Research Article

新设计的脱细胞支架,用于通过超临界二氧化碳流体和碱性/蛋白酶处理从弹性软骨进行基于支架的基因治疗

卷 22, 期 2, 2022

发表于: 18 June, 2021

页: [162 - 167] 页: 6

弟呕挨: 10.2174/1566523219666210618151843

价格: $65

摘要

背景:基于支架的基因治疗为组织工程提供了一种有前途的方法,它结合了医学应用和工程材料的知识,因此非常重要和流行。 目的:采用脱细胞技术从猪弹性软骨中去除细胞成分,留下天然脱细胞细胞外基质 (dECM) 组合物和大部分不溶性胶原蛋白、弹性蛋白和紧密结合的糖胺聚糖的结构完整性。对于新设计的胶原支架样品,弹性软骨被不同浓度的蛋白酶水解,获得完整清晰的状态。 方法:采用超临界二氧化碳(ScCO2)提取工艺从猪弹性软骨中去除细胞成分。具有胶原蛋白的 dECM 支架必须通过傅里叶变换红外光谱 (FTIR)、热重分析 (TGA) 和扫描电子显微镜 (SEM) 进行表征。 结果:该研究提供了一种结合超临界二氧化碳和碱性/蛋白酶的方法制备具有孔-支架微结构的dECM支架,并引入了基于支架的基因治疗在骨软骨组织工程中的潜在应用。新工艺简单高效。在源自猪弹性软骨的 dECM 支架中观察到孔支架微结构。在超过 330oC 时观察到所得 dECM 支架的 Tdmax 值。 结论:采用 ScCO2 和碱/酶处理(如 NH4OH 和木瓜蛋白酶的混合水溶液)成功地从猪组织中获得了一系列新型支架。获得了具有高热稳定性的dECM支架。由此产生的具有清洁孔支架微结构的支架可能是基于支架的基因治疗的潜在应用。

关键词: 蛋白酶、木瓜蛋白酶、超临界二氧化碳、弹性软骨、dECM、基于支架的基因治疗

图形摘要

[1]
Yan X, Chen YR, Song YF, et al. Scaffold-based gene therapeutics for osteochondral tissue engineering. Front Pharmacol 2020; 10: 1534.
[http://dx.doi.org/10.3389/fphar.2019.01534] [PMID: 31992984]
[2]
Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules 2019; 20(4): 1478-92.
[http://dx.doi.org/10.1021/acs.biomac.9b00043] [PMID: 30843390]
[3]
Tsezou A. Osteoarthritis year in review 2014: Genetics and genomics. Osteoarthritis Cartilage 2014; 22(12): 2017-24.
[http://dx.doi.org/10.1016/j.joca.2014.07.024] [PMID: 25456297]
[4]
Huang CC, Liu CY, Huang CY, Liu HW. Carbodimide cross-linked and biodegradation-controllable small intestinal submucosa sheets. Biomed Mater Eng 2014; 24(6): 1959-67.
[http://dx.doi.org/10.3233/BME-141005] [PMID: 25226892]
[5]
Liaw DJ, Huang CC, Lee WF, Borbély J, Kang ET. Synthesis and characteristics of the poly(carboxybetaine)s and the corresponding cationic polymers. J Polym Sci A Polym Chem 1997; 35: 3527-36.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19971130)35:16<3527:AID-POLA19>3.0.CO;2-H]
[6]
Liaw DJ, Huang CC, Sang HC, Kang ET. Intramolecular hydrophobic aggregation of amphiphilic polysulfobetaine with various hydrophobic groups in aqueous solution. Langmuir 1999; 15: 5204-11.
[http://dx.doi.org/10.1021/la980728h]
[7]
Chaw JR, Liu HW, Shih YC, Huang CC. New designed nerve conduits with a porous ionic cross-linked alginate/chitisan structure for nerve regeneration. Biomed Mater Eng 2015; 26(S1)(Suppl. 1): S95-S102.
[http://dx.doi.org/10.3233/BME-151294] [PMID: 26406097]
[8]
Alluri R, Song X, Bougioukli S, et al. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model. J Biomed Mater Res A 2019; 107(10): 2174-82.
[http://dx.doi.org/10.1002/jbm.a.36727] [PMID: 31112357]
[9]
Vogel KG, Trotter JA. The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll Relat Res 1987; 7(2): 105-14.
[http://dx.doi.org/10.1016/S0174-173X(87)80002-X] [PMID: 3621881]
[10]
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[11]
Guo JL, Kim YS, Mikos AG. Biomacromolecules for tissue engineering: Emerging biomimetic strategies. Biomacromolecules 2019; 20(8): 2904-12.
[http://dx.doi.org/10.1021/acs.biomac.9b00792] [PMID: 31282658]
[12]
Rothrauff BB, Coluccino L, Gottardi R, et al. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering. J Tissue Eng Regen Med 2018; 12(1): e159-70.
[http://dx.doi.org/10.1002/term.2465] [PMID: 28486778]
[13]
Rothrauff BB, Yang G, Tuan RS. Tissue-specific bioactivity of soluble tendon-derived and cartilage-derived extracellular matrices on adult mesenchymal stem cells. Stem Cell Res Ther 2017; 8(1): 133.
[http://dx.doi.org/10.1186/s13287-017-0580-8] [PMID: 28583182]
[14]
Woodfield TB, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 2004; 25(18): 4149-61.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.056] [PMID: 15046905]
[15]
Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999; 81(7): 905-17.
[http://dx.doi.org/10.2106/00004623-199907000-00002] [PMID: 10428121]
[16]
Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater 2018; 67: 270-81.
[http://dx.doi.org/10.1016/j.actbio.2017.11.046] [PMID: 29223704]
[17]
Huang YH, Tseng FW, Chang WH, et al. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater 2017; 58: 238-43.
[http://dx.doi.org/10.1016/j.actbio.2017.05.060] [PMID: 28579539]
[18]
O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005; 26(4): 433-41.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.052] [PMID: 15275817]
[19]
Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA 1989; 86(3): 933-7.
[http://dx.doi.org/10.1073/pnas.86.3.933] [PMID: 2915988]
[20]
Lohrasbi S, Mirzaei E, Karimizade A, Takallu S, Rezaei A. Collagen/cellulose nanofiber hydrogel scaffold: physical, mechanical and cell biocompatibility properties. Cellulose 2020; 27: 927-40.
[http://dx.doi.org/10.1007/s10570-019-02841-y]
[21]
Iafisco M, Foltran I, Sabbatini S, Tosi G, Roveri N. Electrospun nanostructured fibers of collagen-biomimetic apatite on titanium alloy. Bioinorg Chem Appl 2012; 2012: 123953.
[http://dx.doi.org/10.1155/2012/123953] [PMID: 22400013]
[22]
El-Fiqi A, Lee JH, Lee EJ, Kim HW. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater 2013; 9(12): 9508-21.
[http://dx.doi.org/10.1016/j.actbio.2013.07.036] [PMID: 23928332]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy