Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Preliminary Study of microRNAs Allele-specific Targeting in Allergic Rhinitis Patients from Central China

Author(s): Yu-Qin Deng, Song Li, Zheng-Yan Liang, Fen Li, Si-Lu Wen and Ze-Zhang Tao*

Volume 25, Issue 8, 2022

Published on: 03 June, 2021

Page: [1345 - 1354] Pages: 10

DOI: 10.2174/1386207324666210603112727

Price: $65

Abstract

Background: Abnormal expression of miRNA is a common feature in many diseases. Some studies have also emphasized that miRNAs play an important role in asthma and Allergic Rhinitis (AR). This study attempts to reveal the differences between miRNAs expression and normal nasal mucosa in AR patients by microarray method so as to further understand the molecular mechanism of AR development.

Methods: MiRNA microarrays were used for analyzing six samples of the nasal mucosa of AR and six samples of nonallergic patients. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) of some differently expressed miRNAs was used to confirm the array results. Furthermore, pathway analysis was carried out.

Results: The microarray identified that 64 miRNAs showed altered expression in the nasal mucosa of the AR group when compared with the control group. Moreover, the expression levels of ten miRNAs were significantly altered in the AR group. To verify the results of microarray, three differentially expressed miRNA were determined by RT-PCR, and the results also confirmed these changes. Ten differentially expressed miRNAs were present in the nasal mucosa of AR patients compared with the control group, and three differentially expressed miRNAs as miR-1244, miR- 4651, and miR-7641 were determined by RT-PCR. The results also confirmed the changes, indicating that they play important roles in the process of AR.

Conclusion: MiR-1244, miR-4651, and miR-7641 may play important roles in the process of AR. Sequencing analysis indicated that three kinds of mutations existed in MAPK8 3’UTR, which may play a role in binding with miR-7641, and then influence the AR process. Single miRNA or, more probably, their sets hold the promise for their use as biomarkers of allergic rhinitis. They are also a promising target of future therapies.

Keywords: microRNA, allergic rhinitis, polymorphism, pathway analysis, sequence analysis, RT-PCR.

Graphical Abstract

[1]
Yenigun, A.; Dadaci, Z.; Sahin, G.O.; Elbay, A. Prevalence of allergic rhinitis symptoms and positive skin-prick test results in patients with dry eye. Am. J. Rhinol. Allergy, 2016, 30(2), e26-e29.
[http://dx.doi.org/10.2500/ajra.2016.30.4275] [PMID: 26980382]
[2]
Cheng, L.; Chen, J.; Fu, Q.; He, S.; Li, H.; Liu, Z.; Tan, G.; Tao, Z.; Wang, D.; Wen, W.; Xu, R.; Xu, Y.; Yang, Q.; Zhang, C.; Zhang, G.; Zhang, R.; Zhang, Y.; Zhou, B.; Zhu, D.; Chen, L.; Cui, X.; Deng, Y.; Guo, Z.; Huang, Z.; Huang, Z.; Li, H.; Li, J.; Li, W.; Li, Y.; Xi, L.; Lou, H.; Lu, M.; Ouyang, Y.; Shi, W.; Tao, X.; Tian, H.; Wang, C.; Wang, M.; Wang, N.; Wang, X.; Xie, H.; Yu, S.; Zhao, R.; Zheng, M.; Zhou, H.; Zhu, L.; Zhang, L. Chinese society of allergy guidelines for diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol. Res., 2018, 10(4), 300-353.
[http://dx.doi.org/10.4168/aair.2018.10.4.300] [PMID: 29949830]
[3]
Brest, P.; Lapaquette, P.; Souidi, M.; Lebrigand, K.; Cesaro, A.; Vouret-Craviari, V.; Mari, B.; Barbry, P.; Mosnier, J.F.; Hébuterne, X.; Harel-Bellan, A.; Mograbi, B.; Darfeuille-Michaud, A.; Hofman, P. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat. Genet., 2011, 43(3), 242-245.
[http://dx.doi.org/10.1038/ng.762] [PMID: 21278745]
[4]
Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 2005, 438(7068), 685-689.
[http://dx.doi.org/10.1038/nature04303] [PMID: 16258535]
[5]
Roff, A.N.; Craig, T.J.; August, A.; Stellato, C.; Ishmael, F.T. MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells. Am. J. Clin. Exp. Immunol., 2014, 3(2), 68-83.
[PMID: 25143867]
[6]
Rider, C.F. Diesel exhaust and allergen modulate miRNA and RNA in intact human epithelium. J. Allergy Clin. Immunol., 2016, S009167491630149X.
[7]
Li, F.; Shi, W.; Wan, Y.; Wang, Q.; Feng, W.; Yan, X.; Wang, J.; Chai, L.; Zhang, Q.; Li, M. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods. FEBS Open Bio, 2017, 7(12), 1880-1890.
[http://dx.doi.org/10.1002/2211-5463.12322] [PMID: 29226075]
[8]
Lei, S.F.; Papasian, C.J.; Deng, H.W. Polymorphisms in predicted miRNA binding sites and osteoporosis. J. Bone Miner. Res., 2011, 26(1), 72-78.
[http://dx.doi.org/10.1002/jbmr.186] [PMID: 20641033]
[9]
Abelson, J.F.; Kwan, K.Y.; O’Roak, B.J.; Baek, D.Y.; Stillman, A.A.; Morgan, T.M.; Mathews, C.A.; Pauls, D.L.; Rasin, M.R.; Gunel, M.; Davis, N.R.; Ercan-Sencicek, A.G.; Guez, D.H.; Spertus, J.A.; Leckman, J.F.; Dure, L.S., IV; Kurlan, R.; Singer, H.S.; Gilbert, D.L.; Farhi, A.; Louvi, A.; Lifton, R.P.; Sestan, N.; State, M.W. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 2005, 310(5746), 317-320.
[http://dx.doi.org/10.1126/science.1116502] [PMID: 16224024]
[10]
Naidoo, D.; Wu, A.C.; Brilliant, M.H.; Denny, J.; Ingram, C.; Kitchner, T.E.; Linneman, J.G.; McGeachie, M.J.; Roden, D.M.; Shaffer, C.M.; Shah, A.; Weeke, P.; Weiss, S.T.; Xu, H.; Medina, M.W. A polymorphism in HLA-G modifies statin benefit in asthma. Pharmacogenomics J., 2015, 15(3), 272-277.
[http://dx.doi.org/10.1038/tpj.2014.55] [PMID: 25266681]
[11]
Deng, Y.Q.; Tao, Z.Z.; Kong, Y.G.; Xiao, B.K.; Chen, S.M.; Xu, Y.; Wang, Y.; He, Q. Association between single nucleotide polymorphisms of surfactant protein D and allergic rhinitis in Chinese patients. Tissue Antigens, 2009, 73(6), 546-552.
[http://dx.doi.org/10.1111/j.1399-0039.2009.01232.x] [PMID: 19493231]
[12]
Petalas, K.; Durham, S.R. Allergen immunotherapy for allergic rhinitis. Rhinology, 2013, 51(2), 99-110.
[http://dx.doi.org/10.4193/Rhin12.86] [PMID: 23671890]
[13]
Ma, C.; Ma, Z.; Liao, X.L.; Liu, J.; Fu, Q.; Ma, S. Immunoregulatory. effects of glycyrrhizic acid exerts anti-asthmatic. effects via modulation of Th1/Th2 cytokines and enhancement of CD4(+)CD25(+)Foxp3+ regulatory T cells in ovalbumin-sensitized mice. J. Ethnopharmacol., 2013, 148(3), 755-762.
[http://dx.doi.org/10.1016/j.jep.2013.04.021] [PMID: 23632310]
[14]
Li, K.; Chen, Y.; Jiang, R.; Chen, D.; Wang, H.; Xiong, W.; Li, D.; Liu, Z.; Li, X.; Li, J.; Yuan, K. Protective. effects of astragaloside IV against ovalbumin-induced allergic rhinitis are mediated by T-box protein expressed in T cells/GATA-3 and forkhead box protein 3/retinoic acid-related orphan nuclear receptor t. Mol. Med. Rep., 2017, 16(2), 1207-1215.
[http://dx.doi.org/10.3892/mmr.2017.6685] [PMID: 28586019]
[15]
Shahsavan, S. The relationship between IL-17A and IL-22 expression and clinical severity in patients with moderate/severe persistent allergic rhinitis. Am. J. Otolaryngol., 2018.
[PMID: 30594402]
[16]
Fan, X.H.; Cheng, L.; Yan, A.H. Ameliorative effect of acetylshikonin on ovalbumin (OVA)-induced allergic rhinitis in mice through the inhibition of Th2 cytokine production and mast cell histamine release. APMIS, 2019, 127(10), 688-695.
[http://dx.doi.org/10.1111/apm.12984] [PMID: 31344274]
[17]
Amo, G.; García-Menaya, J.; Campo, P.; Cordobés, C.; Plaza Serón, M.C.; Ayuso, P.; Esguevillas, G.; Blanca, M.; Agúndez, J.A.; García-Martín, E. A nonsynonymous FCER1B SNP is associated with risk of developing allergic rhinitis and with IgE levels. Sci. Rep., 2016, 6, 19724.
[http://dx.doi.org/10.1038/srep19724] [PMID: 26792385]
[18]
Ying, X Association of interleukin-13 SNP rs1800925 with allergic rhinitis risk: A meta-analysis based on 1,411 cases and 3169 controls. Gene, 506(1), 179-183.
[19]
Chen, M.L.; Zhao, H.; Huang, Q.P.; Xie, Z.F. Single nucleotide polymorphisms of IL-13 and CD14 genes in allergic rhinitis: a meta-analysis. Eur. Arch. Otorhinolaryngol., 2018, 275(6), 1491-1500.
[http://dx.doi.org/10.1007/s00405-018-4975-7] [PMID: 29687183]
[20]
Haj-Salem, I.; Plante, S.; Gounni, A.S.; Rouabhia, M.; Chakir, J. Fibroblast-derived exosomes promote epithelial cell proliferation through TGF-2 signalling pathway in severe asthma. Allergy, 2018, 73(1), 178-186.
[http://dx.doi.org/10.1111/all.13234] [PMID: 28649804]
[21]
Kriebel, S.; Schmidt, D.; Holdenrieder, S.; Goltz, D.; Kristiansen, G.; Moritz, R.; Fisang, C.; Müller, S.C.; Ellinger, J. Analysis of tissue and serum microRNA expression in patients with upper urinary tract urothelial cancer. PLoS One, 2015, 10(1), e0117284.
[http://dx.doi.org/10.1371/journal.pone.0117284] [PMID: 25629698]
[22]
Jones, L.L. Differential T cell cytokine receptivity and not signal quality distinguishes IL-6 and IL-10 signaling during Th17 differentiation. J. Immunol., 2016, 1402953.
[23]
Stritesky, G.L.; Muthukrishnan, R.; Sehra, S.; Goswami, R.; Pham, D.; Travers, J.; Nguyen, E.T.; Levy, D.E.; Kaplan, M.H. The transcription factor STAT3 is required for T helper 2 cell development. Immunity, 2011, 34(1), 39-49.
[http://dx.doi.org/10.1016/j.immuni.2010.12.013] [PMID: 21215659]
[24]
Wjst, M.; Lichtner, P.; Meitinger, T.; Grimbacher, B. STAT3 single-nucleotide polymorphisms and STAT3 mutations associated with hyper-IgE syndrome are not responsible for increased serum IgE serum levels in asthma families. Eur. J. Hum. Genet., 2009, 17(3), 352-356.
[http://dx.doi.org/10.1038/ejhg.2008.169] [PMID: 18841165]
[25]
Bode, A.M.; Dong, Z. The functional contrariety of JNK. Mol. Carcinog., 2007, 46(8), 591-598.
[http://dx.doi.org/10.1002/mc.20348] [PMID: 17538955]
[26]
Chow, C.W.; Dong, C.; Flavell, R.A.; Davis, R.J. c-Jun NH(2)-terminal kinase inhibits targeting of the protein phosphatase calcineurin to NFATc1. Mol. Cell. Biol., 2000, 20(14), 5227-5234.
[http://dx.doi.org/10.1128/MCB.20.14.5227-5234.2000] [PMID: 10866678]
[27]
Yoo, J.K.; Jung, H.Y.; Kim, C.H.; Son, W.S.; Kim, J.K. miR-7641 modulates the expression of CXCL1 during endothelial differentiation derived from human embryonic stem cells. Arch. Pharm. Res., 2013, 36(3), 353-358.
[http://dx.doi.org/10.1007/s12272-013-0067-9] [PMID: 23444042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy