.; Thomas, S.A. The transport of nifurtimox, an anti-trypanosomal drug, in an in vitro model of the human blood-brain barrier: evidence for involvement of breast cancer resistance protein. Brain Res., 2012, 1436, 111-121.
[http://dx.doi.org/10.1016/j.brainres.2011.11.053] [PMID: 22200378]
[23]
Poller, B.; Gutmann, H.; Krähenbühl, S.; Weksler, B.; Romero, I.; Couraud, P.O.; Tuffin, G.; Drewe, J.; Huwyler, J. The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J. Neurochem., 2008, 107(5), 1358-1368.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05730.x] [PMID: 19013850]
[24]
Hayer-Zillgen, M.; Brüss, M.; Bönisch, H. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br. J. Pharmacol., 2002, 136(6), 829-836.
[http://dx.doi.org/10.1038/sj.bjp.0704785] [PMID: 12110607]
[25]
Dresser, M.J.; Leabman, M.K.; Giacomini, K.M. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci., 2001, 90(4), 397-421.
[http://dx.doi.org/10.1002/1520-6017(200104)90:4<397::AID-JPS1000>3.0.CO;2-D] [PMID: 11170032]
[26]
Gorboulev, V.; Ulzheimer, J.C.; Akhoundova, A.; Ulzheimer-Teuber, I.; Karbach, U.; Quester, S.; Baumann, C.; Lang, F.; Busch, A.E.; Koepsell, H. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol., 1997, 16(7), 871-881.
[http://dx.doi.org/10.1089/dna.1997.16.871] [PMID: 9260930]
[27]
Gasser, P.J.; Lowry, C.A.; Orchinik, M. Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: Potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J. Neurosci., 2006, 26(34), 8758-8766.
[http://dx.doi.org/10.1523/JNEUROSCI.0570-06.2006] [PMID: 16928864]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy