Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Cell-based Therapy for Ocular Disorders: A Promising Frontier

Author(s): Milad Ahani-Nahayati, Vahid Niazi, Alireza Moradi, Bahareh Pourjabbar , Reza Roozafzoon, Alireza Baradaran-Rafii and Saeed Heidari Keshel*

Volume 17, Issue 2, 2022

Published on: 22 June, 2021

Page: [147 - 165] Pages: 19

DOI: 10.2174/1574888X16666210622124555

Price: $65

Abstract

As the ocular disorders causing the long-term blindness or optical abnormalities of the ocular tissue entirely affect life quality, an insight into their corresponding pathogenesis and the expansion of attitudes authorizing earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for hindrance of development of visual impairment to blindness. Accordingly, stem cells because of their particular competencies have attracted pronounced attention to be applied in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding Mesenchymal Stem/Stromal Cells (MSC), Neural Stem Cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and Retinal Pigment Epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard and the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from Age-related Macular Degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the last decade's in vivo reports.

Keywords: Ocular diseases, cell-based therapy, regenerative medicine, stem cell, multipotent stem cells, pluripotent stem cells.

Graphical Abstract

[1]
Becker S, Jayaram H, Limb GA. Recent advances towards the clinical application of stem cells for retinal regeneration. Cells 2012; 1(4): 851-73.
[http://dx.doi.org/10.3390/cells1040851] [PMID: 24710533]
[2]
Liu XF, Zhou DD, Xie T, et al. The Nrf2 signaling in retinal ganglion cells under oxidative stress in ocular neurodegenerative diseases. Int J Biol Sci 2018; 14(9): 1090-8.
[http://dx.doi.org/10.7150/ijbs.25996] [PMID: 29989056]
[3]
Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications. Invest Ophthalmol Vis Sci 2010; 51(11): 5403-20.
[http://dx.doi.org/10.1167/iovs.10-5392] [PMID: 20980702]
[4]
Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res 2015; 14(3): 243-57.
[http://dx.doi.org/10.1016/j.scr.2015.02.003] [PMID: 25752437]
[5]
Margiana R, Aman R A, Pawitan J A, Jusuf A A, Ibrahim N, Wibowo H. The effect of human umbilical cord-derived mesenchymal stem cell conditioned medium on the peripheral nerve regeneration of injured rats. Electron J Gen Med 2019; 16(6): em171.
[6]
Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? J Cell Physiol 2020; 235(12): 9166-84.
[http://dx.doi.org/10.1002/jcp.29800] [PMID: 32437029]
[7]
Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16(3): 381-90.
[PMID: 5336210]
[8]
McCulloch EA, Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 1960; 13(1): 115-25.
[http://dx.doi.org/10.2307/3570877] [PMID: 13858509]
[9]
Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354(17): 1813-26.
[http://dx.doi.org/10.1056/NEJMra052638] [PMID: 16641398]
[10]
Yaghoubi Y, Zamani M, Naimi A, et al. Human CD34+ hematopoietic stem cells culture in humanized culture medium for cell therapy. Gene Rep 2020; 20: 100718.
[http://dx.doi.org/10.1016/j.genrep.2020.100718]
[11]
Zamani M, Yaghoubi Y, Naimi A, et al. Humanized culture medium for clinical-grade generation of erythroid cells from umbilical cord blood CD34+ cells. Adv Pharm Bull 2021; 11(2): 335-42.
[12]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
[13]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[14]
Sivan PP, Syed S, Mok P-L, et al. Stem cell therapy for treatment of ocular disorders. Stem Cells Int 2016; 2016: 8304879.
[http://dx.doi.org/10.1155/2016/8304879] [PMID: 27293447]
[15]
Jonas JB, Kamppeter BA, Harder B, Vossmerbaeumer U, Sauder G, Spandau UH. Intravitreal triamcinolone acetonide for diabetic macular edema: A prospective, randomized study. J Ocul Pharmacol Ther 2006; 22(3): 200-7.
[http://dx.doi.org/10.1089/jop.2006.22.200] [PMID: 16808682]
[16]
Dhamodaran K, Subramani M, Ponnalagu M, Shetty R, Das D. Ocular stem cells: A status update! Stem Cell Res Ther 2014; 5(2): 56.
[http://dx.doi.org/10.1186/scrt445] [PMID: 25158127]
[17]
Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med 2012; 33(4): 295-317.
[http://dx.doi.org/10.1016/j.mam.2012.04.005] [PMID: 22542780]
[18]
Yao P-L, Choudhary M, Lekwuwa M, Malek G. Subchronic fatty diet exacerbates age-related macular degneration (AMD) phenotypes associated with impaired LXRα signaling. Invest Ophthalmol Vis Sci 2020; 61(7): 1423-3.
[19]
Chan C-C, Ardeljan D. Molecular pathology of macrophages and interleukin-17 in age-related macular degeneration. Adv Exp Med Biol 2014; 801: 193-8.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_25]
[20]
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: A review. JAMA 2014; 311(18): 1901-11.
[http://dx.doi.org/10.1001/jama.2014.3192] [PMID: 24825645]
[21]
Rask-Madsen C, King GL. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab 2013; 17(1): 20-33.
[http://dx.doi.org/10.1016/j.cmet.2012.11.012] [PMID: 23312281]
[22]
Dave A, Martin S, Kumar R, Craig JE, Burdon KP, Sharma S. EPHA2 mutations contribute to congenital cataract through diverse mechanisms. Mol Vis 2016; 22: 18-30.
[PMID: 26900323]
[23]
Aslam S, Khosa T, Akbar A, et al. Single nucleotide polymorphism (rs7543472) in EPHA2 gene is associated with age-related cataract in subjects enrolled from Multan in southern Punjab: A case-control study. J Pak Med Assoc 2020; 70(4): 583-90.
[http://dx.doi.org/10.5455/JPMA.6232] [PMID: 32296199]
[24]
Zhu X, Zhang G, Kang L, Guan H. Epigenetic regulation of Werner Syndrome gene in age-related cataract. J Ophthalmol 2015; 2015: 579695.
[http://dx.doi.org/10.1155/2015/579695] [PMID: 26509079]
[25]
Chhadva P, Goldhardt R, Galor A. Meibomian gland disease: The role of gland dysfunction in dry eye disease. Ophthalmology 2017; 124(11S): S20-6.
[http://dx.doi.org/10.1016/j.ophtha.2017.05.031] [PMID: 29055358]
[26]
Messmer EM. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int 2015; 112(5): 71-81.
[http://dx.doi.org/10.3238/arztebl.2015.0071] [PMID: 25686388]
[27]
Begenisic T, Mazziotti R, Sagona G, et al. Preservation of visual cortex plasticity in retinitis pigmentosa. Neuroscience 2020; 424: 205-10.
[http://dx.doi.org/10.1016/j.neuroscience.2019.10.045] [PMID: 31901258]
[28]
Karali M, Testa F, Brunetti-Pierri R, et al. Clinical and genetic analysis of a European cohort with pericentral retinitis pigmentosa. Int J Mol Sci 2019; 21(1): 86.
[http://dx.doi.org/10.3390/ijms21010086] [PMID: 31877679]
[29]
Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis 2006; 1: 40.
[http://dx.doi.org/10.1186/1750-1172-1-40] [PMID: 17032466]
[30]
Guo ZH, Zhang W, Jia YYS, Liu QX, Li ZF, Lin JS. An insight into the difficulties in the discovery of specific biomarkers of limbal stem cells. Int J Mol Sci 2018; 19(7): 1982.
[http://dx.doi.org/10.3390/ijms19071982] [PMID: 29986467]
[31]
Sejpal K, Bakhtiari P, Deng SX. Presentation, diagnosis and management of limbal stem cell deficiency. Middle East Afr J Ophthalmol 2013; 20(1): 5-10.
[http://dx.doi.org/10.4103/0974-9233.106381] [PMID: 23580847]
[32]
Oh J, Levy M. Neuromyelitis optica: An antibody-mediated disorder of the central nervous system. Neurol Res Int 2012; 2012: 460825-5.
[http://dx.doi.org/10.1155/2012/460825]
[33]
Jasiak-Zatonska M, Kalinowska-Lyszczarz A, Michalak S, Kozubski W. The immunology of neuromyelitis optica-current knowledge, clinical implications, controversies and future perspectives. Int J Mol Sci 2016; 17(3): 273-3.
[http://dx.doi.org/10.3390/ijms17030273] [PMID: 26950113]
[34]
Fujihara K. Neuromyelitis optica spectrum disorders: Still evolving and broadening. Curr Opin Neurol 2019; 32(3): 385-94.
[http://dx.doi.org/10.1097/WCO.0000000000000694] [PMID: 30893099]
[35]
Sharif R, Bak-Nielsen S, Hjortdal J, Karamichos D. Pathogenesis of Keratoconus: The intriguing therapeutic potential of Prolactin-inducible protein. Prog Retin Eye Res 2018; 67: 150-67.
[http://dx.doi.org/10.1016/j.preteyeres.2018.05.002] [PMID: 29758268]
[36]
Shariati A, Nemati R, Sadeghipour Y, et al. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. Eur J Cell Biol 2020; 99(6): 151097.
[http://dx.doi.org/10.1016/j.ejcb.2020.151097] [PMID: 32800276]
[37]
Marofi F, Hassanzadeh A, Solali S, et al. Epigenetic mechanisms are behind the regulation of the key genes associated with the osteoblastic differentiation of the mesenchymal stem cells: The role of zoledronic acid on tuning the epigenetic changes. J Cell Physiol 2019; 234(9): 15108-22.
[http://dx.doi.org/10.1002/jcp.28152] [PMID: 30652308]
[38]
Sazmand M, Mehrabani D, Hosseini SE, Amini M. The effect of hydroalcoholic extract of Cannabis Sativa on morphology and growth of bone marrow mesenchymal stem cells in rat. Electron J Gen Med 2018; 15(3): em32.
[39]
Mimeault M, Hauke R, Batra SK. Stem cells: A revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 2007; 82(3): 252-64.
[http://dx.doi.org/10.1038/sj.clpt.6100301] [PMID: 17671448]
[40]
Xu Y, Shi Y, Ding S. A chemical approach to stem-cell biology and regenerative medicine. Nature 2008; 453(7193): 338-44.
[http://dx.doi.org/10.1038/nature07042] [PMID: 18480815]
[41]
Falkner-Radler CI, Krebs I, Glittenberg C, et al. Human retinal pigment epithelium (RPE) transplantation: Outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol 2011; 95(3): 370-5.
[http://dx.doi.org/10.1136/bjo.2009.176305] [PMID: 20610478]
[42]
Siqueira RC, Messias A, Voltarelli JC, Messias K, Arcieri RS, Jorge R. Resolution of macular oedema associated with retinitis pigmentosa after intravitreal use of autologous BM-derived hematopoietic stem cell transplantation. Bone Marrow Transplant 2013; 48(4): 612-3.
[http://dx.doi.org/10.1038/bmt.2012.185] [PMID: 23000646]
[43]
Roozafzoon R, Lashay A, Vasei M, et al. Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network. Biochem Biophys Res Commun 2015; 457(2): 154-60.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.069] [PMID: 25543058]
[44]
Casaroli-Marano RP, Nieto-Nicolau N, Martínez-Conesa EM. Progenitor cells for ocular surface regenerative therapy. Ophthalmic Res 2013; 49(3): 115-21.
[http://dx.doi.org/10.1159/000345257] [PMID: 23257987]
[45]
Wiley LA, Burnight ER, Songstad AE, et al. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 2015; 44: 15-35.
[46]
Fields M, Cai H, Gong J, Del PL. Potential of induced pluripotent stem cells (iPSCs) for treating age-related macular degeneration (AMD). Cells 2016; 5(4): 44.
[http://dx.doi.org/10.3390/cells5040044] [PMID: 27941641]
[47]
Mohanty S. Cellular therapy for ocular diseases. In: Velpandian T, Ed. Pharmacology of ocular therapeutics. Germany: Springer 2016; pp. 467-78.
[http://dx.doi.org/10.1007/978-3-319-25498-2_18]
[48]
Chen K, Wang D, Du WT, et al. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol 2010; 135(3): 448-58.
[http://dx.doi.org/10.1016/j.clim.2010.01.015] [PMID: 20207200]
[49]
Shi Y, Hu G, Su J, et al. Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Res 2010; 20(5): 510-8.
[http://dx.doi.org/10.1038/cr.2010.44] [PMID: 20368733]
[50]
Sheng H, Wang Y, Jin Y, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 2008; 18(8): 846-57.
[http://dx.doi.org/10.1038/cr.2008.80] [PMID: 18607390]
[51]
Xu G, Zhang L, Ren G, et al. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res 2007; 17(3): 240-8.
[http://dx.doi.org/10.1038/cr.2007.4] [PMID: 17325691]
[52]
Chen H-W, Chen H-Y, Wang L-T, et al. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines. J Immunol 2013; 190(10): 5065-77.
[http://dx.doi.org/10.4049/jimmunol.1202775] [PMID: 23589610]
[53]
Galland S, Vuille J, Martin P, et al. Tumor-derived mesenchymal stem cells use distinct mechanisms to block the activity of natural killer cell subsets. Cell Rep 2017; 20(12): 2891-905.
[http://dx.doi.org/10.1016/j.celrep.2017.08.089] [PMID: 28930684]
[54]
Ghannam S, Pène J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 2010; 185(1): 302-12.
[http://dx.doi.org/10.4049/jimmunol.0902007] [PMID: 20511548]
[55]
Biswas S, Mandal G, Roy Chowdhury S, et al. Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-polarized macrophages in breast cancer. J Immunol 2019; 203(12): 3447-60.
[http://dx.doi.org/10.4049/jimmunol.1900692] [PMID: 31704881]
[56]
Takizawa N, Okubo N, Kamo M, et al. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture. Exp Cell Res 2017; 358(2): 411-20.
[http://dx.doi.org/10.1016/j.yexcr.2017.07.014] [PMID: 28712928]
[57]
Shin JM, Kim J, Kim HE, et al. Enhancement of differentiation efficiency of hESCs into vascular lineage cells in hypoxia via a paracrine mechanism. Stem Cell Res 2011; 7(3): 173-85.
[http://dx.doi.org/10.1016/j.scr.2011.06.002] [PMID: 21907161]
[58]
Chen C-W, Montelatici E, Crisan M, et al. Perivascular multi-lineage progenitor cells in human organs: Regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 2009; 20(5-6): 429-34.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.014] [PMID: 19926515]
[59]
Cai Q, Brissova M, Reinert RB, et al. Enhanced expression of VEGF-A in β cells increases endothelial cell number but impairs islet morphogenesis and β cell proliferation. Dev Biol 2012; 367(1): 40-54.
[http://dx.doi.org/10.1016/j.ydbio.2012.04.022] [PMID: 22546694]
[60]
Beazley-Long N, Hua J, Jehle T, et al. VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro. Am J Pathol 2013; 183(3): 918-29.
[http://dx.doi.org/10.1016/j.ajpath.2013.05.031] [PMID: 23838428]
[61]
Guadagni V, Novelli E, Piano I, Gargini C, Strettoi E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog Retin Eye Res 2015; 48: 62-81.
[http://dx.doi.org/10.1016/j.preteyeres.2015.06.005]
[62]
He Y, Zhang Y, Liu X, et al. Recent advances of stem cell therapy for retinitis pigmentosa. Int J Mol Sci 2014; 15(8): 14456-74.
[http://dx.doi.org/10.3390/ijms150814456] [PMID: 25141102]
[63]
Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells 2012; 30(4): 673-86.
[http://dx.doi.org/10.1002/stem.1037] [PMID: 22267304]
[64]
Li Y, Tsai Y-T, Hsu C-W, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 2012; 18(9): 1312-9.
[http://dx.doi.org/10.2119/molmed.2012.00242] [PMID: 22895806]
[65]
Sun J, Mandai M, Kamao H, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice. Stem Cells 2015; 33(5): 1543-53.
[http://dx.doi.org/10.1002/stem.1960] [PMID: 25728228]
[66]
Sugita S, Kamao H, Iwasaki Y, et al. Inhibition of T-cell activation by retinal pigment epithelial cells derived from induced pluripotent stem cells. Invest Ophthalmol Vis Sci 2015; 56(2): 1051-62.
[http://dx.doi.org/10.1167/iovs.14-15619] [PMID: 25604685]
[67]
Wang N-K, Tosi J, Kasanuki JM, et al. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 2010; 89(8): 911-9.
[http://dx.doi.org/10.1097/TP.0b013e3181d45a61] [PMID: 20164818]
[68]
Liu Y, Chen SJ, Li SY, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther 2017; 8(1): 209.
[http://dx.doi.org/10.1186/s13287-017-0661-8] [PMID: 28962643]
[69]
Satarian L, Nourinia R, Safi S, et al. Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa; A Safety Study. J Ophthalmic Vis Res 2017; 12(1): 58-64.
[http://dx.doi.org/10.4103/2008-322X.200164] [PMID: 28299008]
[70]
Oner A, Gonen ZB, Sinim N, Cetin M, Ozkul Y. Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: A phase I clinical safety study. Stem Cell Res Ther 2016; 7(1): 178-8.
[http://dx.doi.org/10.1186/s13287-016-0432-y] [PMID: 27906070]
[71]
Siqueira RC, Messias A, Messias K, et al. Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (Reticell-clinical trial). Stem Cell Res Ther 2015; 6(1): 29.
[http://dx.doi.org/10.1186/s13287-015-0020-6] [PMID: 25890251]
[72]
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton’s jelly derived mesenchymal stem cells: Preliminary clinical results. Stem Cell Res Ther 2020; 11(1): 25.
[http://dx.doi.org/10.1186/s13287-020-1549-6] [PMID: 31931872]
[73]
Kamao H. Preclinical study of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets transplantation. Nippon Ganka Gakkai Zasshi 2016; 120(11): 754-63.
[PMID: 30074740]
[74]
Sharma R, Khristov V, Rising A, et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 2019; 11(475): eaat5580.
[http://dx.doi.org/10.1126/scitranslmed.aat5580] [PMID: 30651323]
[75]
Kanemura H, Go MJ, Shikamura M, et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One 2014; 9(1): e85336.
[http://dx.doi.org/10.1371/journal.pone.0085336] [PMID: 24454843]
[76]
Mazzilli JL, Snook JD, Simmons K, et al. A preclinical safety study of human embryonic stem cell-derived retinal pigment epithelial cells for macular degeneration. J Ocul Pharmacol Ther 2020; 36(1): 65-9.
[http://dx.doi.org/10.1089/jop.2019.0039] [PMID: 31596637]
[77]
Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 2009; 27(9): 2126-35.
[http://dx.doi.org/10.1002/stem.149] [PMID: 19521979]
[78]
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015; 385(9967): 509-16.
[http://dx.doi.org/10.1016/S0140-6736(14)61376-3] [PMID: 25458728]
[79]
da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018; 36(4): 328-37.
[http://dx.doi.org/10.1038/nbt.4114] [PMID: 29553577]
[80]
Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med 2017; 376(11): 1038-46.
[http://dx.doi.org/10.1056/NEJMoa1608368] [PMID: 28296613]
[81]
Oner A, Gonen ZB, Sevim DG, Smim Kahraman N, Unlu M. Suprachoroidal Adipose tissue-derived mesenchymal stem cell implantation in patients with dry-type age-related macular degeneration and Stargardt’s macular dystrophy: 6-month follow-up results of a phase 2 study. Cell Reprogram 2018; 20(6): 329-36.
[http://dx.doi.org/10.1089/cell.2018.0045] [PMID: 31251672]
[82]
Johnson TV, Bull ND, Martin KR. Stem cell therapy for glaucoma: Possibilities and practicalities. Expert Rev Ophthalmol 2011; 6(2): 165-74.
[http://dx.doi.org/10.1586/eop.11.3] [PMID: 21686079]
[83]
Levin LA, Ritch R, Richards JE, Borrás T. Stem cell therapy for ocular disorders. Arch Ophthalmol 2004; 122(4): 621-7.
[http://dx.doi.org/10.1001/archopht.122.4.621] [PMID: 15078681]
[84]
Daliri K, Ljubimov AV, Hekmatimoghaddam S. Glaucoma, stem cells, and gene therapy: Where are we now? Int J Stem Cells 2017; 10(2): 119-28.
[http://dx.doi.org/10.15283/ijsc17029] [PMID: 28844129]
[85]
Sun Y, Williams A, Waisbourd M, Iacovitti L, Katz LJ. Stem cell therapy for glaucoma: Science or snake oil? Surv Ophthalmol 2015; 60(2): 93-105.
[http://dx.doi.org/10.1016/j.survophthal.2014.07.001] [PMID: 25132498]
[86]
Suen HC, Qian Y, Liao J, et al. Transplantation of retinal ganglion cells derived from male germline stem cell as a potential treatment to glaucoma. Stem Cells Dev 2019; 28(20): 1365-75.
[http://dx.doi.org/10.1089/scd.2019.0060] [PMID: 31580778]
[87]
Roubeix C, Godefroy D, Mias C, et al. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res Ther 2015; 6(1): 177.
[http://dx.doi.org/10.1186/s13287-015-0168-0] [PMID: 26377305]
[88]
Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 2010; 51(4): 2051-9.
[http://dx.doi.org/10.1167/iovs.09-4509] [PMID: 19933193]
[89]
Harper MM, Grozdanic SD, Blits B, et al. Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci 2011; 52(7): 4506-15.
[http://dx.doi.org/10.1167/iovs.11-7346] [PMID: 21498611]
[90]
Mead B, Ahmed Z, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in a genetic DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2018; 59(13): 5473-80.
[http://dx.doi.org/10.1167/iovs.18-25310] [PMID: 30452601]
[91]
Mead B, Amaral J, Tomarev S. Mesenchymal stem cell–derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma. Invest Ophthalmol Vis Sci 2018; 59(2): 702-14.
[http://dx.doi.org/10.1167/iovs.17-22855] [PMID: 29392316]
[92]
Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through mirna-dependent mechanisms. Stem Cells Transl Med 2017; 6(4): 1273-85.
[http://dx.doi.org/10.1002/sctm.16-0428] [PMID: 28198592]
[93]
Eastlake K, Wang W, Jayaram H, et al. Phenotypic and functional characterization of müller glia isolated from induced pluripotent stem cell-derived retinal organoids: Improvement of retinal ganglion cell function upon transplantation. Stem Cells Transl Med 2019; 8(8): 775-84.
[http://dx.doi.org/10.1002/sctm.18-0263] [PMID: 31037833]
[94]
Bull ND, Irvine K-A, Franklin RJ, Martin KR. Transplanted oligodendrocyte precursor cells reduce neurodegeneration in a model of glaucoma. Invest Ophthalmol Vis Sci 2009; 50(9): 4244-53.
[http://dx.doi.org/10.1167/iovs.08-3239] [PMID: 19357352]
[95]
Shi K, Wang Z, Liu Y, et al. CFHR1-modified neural stem cells ameliorated brain injury in a mouse model of neuromyelitis optica spectrum disorders. J Immunol 2016; 197(9): 3471-80.
[http://dx.doi.org/10.4049/jimmunol.1600135] [PMID: 27671112]
[96]
Hoay KY, Ratnagopal P. Autologous hematopoietic stem cell transplantation for the treatment of neuromyelitis optica in Singapore. Acta Neurol Taiwan 2018; 27(1): 26-32.
[PMID: 30315559]
[97]
Peng F, Qiu W, Li J, et al. A preliminary result of treatment of neuromyelitis optica with autologous peripheral hematopoietic stem cell transplantation. Neurologist 2010; 16(6): 375-8.
[http://dx.doi.org/10.1097/NRL.0b013e3181b126e3] [PMID: 21150387]
[98]
Fu Y, Yan Y, Qi Y, et al. Impact of autologous mesenchymal stem cell infusion on neuromyelitis optica spectrum disorder: A pilot, 2-year observational study. CNS Neurosci Ther 2016; 22(8): 677-85.
[http://dx.doi.org/10.1111/cns.12559] [PMID: 27219819]
[99]
Lu Z, Ye D, Qian L, et al. Human umbilical cord mesenchymal stem cell therapy on neuromyelitis optica. Curr Neurovasc Res 2012; 9(4): 250-5.
[http://dx.doi.org/10.2174/156720212803530708] [PMID: 22873728]
[100]
Lemp MA, Foulks GN. The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international dry eye workshop (2007). Ocul Surf 2007; 5(2): 75-92.
[http://dx.doi.org/10.1016/S1542-0124(12)70081-2] [PMID: 17508116]
[101]
Miljanović B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol 2007; 143(3): 409-15.
[http://dx.doi.org/10.1016/j.ajo.2006.11.060]
[102]
Villatoro AJ, Fernández V, Claros S, et al. Regenerative therapies in dry eye disease: From growth factors to cell therapy. Int J Mol Sci 2017; 18(11): 2264.
[http://dx.doi.org/10.3390/ijms18112264] [PMID: 29143779]
[103]
Liu R, Su D, Zhou M, Feng X, Li X, Sun L. Umbilical cord mesenchymal stem cells inhibit the differentiation of circulating T follicular helper cells in patients with primary Sjögren’s syndrome through the secretion of indoleamine 2,3-dioxygenase. Rheumatology 2015; 54(2): 332-42.
[http://dx.doi.org/10.1093/rheumatology/keu316] [PMID: 25169988]
[104]
Beyazyıldız E, Pınarlı F A, Beyazyıldız Ö, et al. Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model. Stem Cells Int 2014; 2014: 250230.
[http://dx.doi.org/10.1155/2014/250230]
[105]
Lee MJ, Ko AY, Ko JH, et al. Mesenchymal stem/stromal cells protect the ocular surface by suppressing inflammation in an experimental dry eye. Mol Ther 2015; 23(1): 139-46.
[http://dx.doi.org/10.1038/mt.2014.159] [PMID: 25152016]
[106]
Xu J, Wang D, Liu D, et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood 2012; 120(15): 3142-51.
[http://dx.doi.org/10.1182/blood-2011-11-391144] [PMID: 22927248]
[107]
Dietrich J, Ott L, Roth M, et al. MSc transplantation improves lacrimal gland regeneration after surgically induced dry eye disease in mice. Sci Rep 2019; 9(1): 18299.
[http://dx.doi.org/10.1038/s41598-019-54840-5] [PMID: 31797895]
[108]
Villatoro AJ, Fernández V, Claros S, Rico-Llanos GA, Becerra J, Andrades JA. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. Biomed Res Int 2015; 2015: 527926.
[http://dx.doi.org/10.1155/2015/527926] [PMID: 25802852]
[109]
Chen JJ, Tseng SC. Corneal epithelial wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci 1990; 31(7): 1301-14.
[PMID: 1694836]
[110]
Sehic A, Utheim ØA, Ommundsen K, Utheim TP. Pre-clinical cell-based therapy for limbal stem cell deficiency. J Funct Biomater 2015; 6(3): 863-88.
[http://dx.doi.org/10.3390/jfb6030863] [PMID: 26343740]
[111]
Patil S, D’Souza C, Patil P, et al. Culture and characterization of human dental pulp-derived stem cells as limbal stem cells for corneal damage repair. Mol Med Rep 2019; 20(5): 4688-94.
[http://dx.doi.org/10.3892/mmr.2019.10691] [PMID: 31545477]
[112]
Shen C, Chan C C, Holland E J. Limbal stem cell transplantation for soft contact lens wear-related limbal stem cell deficiency. Am J Ophthalmol 2015; 160(6): 1142-9.
[http://dx.doi.org/10.1016/j.ajo.2015.07.038]
[113]
Borderie VM, Ghoubay D, Georgeon C, et al. Long-term results of cultured limbal stem cell versus limbal tissue transplantation in stage III limbal deficiency. Stem Cells Transl Med 2019; 8(12): 1230-41.
[http://dx.doi.org/10.1002/sctm.19-0021] [PMID: 31486585]
[114]
Wang J, Qi X, Dong Y, et al. Comparison of the efficacy of different cell sources for transplantation in total limbal stem cell deficiency. Graefes Arch Clin Exp Ophthalmol 2019; 257(6): 1253-63.
[http://dx.doi.org/10.1007/s00417-019-04316-z] [PMID: 31004182]
[115]
Sharma N, Mohanty S, Jhanji V, Vajpayee RB. Amniotic membrane transplantation with or without autologous cultivated limbal stem cell transplantation for the management of partial limbal stem cell deficiency. Clin Ophthalmol 2018; 12: 2103.: 2106.
[http://dx.doi.org/10.2147/OPTH.S181035]
[116]
Campbell JDM, Ahmad S, Agrawal A, et al. Allogeneic ex vivo expanded corneal epithelial stem cell transplantation: A randomized controlled clinical trial. Stem Cells Transl Med 2019; 8(4): 323-31.
[http://dx.doi.org/10.1002/sctm.18-0140] [PMID: 30688407]
[117]
Galindo S, Herreras JM, López-Paniagua M, et al. Therapeutic effect of human adipose tissue-derived mesenchymal stem cells in experimental corneal failure due to limbal stem cell ciche damage. Stem Cells 2017; 35(10): 2160-74.
[http://dx.doi.org/10.1002/stem.2672] [PMID: 28758321]
[118]
Morgan SJ. Chemical burns of the eye: Causes and management. Br J Ophthalmol 1987; 71(11): 854-7.
[http://dx.doi.org/10.1136/bjo.71.11.854] [PMID: 3689738]
[119]
Uçakhan ÖÖ, Köklü G, Firat E. Nonpreserved human amniotic membrane transplantation in acute and chronic chemical eye injuries. Cornea 2002; 21(2): 169-72.
[http://dx.doi.org/10.1097/00003226-200203000-00008] [PMID: 11862088]
[120]
Kruse FE. Stem cells and corneal epithelial regeneration. Eye 1994; 8(Pt 2): 170-83.
[http://dx.doi.org/10.1038/eye.1994.42] [PMID: 7958018]
[121]
Gomes JÁP, Geraldes Monteiro B, Melo GB, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 2010; 51(3): 1408-14.
[http://dx.doi.org/10.1167/iovs.09-4029] [PMID: 19892864]
[122]
Ye J, Yao K, Kim JC. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: Engraftment and involvement in wound healing. Eye 2006; 20(4): 482-90.
[http://dx.doi.org/10.1038/sj.eye.6701913] [PMID: 15895027]
[123]
Lee JY, Jeong HJ, Kim MK, Wee WR. Bone marrow-derived mesenchymal stem cells affect immunologic profiling of interleukin-17-secreting cells in a chemical burn mouse model. Korean J Ophthalmol 2014; 28(3): 246-56.
[http://dx.doi.org/10.3341/kjo.2014.28.3.246] [PMID: 24882959]
[124]
Navas A, Magaña-Guerrero FS, Domínguez-López A, et al. Anti-inflammatory and anti-fibrotic effects of human amniotic membrane mesenchymal stem cells and their potential in corneal repair. Stem Cells Transl Med 2018; 7(12): 906-17.
[http://dx.doi.org/10.1002/sctm.18-0042] [PMID: 30260581]
[125]
Lin HF, Lai YC, Tai CF, et al. Effects of cultured human adipose-derived stem cells transplantation on rabbit cornea regeneration after alkaline chemical burn. Kaohsiung J Med Sci 2013; 29(1): 14-8.
[http://dx.doi.org/10.1016/j.kjms.2012.08.002] [PMID: 23257251]
[126]
Luengo Gimeno F, Lavigne V, Gatto S, Croxatto JO, Correa L, Gallo JE. Advances in corneal stem-cell transplantation in rabbits with severe ocular alkali burns. J Cataract Refract Surg 2007; 33(11): 1958-65.
[http://dx.doi.org/10.1016/j.jcrs.2007.07.020] [PMID: 17964405]
[127]
Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res 2008; 100: 133-58.
[http://dx.doi.org/10.1016/S0065-230X(08)00005-5]
[128]
Devolder K. To be, or not to be? Are induced pluripotent stem cells potential babies, and does it matter? EMBO Rep 2009; 10(12): 1285-7.
[http://dx.doi.org/10.1038/embor.2009.244] [PMID: 19949407]
[129]
Totonchi M, Taei A, Seifinejad A, et al. Feeder- and serum-free establishment and expansion of human induced pluripotent stem cells. Int J Dev Biol 2010; 54(5): 877-86.
[http://dx.doi.org/10.1387/ijdb.092903mt] [PMID: 19876814]
[130]
Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 2010; 28(9): 1568-70.
[http://dx.doi.org/10.1002/stem.471] [PMID: 20641038]
[131]
Humpherys D, Eggan K, Akutsu H, et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci 2002; 99(20): 12889-94.
[http://dx.doi.org/10.1073/pnas.192433399] [PMID: 12235366]
[132]
Tavakoli S, Ghaderi JHR, Shariati A, et al. Mesenchymal stromal cells; a new horizon in regenerative medicine. J Cell Physiol 2020; 235(12): 9185-210.
[http://dx.doi.org/10.1002/jcp.29803] [PMID: 32452052]
[133]
Yu B, Li X-R, Zhang X-M. Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases. World J Stem Cells 2020; 12(3): 178-87.
[http://dx.doi.org/10.4252/wjsc.v12.i3.178] [PMID: 32266050]
[134]
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019; 2019: 9628536.
[http://dx.doi.org/10.1155/2019/9628536]
[135]
Hill AJ, Zwart I, Tam HH, et al. Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats. Stem Cells Dev 2009; 18(3): 399-409.
[http://dx.doi.org/10.1089/scd.2008.0084] [PMID: 18665766]
[136]
Garzón I, Martín-Piedra MA, Alfonso-Rodríguez C, et al. Generation of a biomimetic human artificial cornea model using Wharton’s jelly mesenchymal stem cells. Invest Ophthalmol Vis Sci 2014; 55(7): 4073-83.
[http://dx.doi.org/10.1167/iovs.14-14304] [PMID: 24906855]
[137]
Yamashita K, Inagaki E, Hatou S, et al. Corneal endothelial regeneration using mesenchymal stem cells derived from human umbilical cord. Stem Cells Dev 2018; 27(16): 1097-108.
[http://dx.doi.org/10.1089/scd.2017.0297] [PMID: 29929442]
[138]
Zhang W, Wang Y, Kong J, Dong M, Duan H, Chen S. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci Rep 2017; 7(1): 408.
[http://dx.doi.org/10.1038/s41598-017-00298-2] [PMID: 28341839]
[139]
Ji S, Lin S, Chen J, et al. Neuroprotection of transplanting human umbilical cord mesenchymal stem cells in a microbead induced ocular hypertension rat model. Curr Eye Res 2018; 43(6): 810-20.
[http://dx.doi.org/10.1080/02713683.2018.1440604] [PMID: 29505314]
[140]
Mangunsong C, Putera B, Haifa R, et al. Safety issues of peribulbar injection of umbilical cord mesenchymal stem cell (UC-MSC) in patients with retinitis pigmentosa. Cytotherapy 2019; 21(5): S83.
[http://dx.doi.org/10.1016/j.jcyt.2019.03.500]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy