Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Cardiovascular Benefits of Caffeinated Beverages: Real or Surreal? “Metron Ariston - All in Moderation”

Author(s): Antonis A. Manolis, Theodora A. Manolis , Evdoxia J. Apostolopoulos , Helen Melita and Antonis S. Manolis*

Volume 29, Issue 13, 2022

Published on: 08 July, 2021

Page: [2235 - 2260] Pages: 26

DOI: 10.2174/0929867328666210708091709

Price: $65

Abstract

Caffeinated beverages are the most widely consumed beverages globally with coffee and tea as the two most prominent sources of caffeine. Caffeine content varies across different types of beverages. In addition to caffeine, coffee and tea have other biologically active compounds, and all may affect general and cardiovascular (CV) health. Moderate caffeine consumption (<300-400 mg/day), regardless of the source, is considered safe by both European and US Health Authorities, as it is not associated with adverse health and CV effects, while it may confer certain health benefits. There is a nonlinear association between coffee ingestion and CV risk; moderate coffee drinking is inversely significantly associated with CV risk, with the highest benefit at 2-4 cups per day, while heavy coffee drinking might confer increased risk. With regards to tea, due to a lower caffeine content per serving, its consumption is only limited by the total caffeine daily intake. Both these caffeinated beverages, coffee and tea, have additional phenolic compounds, with anti-oxidant and anti-inflammatory activities, which confer cardioprotective benefits. Of the several coffee compounds, chloroacetic acids and melanoidins offer such beneficial effects, while diterpenes may have unfavorable effects on lipids. Most of the tea ingredients (polyphenols) are cardioprotective. A major concern relates to energy drinks with their much higher caffeine content which puts individuals, especially adolescents and young adults, at high health and CV risk. All these issues are herein discussed, including pertinent studies and meta-analyses, pathogenetic mechanisms involved and relevant recommendations from health authorities.

Keywords: Coffee, caffeine, caffeinated beverages, cardiovascular disease, cardiac arrhythmias, atrial fibrillation, heart failure, hypertension.

[1]
Heckman, M.A.; Weil, J.; Gonzalez de Mejia, E. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci., 2010, 75(3), R77-R87.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01561.x] [PMID: 20492310]
[2]
Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food Chem. Toxicol., 2014, 63, 136-142.
[http://dx.doi.org/10.1016/j.fct.2013.10.042] [PMID: 24189158]
[3]
Knight, C.A.; Knight, I.; Mitchell, D.C.; Zepp, J.E. Beverage caffeine intake in US consumers and subpopulations of interest: Estimates from the Share of Intake Panel survey. Food Chem. Toxicol., 2004, 42(12), 1923-1930.
[http://dx.doi.org/10.1016/j.fct.2004.05.002] [PMID: 15500929]
[4]
Frary, C.D.; Johnson, R.K.; Wang, M.Q. Food sources and intakes of caffeine in the diets of persons in the United States. J. Am. Diet. Assoc., 2005, 105(1), 110-113.
[http://dx.doi.org/10.1016/j.jada.2004.10.027] [PMID: 15635355]
[5]
Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam., 2003, 20(1), 1-30.
[http://dx.doi.org/10.1080/0265203021000007840] [PMID: 12519715]
[6]
Butt, M.S.; Sultan, M.T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 363-373.
[http://dx.doi.org/10.1080/10408390903586412] [PMID: 21432699]
[7]
Floegel, A.; Pischon, T.; Bergmann, M.M.; Teucher, B.; Kaaks, R.; Boeing, H. Coffee consumption and risk of chronic disease in the european prospective investigation into cancer and nutrition (EPIC)-Germany study. Am. J. Clin. Nutr., 2012, 95(4), 901-908.
[http://dx.doi.org/10.3945/ajcn.111.023648] [PMID: 22338038]
[8]
Higdon, J.V.; Frei, B. Coffee and health: A review of recent human research. Crit. Rev. Food Sci. Nutr., 2006, 46(2), 101-123.
[http://dx.doi.org/10.1080/10408390500400009] [PMID: 16507475]
[9]
Lim, Y.; Park, Y.; Choi, S.K.; Ahn, S.; Ohn, J.H. The effect of coffee consumption on the prevalence of diabetes mellitus: The 2012-2016 korea national health and nutrition examination survey. Nutrients, 2019, 11(10), E2377.
[http://dx.doi.org/10.3390/nu11102377] [PMID: 31590412]
[10]
Komorita, Y.; Iwase, M.; Fujii, H.; Ohkuma, T.; Ide, H.; Jodai-Kitamura, T.; Yoshinari, M.; Oku, Y.; Higashi, T.; Nakamura, U.; Kitazono, T. Additive effects of green tea and coffee on all-cause mortality in patients with type 2 diabetes mellitus: The fukuoka diabetes registry. BMJ Open Diabetes Res. Care, 2020, 8(1), e001252.
[http://dx.doi.org/10.1136/bmjdrc-2020-001252] [PMID: 33087342]
[11]
Kim, Y.; Je, Y.; Giovannucci, E. Coffee consumption and all-cause and cause-specific mortality: A meta-analysis by potential modifiers. Eur. J. Epidemiol., 2019, 34(8), 731-752.
[http://dx.doi.org/10.1007/s10654-019-00524-3] [PMID: 31055709]
[12]
Godos, J.; Pluchinotta, F.R.; Marventano, S.; Buscemi, S.; Li Volti, G.; Galvano, F.; Grosso, G. Coffee components and cardiovascular risk: Beneficial and detrimental effects. Int. J. Food Sci. Nutr., 2014, 65(8), 925-936.
[http://dx.doi.org/10.3109/09637486.2014.940287] [PMID: 25046596]
[13]
Samanta, S. Potential bioactive components and health promotional benefits of tea (camellia sinensis). J. Am. Coll. Nutr., 2020, 1-29.
[http://dx.doi.org/10.1080/07315724.2020.1827082] [PMID: 33216711]
[14]
Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, R.M.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation, 2014, 129(6), 643-659.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005925] [PMID: 24201300]
[15]
Kouli, G.M.; Panagiotakos, D.B.; Georgousopoulou, E.N.; Mellor, D.D.; Chrysohoou, C.; Zana, A.; Tsigos, C.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C. J-shaped relationship between habitual coffee consumption and 10-year (2002-2012) cardiovascular disease incidence: The attica study. Eur. J. Nutr., 2018, 57(4), 1677-1685.
[http://dx.doi.org/10.1007/s00394-017-1455-6] [PMID: 28424867]
[16]
Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M. Daily coffee drinking is associated with lower risks of cardiovascular and total mortality in a general italian population: results from the moli-sani study. J. Nutr., 2021, 151(2), 395-404.
[http://dx.doi.org/10.1093/jn/nxaa365] [PMID: 33382422]
[17]
Di Maso, M.; Boffetta, P.; Negri, E.; La Vecchia, C.; Bravi, F. Caffeinated coffee consumption and health outcomes in the us population: A dose-response meta-analysis and estimation of disease cases and deaths avoided. Adv. Nutr., 2021, 12(4), 1160-1176.
[http://dx.doi.org/ 10.1093/advances/nmaa177] [PMID: 33570108]
[18]
Burdan, F. Coffee in health and disease prevention; Preedy, V.R., Ed.; Academic Press, 2015, pp. 823-829.
[http://dx.doi.org/10.1016/B978-0-12-409517-5.00090-5]
[19]
Riksen, N.P.; Smits, P.; Rongen, G.A. The cardiovascular effects of methylxanthines. Handb. Exp. Pharmacol., 2011, (200), 413-437.
[http://dx.doi.org/10.1007/978-3-642-13443-2_16] [PMID: 20859806]
[20]
Spielman, W.S.; Arend, L.J. Adenosine receptors and signaling in the kidney. Hypertension, 1991, 17(2), 117-130.
[http://dx.doi.org/10.1161/01.HYP.17.2.117] [PMID: 1991645]
[21]
Jee, S.H.; He, J.; Appel, L.J.; Whelton, P.K.; Suh, I.; Klag, M.J. Coffee consumption and serum lipids: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol., 2001, 153(4), 353-362.
[http://dx.doi.org/10.1093/aje/153.4.353] [PMID: 11207153]
[22]
Moeenfard, M.; Erny, G.L.; Alves, A. Variability of some diterpene esters in coffee beverages as influenced by brewing procedures. J. Food Sci. Technol., 2016, 53(11), 3916-3927.
[http://dx.doi.org/10.1007/s13197-016-2378-6] [PMID: 28035147]
[23]
Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr., 2017, 56(7), 2215-2244.
[http://dx.doi.org/10.1007/s00394-017-1379-1] [PMID: 28391515]
[24]
Mohamadi, N.; Sharififar, F.; Pournamdari, M.; Ansari, M. A Review on Biosynthesis, Analytical Techniques, and Pharmacological Activities of Trigonelline as a Plant Alkaloid. J. Diet. Suppl., 2018, 15(2), 207-222.
[http://dx.doi.org/10.1080/19390211.2017.1329244] [PMID: 28816550]
[25]
Manolis, A.S. Moderate intake of flavonoid-rich tea, green or black, confers cardiovascular protection. Hosp. Chron., 2015, 10(1), 3-6.
[26]
Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr, 2020, 6(2), 115-123.
[http://dx.doi.org/10.1016/j.aninu.2020.01.001] [PMID: 32542190]
[27]
Kochman, J.; Jakubczyk, K.; Antoniewicz, J.; Mruk, H.; Janda, K. Health benefits and chemical composition of matcha green tea: A review. Molecules, 2020, 26(1), E85.
[http://dx.doi.org/10.3390/molecules26010085] [PMID: 33375458]
[28]
Gunter, M.J.; Murphy, N.; Cross, A.J.; Dossus, L.; Dartois, L.; Fagherazzi, G.; Kaaks, R.; Kühn, T.; Boeing, H.; Aleksandrova, K.; Tjønneland, A.; Olsen, A.; Overvad, K.; Larsen, S.C.; Redondo Cornejo, M.L.; Agudo, A.; Sánchez Pérez, M.J.; Altzibar, J.M.; Navarro, C.; Ardanaz, E.; Khaw, K.T.; Butterworth, A.; Bradbury, K.E.; Trichopoulou, A.; Lagiou, P.; Trichopoulos, D.; Palli, D.; Grioni, S.; Vineis, P.; Panico, S.; Tumino, R.; Bueno-de-Mesquita, B.; Siersema, P.; Leenders, M.; Beulens, J.W.J.; Uiterwaal, C.U.; Wallström, P.; Nilsson, L.M.; Landberg, R.; Weiderpass, E.; Skeie, G.; Braaten, T.; Brennan, P.; Licaj, I.; Muller, D.C.; Sinha, R.; Wareham, N.; Riboli, E. Coffee drinking and mortality in 10 european countries: A multinational cohort study. Ann. Intern. Med., 2017, 167(4), 236-247.
[http://dx.doi.org/10.7326/M16-2945] [PMID: 28693038]
[29]
Kishimoto, Y.; Saita, E.; Taguchi, C.; Aoyama, M.; Ikegami, Y.; Ohmori, R.; Kondo, K.; Momiyama, Y. Associations between green tea consumption and coffee consumption and the prevalence of coronary artery disease. J. Nutr. Sci. Vitaminol. (Tokyo), 2020, 66(3), 237-245.
[http://dx.doi.org/10.3177/jnsv.66.237] [PMID: 32612086]
[30]
Park, S.Y.; Freedman, N.D.; Haiman, C.A.; Le Marchand, L.; Wilkens, L.R.; Setiawan, V.W. Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann. Intern. Med., 2017, 167(4), 228-235.
[http://dx.doi.org/10.7326/M16-2472] [PMID: 28693036]
[31]
Zhou, A.; Hyppönen, E. Long-term coffee consumption, caffeine metabolism genetics, and risk of cardiovascular disease: A prospective analysis of up to 347,077 individuals and 8368 cases. Am. J. Clin. Nutr., 2019, 109(3), 509-516.
[http://dx.doi.org/10.1093/ajcn/nqy297] [PMID: 30838377]
[32]
Chung, M.; Zhao, N.; Wang, D.; Shams-White, M.; Karlsen, M.; Cassidy, A.; Ferruzzi, M.; Jacques, P.F.; Johnson, E.J.; Wallace, T.C. Dose-response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: A systematic review and meta-analysis of population-based studies. Adv. Nutr., 2020, 11(4), 790-814.
[http://dx.doi.org/10.1093/advances/nmaa010] [PMID: 32073596]
[33]
Yi, M.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Zhao, R.; Wan, Q.; Du, L.; Zhou, Y. Tea consumption and health outcomes: Umbrella review of meta-analyses of observational studies in humans. Mol. Nutr. Food Res., 2019, 63(16), e1900389.
[http://dx.doi.org/10.1002/mnfr.201900389] [PMID: 31216091]
[34]
Mo, L.; Xie, W.; Pu, X.; Ouyang, D. Coffee consumption and risk of myocardial infarction: A dose-response meta-analysis of observational studies. Oncotarget, 2018, 9(30), 21530-21540.
[http://dx.doi.org/10.18632/oncotarget.23947] [PMID: 29765557]
[35]
Mukamal, K.J.; Hallqvist, J.; Hammar, N.; Ljung, R.; Gémes, K.; Ahlbom, A.; Ahnve, S.; Janszky, I. Coffee consumption and mortality after acute myocardial infarction: The Stockholm Heart Epidemiology Program. Am. Heart J., 2009, 157(3), 495-501.
[http://dx.doi.org/10.1016/j.ahj.2008.11.009] [PMID: 19249420]
[36]
van Dongen, L.H.; Mölenberg, F.J.; Soedamah-Muthu, S.S.; Kromhout, D.; Geleijnse, J.M. Coffee consumption after myocardial infarction and risk of cardiovascular mortality: A prospective analysis in the Alpha Omega Cohort. Am. J. Clin. Nutr., 2017, 106(4), 1113-1120.
[http://dx.doi.org/10.3945/ajcn.117.153338] [PMID: 28835365]
[37]
Miranda, A.M.; Goulart, A.C.; Benseñor, I.M.; Lotufo, P.A.; Marchioni, D.M. Moderate coffee consumption is associated with lower risk of mortality in prior acute coronary syndrome patients: A prospective analysis in the ERICO cohort. Int. J. Food Sci. Nutr., 2020, 1-11.
[http://dx.doi.org/10.1080/09637486.2020.1862069] [PMID: 33349068]
[38]
Ribeiro, E.M.; Alves, M.; Costa, J.; Ferreira, J.J.; Pinto, F.J.; Caldeira, D. Safety of coffee consumption after myocardial infarction: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis., 2020, 30(12), 2146-2158.
[http://dx.doi.org/10.1016/j.numecd.2020.07.016] [PMID: 33158718]
[39]
Brown, O.I.; Allgar, V.; Wong, K.Y. Coffee reduces the risk of death after acute myocardial infarction: A meta-analysis. Coron. Artery Dis., 2016, 27(7), 566-572.
[http://dx.doi.org/10.1097/MCA.0000000000000397] [PMID: 27315099]
[40]
Mukamal, K.J.; Alert, M.; Maclure, M.; Muller, J.E.; Mittleman, M.A. Tea consumption and infarct-related ventricular arrhythmias: The determinants of myocardial infarction onset study. J. Am. Coll. Nutr., 2006, 25(6), 472-479.
[http://dx.doi.org/10.1080/07315724.2006.10719561] [PMID: 17229893]
[41]
Bodar, V.; Chen, J.; Sesso, H.D.; Gaziano, J.M.; Djoussé, L. Coffee consumption and risk of heart failure in the Physicians’ Health Study. Clin. Nutr. ESPEN, 2020, 40, 133-137.
[http://dx.doi.org/10.1016/j.clnesp.2020.09.216] [PMID: 33183526]
[42]
Nwabuo, C.C.; Betoko, A.S.; Reis, J.P.; Moreira, H.T.; Vasconcellos, H.D.; Guallar, E.; Cox, C.; Sidney, S.; Ambale-Venkatesh, B.; Lewis, C.E.; Schreiner, P.J.; Lloyd-Jones, D.; Kiefe, C.I.; Gidding, S.S.; Lima, J.A.C. Coffee and tea consumption in the early adult lifespan and left ventricular function in middle age: The CARDIA study. ESC Heart Fail., 2020, 7(4), 1510-1519.
[http://dx.doi.org/10.1002/ehf2.12684] [PMID: 32449612]
[43]
Mostofsky, E.; Rice, M.S.; Levitan, E.B.; Mittleman, M.A. Habitual coffee consumption and risk of heart failure: A dose-response meta-analysis. Circ Heart Fail, 2012, 5(4), 401-405.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.967299] [PMID: 22740040]
[44]
Stevens, L.M.; Linstead, E.; Hall, J.L.; Kao, D.P. Association between coffee intake and incident heart failure risk: A machine learning analysis of the fhs, the aric study, and the chs. Circ Heart Fail, 2021, 14(2), e006799.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006799] [PMID: 33557575]
[45]
Mesas, A.E.; Leon-Muñoz, L.M.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: A systematic review and meta-analysis. Am. J. Clin. Nutr., 2011, 94(4), 1113-1126.
[http://dx.doi.org/10.3945/ajcn.111.016667] [PMID: 21880846]
[46]
Shah, S.A.; Chu, B.W.; Lacey, C.S.; Riddock, I.C.; Lee, M.; Dargush, A.E. Impact of acute energy drink consumption on blood pressure parameters: A meta-analysis. Ann. Pharmacother., 2016, 50(10), 808-815.
[http://dx.doi.org/10.1177/1060028016656433] [PMID: 27340146]
[47]
D’Elia, L.; La Fata, E.; Galletti, F.; Scalfi, L.; Strazzullo, P. Coffee consumption and risk of hypertension: A dose-response meta-analysis of prospective studies. Eur. J. Nutr., 2019, 58(1), 271-280.
[http://dx.doi.org/10.1007/s00394-017-1591-z] [PMID: 29222637]
[48]
Miranda, A.M.; Goulart, A.C.; Benseñor, I.M.; Lotufo, P.A.; Marchioni, D.M. Coffee consumption and risk of hypertension: A prospective analysis in the cohort study. Clin. Nutr., 2021, 40(2), 542-549.
[http://dx.doi.org/10.1016/j.clnu.2020.05.052] [PMID: 32576389]
[49]
Navarro, A.M.; Martinez-Gonzalez, M.A.; Gea, A.; Ramallal, R.; Ruiz-Canela, M.; Toledo, E. Coffee consumption and risk of hypertension in the SUN Project. Clin. Nutr., 2019, 38(1), 389-397.
[http://dx.doi.org/10.1016/j.clnu.2017.12.009] [PMID: 29331442]
[50]
Renda, G.; Zimarino, M.; Antonucci, I.; Tatasciore, A.; Ruggieri, B.; Bucciarelli, T.; Prontera, T.; Stuppia, L.; De Caterina, R. Genetic determinants of blood pressure responses to caffeine drinking. Am. J. Clin. Nutr., 2012, 95(1), 241-248.
[http://dx.doi.org/10.3945/ajcn.111.018267] [PMID: 22170367]
[51]
Lopez-Garcia, E.; Orozco-Arbeláez, E.; Leon-Muñoz, L.M.; Guallar-Castillon, P.; Graciani, A.; Banegas, J.R.; Rodríguez-Artalejo, F. Habitual coffee consumption and 24-h blood pressure control in older adults with hypertension. Clin. Nutr., 2016, 35(6), 1457-1463.
[http://dx.doi.org/10.1016/j.clnu.2016.03.021] [PMID: 27075317]
[52]
Du, Y.; Lv, Y.; Zha, W.; Hong, X.; Luo, Q. Effect of coffee consumption on dyslipidemia: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis., 2020, 30(12), 2159-2170.
[http://dx.doi.org/10.1016/j.numecd.2020.08.017] [PMID: 33239163]
[53]
Cornelis, M.C.; van Dam, R.M. Habitual coffee and tea consumption and cardiometabolic biomarkers in the uk biobank: The role of beverage types and genetic variation. J. Nutr., 2020, 150(10), 2772-2788.
[http://dx.doi.org/10.1093/jn/nxaa212] [PMID: 32805014]
[54]
Carlström, M.; Larsson, S.C. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutr. Rev., 2018, 76(6), 395-417.
[http://dx.doi.org/10.1093/nutrit/nuy014] [PMID: 29590460]
[55]
Osama, H.; Abdelrahman, M.A.; Madney, Y.M.; Harb, H.S.; Saeed, H.; Abdelrahim, M.E.A. Coffee and type 2 diabetes risk: Is the association mediated by adiponectin, leptin, c-reactive protein or Interleukin-6? A systematic review and meta-analysis. Int. J. Clin. Pract., 2021, 75(6), e13983.
[http://dx.doi.org/10.1111/ijcp.13983] [PMID: 33400346]
[56]
Imamura, F.; Schulze, M.B.; Sharp, S.J.; Guevara, M.; Romaguera, D.; Bendinelli, B.; Salamanca-Fernández, E.; Ardanaz, E.; Arriola, L.; Aune, D.; Boeing, H.; Dow, C.; Fagherazzi, G.; Franks, P.W.; Freisling, H.; Jakszyn, P.; Kaaks, R.; Khaw, K.T.; Kühn, T.; Mancini, F.R.; Masala, G.; Chirlaque, M.D.; Nilsson, P.M.; Overvad, K.; Pala, V.M.; Panico, S.; Perez-Cornago, A.; Quirós, J.R.; Ricceri, F.; Rodríguez-Barranco, M.; Rolandsson, O.; Sluijs, I.; Stepien, M.; Spijkerman, A.M.W.; Tjønneland, A.; Tong, T.Y.N.; Tumino, R.; Vissers, L.E.T.; Ward, H.A.; Langenberg, C.; Riboli, E.; Forouhi, N.G.; Wareham, N.J. Estimated substitution of tea or coffee for sugar-sweetened beverages was associated with lower type 2 diabetes incidence in case-cohort analysis across 8 european countries in the epic-interact study. J. Nutr., 2019, 149(11), 1985-1993.
[http://dx.doi.org/10.1093/jn/nxz156] [PMID: 31396627]
[57]
Said, M.A.; van de Vegte, Y.J.; Verweij, N.; van der Harst, P. Associations of observational and genetically determined caffeine intake with coronary artery disease and diabetes mellitus. J. Am. Heart Assoc., 2020, 9(24), e016808.
[http://dx.doi.org/10.1161/JAHA.120.016808] [PMID: 33287642]
[58]
Kim, A.N.; Cho, H.J.; Youn, J.; Jin, T.; Kang, M.; Sung, J.; Lee, J.E. Coffee consumption, genetic polymorphisms, and the risk of type 2 diabetes mellitus: A pooled analysis of four prospective cohort studies. Int. J. Environ. Res. Public Health, 2020, 17(15), E5379.
[http://dx.doi.org/10.3390/ijerph17155379] [PMID: 32722593]
[59]
Williamson, G. Protection against developing type 2 diabetes by coffee consumption: Assessment of the role of chlorogenic acid and metabolites on glycaemic responses. Food Funct., 2020, 11(6), 4826-4833.
[http://dx.doi.org/10.1039/D0FO01168A] [PMID: 32484174]
[60]
Shang, F.; Li, X.; Jiang, X. Coffee consumption and risk of the metabolic syndrome: A meta-analysis. Diabetes Metab., 2016, 42(2), 80-87.
[http://dx.doi.org/10.1016/j.diabet.2015.09.001] [PMID: 26431818]
[61]
Wong, T.H.T.; Wong, C.H.; Zhang, X.; Zhou, Y.; Xu, J.; Yuen, K.C. The association between coffee consumption and metabolic syndrome in adults: A systematic review and meta-analysis. Adv. Nutr., 2021, 12(3), 708-721.
[http://dx.doi.org/10.1093/advances/nmaa132] [PMID: 33118010]
[62]
Frost, L.; Vestergaard, P. Caffeine and risk of atrial fibrillation or flutter: The danish diet, cancer, and health study. Am. J. Clin. Nutr., 2005, 81(3), 578-582.
[http://dx.doi.org/10.1093/ajcn/81.3.578] [PMID: 15755825]
[63]
Mostofsky, E.; Johansen, M.B.; Lundbye-Christensen, S.; Tjønneland, A.; Mittleman, M.A.; Overvad, K. Risk of atrial fibrillation associated with coffee intake: Findings from the danish diet, cancer, and health study. Eur. J. Prev. Cardiol., 2016, 23(9), 922-930.
[http://dx.doi.org/10.1177/2047487315624524] [PMID: 26701875]
[64]
Conen, D.; Chiuve, S.E.; Everett, B.M.; Zhang, S.M.; Buring, J.E.; Albert, C.M. Caffeine consumption and incident atrial fibrillation in women. Am. J. Clin. Nutr., 2010, 92(3), 509-514.
[http://dx.doi.org/10.3945/ajcn.2010.29627] [PMID: 20573799]
[65]
Casiglia, E.; Tikhonoff, V.; Albertini, F.; Gasparotti, F.; Mazza, A.; Montagnana, M.; Danese, E.; Benati, M.; Spinella, P.; Palatini, P. Caffeine intake reduces incident atrial fibrillation at a population level. Eur. J. Prev. Cardiol., 2018, 25(10), 1055-1062.
[http://dx.doi.org/10.1177/2047487318772945] [PMID: 29692210]
[66]
Xu, J.; Fan, W.; Budoff, M.J.; Heckbert, S.R.; Amsterdam, E.A.; Alonso, A.; Wong, N.D. Intermittent nonhabitual coffee consumption and risk of atrial fibrillation: The multi-ethnic study of atherosclerosis. J. Atr. Fibrillation, 2019, 12(1), 2205.
[http://dx.doi.org/10.4022/jafib.2205] [PMID: 31687073]
[67]
Yuan, S.; Larsson, S.C. No association between coffee consumption and risk of atrial fibrillation: A mendelian randomization study. Nutr. Metab. Cardiovasc. Dis., 2019, 29(11), 1185-1188.
[http://dx.doi.org/10.1016/j.numecd.2019.07.015] [PMID: 31558414]
[68]
Zuchinali, P.; Souza, G.C.; Pimentel, M.; Chemello, D.; Zimerman, A.; Giaretta, V.; Salamoni, J.; Fracasso, B.; Zimerman, L.I.; Rohde, L.E. Short-term effects of high-dose caffeine on cardiac arrhythmias in patients with heart failure: A randomized clinical trial. JAMA Intern. Med., 2016, 176(12), 1752-1759.
[http://dx.doi.org/10.1001/jamainternmed.2016.6374] [PMID: 27749954]
[69]
Dixit, S.; Stein, P.K.; Dewland, T.A.; Dukes, J.W.; Vittinghoff, E.; Heckbert, S.R.; Marcus, G.M. Consumption of caffeinated products and cardiac ectopy. J. Am. Heart Assoc., 2016, 5(1), e002503.
[http://dx.doi.org/10.1161/JAHA.115.002503] [PMID: 26813889]
[70]
Caldeira, D.; Martins, C.; Alves, L.B.; Pereira, H.; Ferreira, J.J.; Costa, J. Caffeine does not increase the risk of atrial fibrillation: A systematic review and meta-analysis of observational studies. Heart, 2013, 99(19), 1383-1389.
[http://dx.doi.org/10.1136/heartjnl-2013-303950] [PMID: 24009307]
[71]
Larsson, S.C.; Drca, N.; Jensen-Urstad, M.; Wolk, A. Coffee consumption is not associated with increased risk of atrial fibrillation: Results from two prospective cohorts and a meta-analysis. BMC Med., 2015, 13, 207.
[http://dx.doi.org/10.1186/s12916-015-0447-8] [PMID: 26394673]
[72]
Krittanawong, C.; Tunhasiriwet, A.; Wang, Z.; Farrell, A.M.; Chirapongsathorn, S.; Zhang, H.; Kitai, T.; Mehta, D. Is caffeine or coffee consumption a risk for new-onset atrial fibrillation? A systematic review and meta-analysis. Eur. J. Prev. Cardiol., 2020, 2047487320908385.
[http://dx.doi.org/10.1177/2047487320908385] [PMID: 32183549]
[73]
Zuchinali, P.; Ribeiro, P.A.; Pimentel, M.; da Rosa, P.R.; Zimerman, L.I.; Rohde, L.E. Effect of caffeine on ventricular arrhythmia: A systematic review and meta-analysis of experimental and clinical studies. Europace, 2016, 18(2), 257-266.
[http://dx.doi.org/10.1093/europace/euv261] [PMID: 26443445]
[74]
Kim, B.; Nam, Y.; Kim, J.; Choi, H.; Won, C. Coffee consumption and stroke risk: A meta-analysis of epidemiologic studies. Korean J. Fam. Med., 2012, 33(6), 356-365.
[http://dx.doi.org/10.4082/kjfm.2012.33.6.356] [PMID: 23267421]
[75]
Shao, C.; Tang, H.; Wang, X.; He, J. Coffee consumption and stroke risk: Evidence from a systematic review and meta-analysis of more than 2.4 million men and women. J. Stroke Cerebrovasc. Dis., 2021, 30(1), 105452.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105452] [PMID: 33188952]
[76]
Umemura, T.; Ueda, K.; Nishioka, K.; Hidaka, T.; Takemoto, H.; Nakamura, S.; Jitsuiki, D.; Soga, J.; Goto, C.; Chayama, K.; Yoshizumi, M.; Higashi, Y. Effects of acute administration of caffeine on vascular function. Am. J. Cardiol., 2006, 98(11), 1538-1541.
[http://dx.doi.org/10.1016/j.amjcard.2006.06.058] [PMID: 17126666]
[77]
Seal, A.D.; Bardis, C.N.; Gavrieli, A.; Grigorakis, P.; Adams, J.D.; Arnaoutis, G.; Yannakoulia, M.; Kavouras, S.A. Coffee with high but not low caffeine content augments fluid and electrolyte excretion at rest. Front. Nutr., 2017, 4, 40.
[http://dx.doi.org/10.3389/fnut.2017.00040] [PMID: 28868290]
[78]
Echeverri, D.; Montes, F.R.; Cabrera, M.; Galán, A.; Prieto, A. Caffeine’s vascular mechanisms of action. Int. J. Vasc. Med., 2010, 2010, 834060.
[http://dx.doi.org/10.1155/2010/834060] [PMID: 21188209]
[79]
Ammon, H.P.; Bieck, P.R.; Mandalaz, D.; Verspohl, E.J. Adaptation of blood pressure to continuous heavy coffee drinking in young volunteers. A double-blind crossover study. Br. J. Clin. Pharmacol., 1983, 15(6), 701-706.
[http://dx.doi.org/10.1111/j.1365-2125.1983.tb01553.x] [PMID: 6871070]
[80]
Robertson, D.; Wade, D.; Workman, R.; Woosley, R.L.; Oates, J.A. Tolerance to the humoral and hemodynamic effects of caffeine in man. J. Clin. Invest., 1981, 67(4), 1111-1117.
[http://dx.doi.org/10.1172/JCI110124] [PMID: 7009653]
[81]
Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res., 2012, 35(4), 370-374.
[http://dx.doi.org/10.1038/hr.2011.195] [PMID: 22072103]
[82]
Higashi, Y. Coffee and endothelial function: A coffee paradox? Nutrients, 2019, 11(9), E2104.
[http://dx.doi.org/10.3390/nu11092104] [PMID: 31487926]
[83]
Noordzij, M.; Uiterwaal, C.S.; Arends, L.R.; Kok, F.J.; Grobbee, D.E.; Geleijnse, J.M. Blood pressure response to chronic intake of coffee and caffeine: A meta-analysis of randomized controlled trials. J. Hypertens., 2005, 23(5), 921-928.
[http://dx.doi.org/10.1097/01.hjh.0000166828.94699.1d] [PMID: 15834273]
[84]
Corti, R.; Binggeli, C.; Sudano, I.; Spieker, L.; Hänseler, E.; Ruschitzka, F.; Chaplin, W.F.; Lüscher, T.F.; Noll, G. Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: Role of habitual versus nonhabitual drinking. Circulation, 2002, 106(23), 2935-2940.
[http://dx.doi.org/10.1161/01.CIR.0000046228.97025.3A] [PMID: 12460875]
[85]
Buscemi, S.; Batsis, J.A.; Arcoleo, G.; Verga, S. Coffee and endothelial function: A battle between caffeine and antioxidants? Eur. J. Clin. Nutr., 2010, 64(10), 1242-1243.
[http://dx.doi.org/10.1038/ejcn.2010.137] [PMID: 20664622]
[86]
Buscemi, S.; Verga, S.; Batsis, J.A.; Donatelli, M.; Tranchina, M.R.; Belmonte, S.; Mattina, A.; Re, A.; Cerasola, G. Acute effects of coffee on endothelial function in healthy subjects. Eur. J. Clin. Nutr., 2010, 64(5), 483-489.
[http://dx.doi.org/10.1038/ejcn.2010.9] [PMID: 20125186]
[87]
Kolb, H.; Kempf, K.; Martin, S. Health effects of coffee: Mechanism unraveled? Nutrients, 2020, 12(6), E1842.
[http://dx.doi.org/10.3390/nu12061842] [PMID: 32575704]
[88]
Jung, S.; Kim, M.H.; Park, J.H.; Jeong, Y.; Ko, K.S. Cellular antioxidant and anti-inflammatory effects of coffee extracts with different roasting levels. J. Med. Food, 2017, 20(6), 626-635.
[http://dx.doi.org/10.1089/jmf.2017.3935] [PMID: 28581877]
[89]
Geleijnse, J.M. Habitual coffee consumption and blood pressure: An epidemiological perspective. Vasc. Health Risk Manag., 2008, 4(5), 963-970.
[http://dx.doi.org/10.2147/VHRM.S3055] [PMID: 19183744]
[90]
Daneschvar, H.L.; Smetana, G.W.; Brindamour, L.; Bain, P.A.; Mukamal, K.J. Impact of coffee consumption on physiological markers of cardiovascular risk: A systematic review. Am. J. Med., 2020.
[http://dx.doi.org/10.1016/j.amjmed.2020.09.036] [PMID: 33130125]
[91]
Wedick, N.M.; Brennan, A.M.; Sun, Q.; Hu, F.B.; Mantzoros, C.S.; van Dam, R.M. Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: A randomized controlled trial. Nutr. J., 2011, 10, 93.
[http://dx.doi.org/10.1186/1475-2891-10-93] [PMID: 21914162]
[92]
Kempf, K.; Kolb, H.; Gärtner, B.; Bytof, G.; Stiebitz, H.; Lantz, I.; Lang, R.; Hofmann, T.; Martin, S. Cardiometabolic effects of two coffee blends differing in content for major constituents in overweight adults: A randomized controlled trial. Eur. J. Nutr., 2015, 54(5), 845-854.
[http://dx.doi.org/10.1007/s00394-014-0763-3] [PMID: 25204719]
[93]
Tverdal, A.; Selmer, R.; Cohen, J.M.; Thelle, D.S. Coffee consumption and mortality from cardiovascular diseases and total mortality: Does the brewing method matter? Eur. J. Prev. Cardiol., 2020, 27(18), 1986-1993.
[http://dx.doi.org/10.1177/2047487320914443] [PMID: 32320635]
[94]
Urgert, R.; Katan, M.B. The cholesterol-raising factor from coffee beans. Annu. Rev. Nutr., 1997, 17, 305-324.
[http://dx.doi.org/10.1146/annurev.nutr.17.1.305] [PMID: 9240930]
[95]
Corrêa, T.A.; Rogero, M.M.; Mioto, B.M.; Tarasoutchi, D.; Tuda, V.L.; César, L.A.; Torres, E.A. Paper-filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: A clinical trial. Nutrition, 2013, 29(7-8), 977-981.
[http://dx.doi.org/10.1016/j.nut.2013.01.003] [PMID: 23510568]
[96]
Fried, R.E.; Levine, D.M.; Kwiterovich, P.O.; Diamond, E.L.; Wilder, L.B.; Moy, T.F.; Pearson, T.A. The effect of filtered-coffee consumption on plasma lipid levels. Results of a randomized clinical trial. JAMA, 1992, 267(6), 811-815.
[http://dx.doi.org/10.1001/jama.1992.03480060057030] [PMID: 1732652]
[97]
Saeed, M.; Naveed, M. BiBi, J.; Ali Kamboh, A.; Phil, L.; Chao, S. Potential nutraceutical and food additive properties and risks of coffee: A comprehensive overview. Crit. Rev. Food Sci. Nutr., 2019, 59(20), 3293-3319.
[http://dx.doi.org/10.1080/10408398.2018.1489368] [PMID: 30614268]
[98]
Bahramsoltani, R.; Ebrahimi, F.; Farzaei, M.H.; Baratpourmoghaddam, A.; Ahmadi, P.; Rostamiasrabadi, P.; Rasouli Amirabadi, A.H.; Rahimi, R. Dietary polyphenols for atherosclerosis: A comprehensive review and future perspectives. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 114-132.
[http://dx.doi.org/10.1080/10408398.2017.1360244] [PMID: 28812379]
[99]
Manolis, A.S. Moderate Intake of Flavonoid-Rich Tea, Green or Black. Confers Cardiovascular Protection Rhythmos, 2015, 10(1), 1-4.
[100]
Scicchitanoa, P.; Camelib, M.; Maielloc, M.; Modestid, P.A.; Muiesane, M.L.; Novo, S. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J. Funct. Foods, 2014, 6, 11-32.
[http://dx.doi.org/10.1016/j.jff.2013.12.006]
[101]
Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol., 2019, 45, 57-65.
[http://dx.doi.org/10.1016/j.coph.2019.04.014] [PMID: 31102958]
[102]
Carrillo, J.A.; Benitez, J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin. Pharmacokinet., 2000, 39(2), 127-153.
[http://dx.doi.org/10.2165/00003088-200039020-00004] [PMID: 10976659]
[103]
Belayneh, A.; Molla, F. The effect of coffee on pharmacokinetic properties of drugs: A review. BioMed Res. Int., 2020, 2020, 7909703.
[http://dx.doi.org/10.1155/2020/7909703] [PMID: 32775441]
[104]
Hutachok, N.; Angkasith, P.; Chumpun, C.; Fucharoen, S.; Mackie, I.J.; Porter, J.B.; Srichairatanakool, S. Anti-platelet aggregation and anti-cyclooxygenase activities for a range of coffee extracts (coffea arabica). Molecules, 2020, 26(1), E10.
[http://dx.doi.org/10.3390/molecules26010010] [PMID: 33375091]
[105]
Lev, E.I.; Arikan, M.E.; Vaduganathan, M.; Alviar, C.L.; Tellez, A.; Mathuria, N.; Builes, A.; Granada, J.F.; del Conde, I.; Kleiman, N.S. Effect of caffeine on platelet inhibition by clopidogrel in healthy subjects and patients with coronary artery disease. Am. Heart J., 2007, 154(4), 694.e1-694.e7.
[http://dx.doi.org/10.1016/j.ahj.2007.07.014] [PMID: 17892993]
[106]
Liu, J.; Liu, S.; Zhou, H.; Hanson, T.; Yang, L.; Chen, Z.; Zhou, M. Association of green tea consumption with mortality from all-cause, cardiovascular disease and cancer in a Chinese cohort of 165,000 adult men. Eur. J. Epidemiol., 2016, 31(9), 853-865.
[http://dx.doi.org/10.1007/s10654-016-0173-3] [PMID: 27372743]
[107]
Tian, T.; Lv, J.; Jin, G.; Yu, C.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Shen, H.; Chen, Z.; Hu, Z.; Li, L. Tea consumption and risk of stroke in Chinese adults: A prospective cohort study of 0.5 million men and women. Am. J. Clin. Nutr., 2020, 111(1), 197-206.
[PMID: 31711152]
[108]
Dludla, P.V.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Nyambuya, T.M.; Orlando, P.; Silvestri, S.; Marcheggiani, F.; Cirilli, I.; Ziqubu, K.; Ndevahoma, F.; Mxinwa, V.; Mokgalaboni, K.; Sabbatinelli, J.; Louw, J.; Tiano, L. Tea consumption and its effects on primary and secondary prevention of coronary artery disease: Qualitative synthesis of evidence from randomized controlled trials. Clin. Nutr. ESPEN, 2021, 41, 77-87.
[http://dx.doi.org/10.1016/j.clnesp.2020.11.006] [PMID: 33487310]
[109]
Zhang, C.; Qin, Y.Y.; Wei, X.; Yu, F.F.; Zhou, Y.H.; He, J. Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. Eur. J. Epidemiol., 2015, 30(2), 103-113.
[http://dx.doi.org/10.1007/s10654-014-9960-x] [PMID: 25354990]
[110]
Pang, J.; Zhang, Z.; Zheng, T.Z.; Bassig, B.A.; Mao, C.; Liu, X.; Zhu, Y.; Shi, K.; Ge, J.; Yang, Y.J. Dejia-Huang; Bai, M.; Peng, Y. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int. J. Cardiol., 2016, 202, 967-974.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.176] [PMID: 26318390]
[111]
Greyling, A.; Ras, R.T.; Zock, P.L.; Lorenz, M.; Hopman, M.T.; Thijssen, D.H.; Draijer, R. The effect of black tea on blood pressure: A systematic review with meta-analysis of randomized controlled trials. PLoS One, 2014, 9(7), e103247.
[http://dx.doi.org/10.1371/journal.pone.0103247] [PMID: 25079225]
[112]
Ma, C.; Zheng, X.; Yang, Y.; Bu, P. The effect of black tea supplementation on blood pressure: A systematic review and dose-response meta-analysis of randomized controlled trials. Food Funct., 2021, 12(1), 41-56.
[http://dx.doi.org/10.1039/D0FO02122A] [PMID: 33237083]
[113]
Enriquez, A.; Frankel, D.S. Arrhythmogenic effects of energy drinks. J. Cardiovasc. Electrophysiol., 2017, 28(6), 711-717.
[http://dx.doi.org/10.1111/jce.13210] [PMID: 28387431]
[114]
Rottlaender, D.; Motloch, L.J.; Reda, S.; Larbig, R.; Hoppe, U.C. Cardiac arrest due to long QT syndrome associated with excessive consumption of energy drinks. Int. J. Cardiol., 2012, 158(3), e51-e52.
[http://dx.doi.org/10.1016/j.ijcard.2011.10.017] [PMID: 22056042]
[115]
Dufendach, K.A.; Horner, J.M.; Cannon, B.C.; Ackerman, M.J. Congenital type 1 long QT syndrome unmasked by a highly caffeinated energy drink. Heart Rhythm, 2012, 9(2), 285-288.
[http://dx.doi.org/10.1016/j.hrthm.2011.10.011] [PMID: 22001708]
[116]
Rutledge, M.; Witthed, A.; Khouzam, R.N. It took a RedBull to unmask Brugada syndrome. Int. J. Cardiol., 2012, 161(1), e14-e15.
[http://dx.doi.org/10.1016/j.ijcard.2012.03.095] [PMID: 22465350]
[117]
Berger, A.J.; Alford, K. Cardiac arrest in a young man following excess consumption of caffeinated “energy drinks”. Med. J. Aust., 2009, 190(1), 41-43.
[http://dx.doi.org/10.5694/j.1326-5377.2009.tb02263.x] [PMID: 19120009]
[118]
Kaoukis, A.; Panagopoulou, V.; Mojibian, H.R.; Jacoby, D. Reverse Takotsubo cardiomyopathy associated with the consumption of an energy drink. Circulation, 2012, 125(12), 1584-1585.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.057505] [PMID: 22451608]
[119]
Luo, Y.S.; Chen, Z.; Blanchette, A.D.; Zhou, Y.H.; Wright, F.A.; Baker, E.S.; Chiu, W.A.; Rusyn, I. Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes. Food Chem. Toxicol., 2021, 149, 111979.
[http://dx.doi.org/10.1016/j.fct.2021.111979] [PMID: 33450301]
[120]
FDA, highly concentrated caffeine in dietary supplements: Guidance for industry. 2018. Available from: https://www.fda.gov/media/112363/download [Accessed 7 March, 2021]
[121]
Manolis, A.S.; Manolis, T.A. Sugary Beverages Pose Significant Risks to Cardiovascular and Overall Health. Rhythmos, 2019, 14(3), 45-50.
[122]
Lévy, S.; Santini, L.; Capucci, A.; Oto, A.; Santomauro, M.; Riganti, C.; Raviele, A.; Cappato, R. European cardiac arrhythmia society statement on the cardiovascular events associated with the use or abuse of energy drinks. J. Interv. Card. Electrophysiol., 2019, 56(1), 99-115.
[http://dx.doi.org/10.1007/s10840-019-00610-2] [PMID: 31482331]
[123]
EFSA panel on dietetic products, N.; allergies, scientific opinion on the safety of caffeine. 2015.
[124]
FDA, spilling the beans: How much caffeine is too much? 2018. Available from: https://www.fda.gov/consumers/consumer-updates/spilling-beans-how-much-caffeine-too-much [Accessed 7 March, 2021]
[125]
Committee on Nutrition and the Council on Sports Medicine and Fitness. Sports drinks and energy drinks for children and adolescents: Are they appropriate? Pediatrics, 2011, 127(6), 1182-1189.
[http://dx.doi.org/10.1542/peds.2011-0965] [PMID: 21624882]
[126]
Voskoboinik, A.; Koh, Y.; Kistler, P.M. Cardiovascular effects of caffeinated beverages. Trends Cardiovasc. Med., 2019, 29(6), 345-350.
[http://dx.doi.org/10.1016/j.tcm.2018.09.019] [PMID: 30301595]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy