Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

In Vitro and In Silico Determination of Some N-ferrocenylmethylaniline Derivatives as Anti-Proliferative Agents Against MCF-7 Human Breast Cancer Cell Lines

Author(s): Nadjiba Zegheb, Cherifa Boubekri, Touhami Lanez*, Elhafnaoui Lanez, Tuba Tüylü Küçükkılınç, Esin Öz, Ali Khennoufa, Saida Khamouli and Salah Belaidi

Volume 22, Issue 7, 2022

Published on: 03 January, 2022

Page: [1426 - 1437] Pages: 12

DOI: 10.2174/1871520621666210624141712

Price: $65

Abstract

Background: Since the binding of estradiol to its receptor promotes breast cancer cell proliferation (in the ER+ tumours), many molecules targeting this protein have been synthesized to counteract the estradiol action. Ferrocene derivatives have proved their efficiency against hormone-dependent breast cancer cells (MCF-7).

Objective: In this study, we aimed to find new ferrocene derivatives having pharmacochemistry properties as potential drugs against human breast cancer cells.

Methods: A series of 29 N-ferrocenylmethylaniline derivatives A0-A28 were synthesised, and their anti-proliferative activity against both hormone-dependent (MCF-7) and independent (MDA-MB 231) human breast cancer cell lines were performed using the MTT test. Molecular docking and drug-likeness prediction were also performed for the five most active derivatives towards MCF-7. A QSAR model was also developed for the perdition of the anti-proliferative activity against MCF-7 cell lines using molecular descriptors and MLR analysis.

Results: All studied derivatives demonstrated better cytotoxicity against MCF-7 compared to the MDA-MB-231 cell lines, and compounds A2, A9, A14, A17 and A27 were the most potent ones but still less active than the standard anticancer drug, crizotinib. The QSAR study revealed good predictive ability, as shown by R2 cv = 0.848.

Conclusion: In vitro and in silico results indicated that derivatives A2, A9, A14, A17, and A27 possess the highest anti-proliferative activity; these results can be used to design more potent N-ferrocenylmethylaniline derivatives as anti-proliferative agents.

Keywords: N-ferrocenylmethylaniline, breast cancer, MCF-7, MDA-MB-231, estrogen receptor, progesterone receptor, QSAR, antiproliferative activity.

« Previous
Graphical Abstract

[1]
World Health Organization Cancer fact sheets, Available from: http://gco.iarc.fr/today/fact-sheets-cancers[Accessed November 10, 2020]
[2]
Jéhannin-Ligier, K.; Dantony, E.; Bossard, N.; Molinié, F.; Defossez, G.; Daubisse-Marliac, L.; Delafosse, P.; Remontet, L.; Uhry, Z. Projection de l’incidence et de la mortalité par cancer en France métropolitaine en 2017.Rapport technique; Saint-Maurice: Santé publique France, 2017.
[3]
American Cancer Society Breast cancer, Available from: https://www.cancer.org/cancer/breast-cancer.html[Accessed November 10, 2020]
[4]
Hudis, C.A. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med., 2007, 357(1), 39-51.
[http://dx.doi.org/10.1056/NEJMra043186] [PMID: 17611206]
[5]
Ismael, G.; Rosa, D.D.; de Azambuja, E.; Braga, S.; Piccart-Gebhart, M. Trastuzumab (herceptin) for early-stage breast cancer. Hematol. Oncol. Clin. North Am., 2007, 21(2), 239-256.
[http://dx.doi.org/10.1016/j.hoc.2007.03.003] [PMID: 17512447]
[6]
Wang, J.; Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther., 2019, 4(1), 34.
[http://dx.doi.org/10.1038/s41392-019-0069-2] [PMID: 31637013]
[7]
Hortobagyi, G.N.; Buzdar, A.U. Current status of adjuvant systemic therapy for primary breast cancer: Progress and controversy. CA Cancer J. Clin., 1995, 45(4), 199-226.
[http://dx.doi.org/10.3322/canjclin.45.4.199] [PMID: 7600278]
[8]
Group, E.B.C.T.C. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet, 2005, 365(9472), 1687-1717.
[http://dx.doi.org/10.1016/S0140-6736(05)66544-0] [PMID: 15894097]
[9]
Gong, Z.; Chen, M.; Ren, Q.; Yue, X.; Dai, Z. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct. Target. Ther., 2020, 5(1), 12.
[http://dx.doi.org/10.1038/s41392-019-0104-3] [PMID: 32296050]
[10]
Jordan, V.C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J. Med. Chem., 2003, 46(7), 1081-1111.
[http://dx.doi.org/10.1021/jm020450x] [PMID: 12646017]
[11]
Singh, M.N.; Stringfellow, H.F.; Paraskevaidis, E.; Martin-Hirsch, P.L.; Martin, F.L. Tamoxifen: Important considerations of a multi-functional compound with organ-specific properties. Cancer Treat. Rev., 2007, 33(2), 91-100.
[http://dx.doi.org/10.1016/j.ctrv.2006.09.008] [PMID: 17178195]
[12]
Dixon, J.M. Exemestane and aromatase inhibitors in the management of advanced breast cancer. Expert Opin. Pharmacother., 2004, 5(2), 307-316.
[http://dx.doi.org/10.1517/14656566.5.2.307] [PMID: 14996627]
[13]
Meegan, M.J.; Lloyd, D.G. Advances in the science of estrogen receptor modulation. Curr. Med. Chem., 2003, 10(3), 181-210.
[http://dx.doi.org/10.2174/0929867033368501] [PMID: 12570707]
[14]
Magarian, R.; Overacre, L.; Singh, S.; Meyer, K. The medicinal chemistry of nonsteroidal antiestrogens: A review. Curr. Med. Chem., 1994, 1, 61-104.
[15]
American Cancer Society. Treating breast cancer, Available from: https://www.cancer.org/cancer/breast-cancer/treatment.html[Accessed November 10, 2020]
[16]
Köpf-Maier, P.; Köpf, H.; Neuse, E.W. Ferricenium complexes: A new type of water-soluble antitumor agent. J. Cancer Res. Clin. Oncol., 1984, 108(3), 336-340.
[http://dx.doi.org/10.1007/BF00390468] [PMID: 6511806]
[17]
Köpf-Maier, P. Tumor inhibition by ferricenium complexes: Systemic effect in vivo and cell growth inhibition in vitro. Z Naturforsch C Biosci, 1985, 40(11-12), 843-846.
[http://dx.doi.org/10.1515/znc-1985-11-1215] [PMID: 3832667]
[18]
Vessières, A.; Top, S.; Pigeon, P.; Hillard, E.; Boubeker, L.; Spera, D.; Jaouen, G. Modification of the estrogenic properties of diphenols by the incorporation of ferrocene. Generation of antiproliferative effects in vitro. J. Med. Chem., 2005, 48(12), 3937-3940.
[http://dx.doi.org/10.1021/jm050251o] [PMID: 15943467]
[19]
Hillard, E.; Vessières, A.; Le Bideau, F.; Plazuk, D.; Spera, D.; Huché, M.; Jaouen, G. A series of unconjugated ferrocenyl phenols: Prospects as anticancer agents. ChemMedChem, 2006, 1(5), 551-559.
[http://dx.doi.org/10.1002/cmdc.200500035] [PMID: 16892391]
[20]
Khand, I.U.; Lanez, T.; Pauson, P.L. Ferrocene derivatives. Part 24. Synthesis of dihydro-2-pyrindines and dihydro-3H-2-cyclopent[c]azepines by photolysis of their cyclopentadienyliron derivatives. J. Chem. Soc., Perkin Trans. 1, 1989, 2075-2078.
[http://dx.doi.org/10.1039/p19890002075]
[21]
Boubekri, C.; Khelef, A.; Terki, B.; Lanez, T. Synthesis and electrochemical properties of n-(ferrocenylmethyl)aminobenzonitrile and n-(ferrocenylmethyl)nitroaniline derivatives. ILCPA, 2015, 49, 27-34.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.49.27]
[22]
Lanez, E.; Bechki, L.; Lanez, T. N6,9-bis(ferrocenylmethyl)adenine: Synthesis, cyclic voltammetric, spectroscopic characterization, and DFT calculations. St. Cerc. St. CICBIA, 2019, 20(4), 509-519.
[23]
Khelef, A.; Terki, B.; Mahboub, M.S.; Lanez, T. N-Ferrocenymethyl-N-phenylpropionamide. Acta Crystallogr., 2012, E68, m647.
[24]
Lanez, E.; Bechki, L.; Lanez, T. Ferrocenylmethylnucleobases: Synthesis, DFT calculations, electrochemical and spectroscopic characterisation. Chem. Chem. Technol, 2020, 14(2), 146-153.
[http://dx.doi.org/10.23939/chcht14.02.146]
[25]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[26]
Miehlich, B. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200-206.
[http://dx.doi.org/10.1016/0009-2614(89)87234-3]
[27]
Frisch, M. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.
[28]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[29]
Dykstra, K.D.; Guo, L.; Birzin, E.T.; Chan, W.; Yang, Y.T.; Hayes, E.C.; DaSilva, C.A.; Pai, L.Y.; Mosley, R.T.; Kraker, B.; Fitzgerald, P.M.; DiNinno, F.; Rohrer, S.P.; Schaeffer, J.M.; Hammond, M.L. Estrogen receptor ligands. Part 16: 2-Aryl indoles as highly subtype selective ligands for ERalpha. Bioorg. Med. Chem. Lett., 2007, 17(8), 2322-2328.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.054] [PMID: 17289385]
[30]
Williams, S.P.; Sigler, P.B. Atomic structure of progesterone complexed with its receptor. Nature, 1998, 393(6683), 392-396.
[http://dx.doi.org/10.1038/30775] [PMID: 9620806]
[31]
Systèmes, D. Biovia discovery studio modeling environment; Dassault Systèmes Biovia: San Diego, CA, USA, 2016.
[32]
Darwin, K.H.; Ehrt, S.; Gutierrez-Ramos, J.C.; Weich, N.; Nathan, C.F. The proteasome of mycobacterium tuberculosis is required for resistance to nitric oxide. Science, 2003, 302(5652), 1963-1966.
[http://dx.doi.org/10.1126/science.1091176] [PMID: 14671303]
[33]
Bandyopadhyay, N.; Pradhan, A.B.; Das, S.; Lu, L.; Zhu, M.; Chowdhury, S.; Naskar, J.P. Synthesis, structure, DFT calculations, electrochemistry, fluorescence, DNA binding and molecular docking aspects of a novel oxime based ligand and its palladium(II) complex. J. Photochem. Photobiol. B, 2016, 160, 336-346.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.026] [PMID: 27179300]
[34]
Guhathakurta, B. Synthesis, characterization, structure, DNA binding aspects and molecular docking study of a novel Schiff base ligand and its bis (μ-chloro) bridged Cu (II) dimer. Polyhedron, 2017, 126, 195-204.
[http://dx.doi.org/10.1016/j.poly.2017.01.033]
[35]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1), W443-7.
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]
[36]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[37]
Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model., 2014, 54(12), 3284-3301.
[http://dx.doi.org/10.1021/ci500467k] [PMID: 25382374]
[38]
Teppen, B.J. HyperChem, release 2: Molecular modeling for the personal computer. J. Chem. Inf. Comput. Sci., 1992, 32(6), 757-759.
[http://dx.doi.org/10.1021/ci00010a025]
[39]
Purkayastha, S.K.; Jha, T.; Pal, D.K.; De, A.U. Possible antineoplastic agents: Part XIII. Synthesis, biological evaluation and QSAR studies of some 1-(substituted benzenesulphonyl)-5-oxopyrrolidine-2-carboxylic acid derivatives. Anticancer Drug Des., 1993, 8(2), 95-100.
[PMID: 8494605]
[40]
Srikanth, K. As a part of a composite programme of rational drug design (RDD)', we had synthesized some substituted. Indian J. Biochem. Biophys., 2001, 38, 120.
[PMID: 11563323]
[41]
Srikanth, K.; Debnath, B.; Jha, T. QSAR study on adenosine kinase inhibition of pyrrolo[2,3-d]pyrimidine nucleoside analogues using the hansch approach. Bioorg. Med. Chem. Lett., 2002, 12(6), 899-902.
[http://dx.doi.org/10.1016/S0960-894X(02)00042-2] [PMID: 11958989]
[42]
Jha, T. QSAR study on some substituted glutamine analogs as anticancer agents. Internet Electron. J. Mol. Des, 2003, 2, 539-545.
[43]
Samanta, S.; Srikanth, K.; Banerjee, S.; Debnath, B.; Gayen, S.; Jha, T. 5-N-Substituted-2-(substituted benzenesulphonyl) glutamines as antitumor agents. Part II: Synthesis, biological activity and QSAR study. Bioorg. Med. Chem., 2004, 12(6), 1413-1423.
[http://dx.doi.org/10.1016/j.bmc.2004.01.006] [PMID: 15018914]
[44]
Vladusic, E.A.; Hornby, A.E.; Guerra-Vladusic, F.K.; Lupu, R. Expression of estrogen receptor β messenger RNA variant in breast cancer. Cancer Res., 1998, 58(2), 210-214.
[PMID: 9443393]
[45]
Brzozowski, A.M.; Pike, A.C.; Dauter, Z.; Hubbard, R.E.; Bonn, T.; Engström, O.; Ohman, L.; Greene, G.L.; Gustafsson, J.A.; Carlquist, M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 1997, 389(6652), 753-758.
[http://dx.doi.org/10.1038/39645] [PMID: 9338790]
[46]
Mordasini, T.; Curioni, A.; Bursi, R.; Andreoni, W. The binding mode of progesterone to its receptor deduced from molecular dynamics simulations. ChemBioChem, 2003, 4(2-3), 155-161.
[http://dx.doi.org/10.1002/cbic.200390026] [PMID: 12616628]
[47]
Tanenbaum, D.M.; Wang, Y.; Williams, S.P.; Sigler, P.B. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 5998-6003.
[http://dx.doi.org/10.1073/pnas.95.11.5998] [PMID: 9600906]
[48]
Alam, S.; Khan, F. 3D-QSAR, Docking, ADME/Tox studies on Flavone analogs reveal anticancer activity through Tankyrase inhibition. Sci. Rep., 2019, 9(1), 5414.
[http://dx.doi.org/10.1038/s41598-019-41984-7] [PMID: 30932078]
[49]
Jalali-Heravi, M.; Kyani, A. Use of computer-assisted methods for the modeling of the retention time of a variety of volatile organic compounds: A PCA-MLR-ANN approach. J. Chem. Inf. Comput. Sci., 2004, 44(4), 1328-1335.
[http://dx.doi.org/10.1021/ci0342270] [PMID: 15272841]
[50]
Podunavac-Kuzmanović, S.O.; Cvetković, D.D.; Barna, D.J. QSAR analysis of 2-amino or 2-methyl-1-substituted benzimidazoles against Pseudomonas aeruginosa. Int. J. Mol. Sci., 2009, 10(4), 1670-1682.
[http://dx.doi.org/10.3390/ijms10041670] [PMID: 19468332]
[51]
Srivastava, A.; Shukla, N. Quantitative structure activity relationship (QSAR) studies on a series of imidazole derivatives as novel ORL1 receptor antagonists. J. Saudi Chem. Soc., 2013, 17(3), 321-328.
[http://dx.doi.org/10.1016/j.jscs.2011.04.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy