Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Small Non-coding RNAs in Embryonic Pre-implantation

Author(s): Hamid Nazarian , Marefat Ghaffari Novin, Sara Khaleghi * and Bahare Habibi*

Volume 22, Issue 4, 2022

Published on: 26 May, 2021

Page: [287 - 299] Pages: 13

DOI: 10.2174/1566524021666210526162917

Price: $65

Abstract

Failure of embryo implantation has been introduced as an important limiting parameter in early assisted reproduction and pregnancy. The embryo-maternal interactions, endometrial receptivity, and detections of implantation consist of the embryo viability. For regulating the implantation, multiple molecules may be consistent; however, their specific regulatory mechanisms still stand unclear. MicroRNAs (miRNAs) have attracted a lot of attention due to their important effect on human embryo implantation. MicroRNA (miRNA), which acts as the transcriptional regulator of gene expression, is consisted of embryo implantation. Recent studies indicated that miRNAs not only act inside the cells but also can be secreted by cells into the extracellular environment via multiple packaging forms, facilitating intercellular communication and providing indicative information related to various conditions. The detection of extracellular miRNAs provided new information in cases of implantation studies. For embryo-maternal communication, MiRNAs offered novel approaches. In addition, in assisted reproduction, for embryo choice and prediction of endometrial receptivity, they can act as non-invasive biomarkers and can enhance the accuracy in the process of reducing the mechanical damage for the tissue.

Keywords: Embryo implantation, non-coding RNAs, microRNAs, Exosome, blastocytes, microRNA biogenesis.

[1]
Liang J, Wang S, Wang Z. Role of microRNAs in embryo implantation. Reprod Biol Endocrinol 2017; 15(1): 90.
[http://dx.doi.org/10.1186/s12958-017-0309-7] [PMID: 29162091]
[2]
Wilkins-Haug L. Epigenetics and assisted reproduction. Curr Opin Obstet Gynecol 2009; 21(3): 201-6.
[http://dx.doi.org/10.1097/GCO.0b013e32832d7b95] [PMID: 19458521]
[3]
Salarinia R, Sahebkar A, Peyvandi M, et al. Epi-Drugs and Epi-miRs: Moving Beyond Current Cancer Therapies. Curr Cancer Drug Targets 2016; 16(9): 773-88.
[http://dx.doi.org/10.2174/1568009616666151207110143] [PMID: 26638884]
[4]
Mirzaei H, Yazdi F, Salehi R, Mirzaei HR. SiRNA and epigenetic aberrations in ovarian cancer. J Cancer Res Ther 2016; 12(2): 498-508.
[http://dx.doi.org/10.4103/0973-1482.153661] [PMID: 27461600]
[5]
Mirzaei H, Hamblin MR. Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect. Mol Ther Oncolytics 2020; 19: 218-39.
[http://dx.doi.org/10.1016/j.omto.2020.10.003] [PMID: 33251334]
[6]
Tamtaji OR, Behnam M, Pourattar MA, et al. PIWI-interacting RNAs and PIWI proteins in glioma: molecular pathogenesis and role as biomarkers. Cell Commun Signal 2020; 18(1): 168.
[http://dx.doi.org/10.1186/s12964-020-00657-z] [PMID: 33109195]
[7]
Borran S, Ahmadi G, Rezaei S, et al. Circular RNAs: New players in thyroid cancer. Pathol Res Pract 2020; 216(10): 153217.
[http://dx.doi.org/10.1016/j.prp.2020.153217] [PMID: 32987339]
[8]
Ashrafizadeh M, Zarrabi A, Hashemipour M, et al. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160: 105199.
[http://dx.doi.org/10.1016/j.phrs.2020.105199] [PMID: 32942019]
[9]
Nahand JS, Jamshidi S, Hamblin MR, et al. Circular RNAs: New Epigenetic Signatures in Viral Infections. Front Microbiol 2020; 11: 1853.
[http://dx.doi.org/10.3389/fmicb.2020.01853] [PMID: 32849445]
[10]
Yousefi F, Shabaninejad Z, Vakili S, et al. TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Commun Signal 2020; 18(1): 87.
[http://dx.doi.org/10.1186/s12964-020-00555-4] [PMID: 32517807]
[11]
Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR. Non-coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. Mol Ther Nucleic Acids 2020; 21: 51-74.
[http://dx.doi.org/10.1016/j.omtn.2020.05.012] [PMID: 32506014]
[12]
Saeedi Borujeni MJ, Esfandiary E, Baradaran A, et al. Molecular aspects of pancreatic β-cell dysfunction: Oxidative stress, microRNA, and long noncoding RNA. J Cell Physiol 2019; 234(6): 8411-25.
[http://dx.doi.org/10.1002/jcp.27755] [PMID: 30565679]
[13]
Rossbach M. Small non-coding RNAs as novel therapeutics. Curr Mol Med 2010; 10(4): 361-8.
[http://dx.doi.org/10.2174/156652410791317048] [PMID: 20455856]
[14]
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and non-coding RNAs: new insights into the regulation of breast cancer. Curr Mol Med 2021; 21(3): 194-210.
[http://dx.doi.org/10.2174/1566524020666200712182137] [PMID: 32652908]
[15]
Vafadar A, Shabaninejad Z, Movahedpour A, et al. Long Non-Coding RNAs As Epigenetic Regulators in Cancer. Curr Pharm Des 2019; 25(33): 3563-77.
[http://dx.doi.org/10.2174/1381612825666190830161528] [PMID: 31470781]
[16]
Shabaninejad Z, Vafadar A, Movahedpour A, et al. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res 2019; 12(1): 84.
[http://dx.doi.org/10.1186/s13048-019-0558-5] [PMID: 31481095]
[17]
Sadri Nahand J, Moghoofei M, Salmaninejad A, et al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer 2020; 146(2): 305-20.
[http://dx.doi.org/10.1002/ijc.32688] [PMID: 31566705]
[18]
Shabaninejad Z, Yousefi F, Movahedpour A, et al. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal Biochem 2019; 581: 113349.
[http://dx.doi.org/10.1016/j.ab.2019.113349] [PMID: 31254490]
[19]
Mirzaei H, Khataminfar S, Mohammadparast S, et al. Circulating microRNAs as Potential Diagnostic Biomarkers and Therapeutic Targets in Gastric Cancer: Current Status and Future Perspectives. Curr Med Chem 2016; 23(36): 4135-50.
[http://dx.doi.org/10.2174/0929867323666160818093854] [PMID: 27538692]
[20]
Mirzaei HR, Sahebkar A, Mohammadi M, et al. Circulating microRNAs in Hepatocellular Carcinoma: Potential Diagnostic and Prognostic Biomarkers. Curr Pharm Des 2016; 22(34): 5257-69.
[http://dx.doi.org/10.2174/1381612822666160303110838] [PMID: 26935703]
[21]
Mirzaei H, Gholamin S, Shahidsales S, et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2016; 53: 25-32.
[http://dx.doi.org/10.1016/j.ejca.2015.10.009] [PMID: 26693896]
[22]
Gholamin S, Pasdar A, Khorrami MS, et al. The potential for circulating microRNAs in the diagnosis of myocardial infarction: a novel approach to disease diagnosis and treatment. Curr Pharm Des 2016; 22(3): 397-403.
[http://dx.doi.org/10.2174/1381612822666151112151924] [PMID: 26561061]
[23]
Shafabakhsh R, Arianfar F, Vosough M, et al. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28(12): 1229-1255.
[24]
Abbaszadeh-Goudarzi K, Radbakhsh S, Pourhanifeh MH, et al. Circular RNA and Diabetes: Epigenetic Regulator with Diagnostic Role. Curr Mol Med 2020; 20(7): 516-26.
[http://dx.doi.org/10.2174/1566524020666200129142106] [PMID: 31995005]
[25]
Naeli P, Pourhanifeh MH, Karimzadeh MR, et al. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 2020; 145: 102854.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102854] [PMID: 31877535]
[26]
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, et al. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18(1): 88.
[http://dx.doi.org/10.1186/s12964-020-00587-w] [PMID: 32517694]
[27]
Saadatpour L, Fadaee E, Fadaei S, et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 2016; 23(12): 415-8.
[http://dx.doi.org/10.1038/cgt.2016.48] [PMID: 27834360]
[28]
Fathullahzadeh S, Mirzaei H, Honardoost MA, Sahebkar A, Salehi M. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther 2016; 23(10): 327-32.
[http://dx.doi.org/10.1038/cgt.2016.34] [PMID: 27659777]
[29]
Mohammadi M, Goodarzi M, Jaafari MR, Mirzaei HR, Mirzaei H. Circulating microRNA: a new candidate for diagnostic biomarker in neuroblastoma. Cancer Gene Ther 2016; 23(11): 371-2.
[http://dx.doi.org/10.1038/cgt.2016.45] [PMID: 27740613]
[30]
Yousefpouran S, Mostafaei S, Manesh PV, et al. The assessment of selected MiRNAs profile in HIV, HBV, HCV, HIV/HCV, HIV/HBV Co-infection and elite controllers for determination of biomarker. Microb Pathog 2020; 147: 104355.
[http://dx.doi.org/10.1016/j.micpath.2020.104355] [PMID: 32569788]
[31]
Jamali Z, Taheri-Anganeh M, Shabaninejad Z, et al. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy. IUBMB Life 2020; 72(7): 1306-21.
[http://dx.doi.org/10.1002/iub.2277]
[32]
Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol 2018; 233(7): 5200-13.
[http://dx.doi.org/10.1002/jcp.26379]
[33]
Mirzaei H, Ferns GA, Avan A, Mobarhan MG. Cytokines and MicroRNA in Coronary Artery Disease. Adv Clin Chem 2017; 82: 47-70.
[http://dx.doi.org/10.1016/bs.acc.2017.06.004] [PMID: 28939213]
[34]
Masoudi MS, Mehrabian E, Mirzaei H. MiR-21: A key player in glioblastoma pathogenesis. 2018; 119(2): 1285-90.
[http://dx.doi.org/10.1002/jcb.26300]
[35]
Davoodvandi A, Marzban H, Goleij P, et al. Effects of therapeutic probiotics on modulation of microRNAs. Cell Commun Signal 2021; 19(1): 4.
[http://dx.doi.org/10.1186/s12964-020-00668-w] [PMID: 33430873]
[36]
Aghdam AM, Amiri A, Salarinia R, Masoudifar A, Ghasemi F, Mirzaei H. MicroRNAs as Diagnostic, Prognostic, and Therapeutic Biomarkers in Prostate Cancer. Crit Rev Eukaryot Gene Expr 2019; 29(2): 127-39.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025273] [PMID: 31679268]
[37]
Savardashtaki A, Shabaninejad Z, Movahedpour A, et al. miRNAs derived from cancer-associated fibroblasts in colorectal cancer. Epigenomics 2019; 11(14): 1627-45.
[38]
Sadri Nahand J, Bokharaei-Salim F, Karimzadeh M, et al. MicroRNAs and exosomes: key players in HIV pathogenesis 2020 21(4): 246-78.
[http://dx.doi.org/10.1111/hiv.12822]
[39]
Pourhanifeh MH, Mahjoubin-Tehran M, Shafiee A, et al. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis. IUBMB Life 2020; 72(3): 314-33.
[http://dx.doi.org/10.1002/iub.2211]
[40]
Amiri A, Mahjoubin-Tehran M, Asemi Z, et al. Role of Resveratrol in Modulating microRNAs in Human Diseases: From Cancer to Inflammatory Disorder. Curr Med Chem 2021; 28(2): 360-76.
[http://dx.doi.org/10.2174/0929867326666191212102407] [PMID: 31830882]
[41]
Nahand JS, Karimzadeh MR, Nezamnia M, et al. The role of miR-146a in viral infection. IUBMB Life 2020; 72(3): 343-60.
[http://dx.doi.org/10.1002/iub.2222]
[42]
Golabchi K, Soleimani-Jelodar R, Aghadoost N, et al. MicroRNAs in retinoblastoma: Potential diagnostic and therapeutic biomarkers. J Cell Physiol 2018; 233(4): 3016-23.
[http://dx.doi.org/10.1002/jcp.26070]
[43]
Hesari A, Azizian M, Sheikhi A, et al. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int J Cancer 2019; 144(6): 1215-26.
[http://dx.doi.org/10.1002/ijc.31947] [PMID: 30362511]
[44]
Khani P, Nasri F, Khani Chamani F, et al. Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem 2019; 148(2): 188-203.
[http://dx.doi.org/10.1111/jnc.14616] [PMID: 30347482]
[45]
Jamali L, Tofigh R, Tutunchi S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol 2018; 233(11): 8538-50.
[http://dx.doi.org/10.1002/jcp.26850] [PMID: 29923196]
[46]
Simonian M, Mosallayi M, Mirzaei H. Circulating miR-21 as novel biomarker in gastric cancer: Diagnostic and prognostic biomarker. J Cancer Res Ther 2018; 14(2): 475.
[PMID: 29516946]
[47]
Banikazemi Z, Haji HA, Mohammadi M, et al. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. J Cell Biochem 2018; 119(1): 185-96.
[http://dx.doi.org/10.1002/jcb.26244] [PMID: 28657651]
[48]
Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 2014; 12: 78.
[http://dx.doi.org/10.1186/s12915-014-0078-0] [PMID: 25270025]
[49]
Kim HK, Fuchs G, Wang S, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 2017; 552(7683): 57-62.
[http://dx.doi.org/10.1038/nature25005] [PMID: 29186115]
[50]
Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell 2015; 161(4): 790-802.
[http://dx.doi.org/10.1016/j.cell.2015.02.053] [PMID: 25957686]
[51]
Torres AG, Reina O, Stephan-Otto Attolini C. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. Proc Natl Acad Sci USA 2019; 116(17): 8451-6.
[http://dx.doi.org/10.1073/pnas.1821120116]
[52]
Schöler N, Langer C, Döhner H, Buske C, Kuchenbauer F. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol 2010; 38(12): 1126-30.
[http://dx.doi.org/10.1016/j.exphem.2010.10.004] [PMID: 20977925]
[53]
Kim SM, Kim JS. A Review of Mechanisms of Implantation. Dev Reprod 2017; 21(4): 351-9.
[http://dx.doi.org/10.12717/DR.2017.21.4.351] [PMID: 29359200]
[54]
Bischof P, Campana A. Trophoblast differentiation and invasion: its significance for human embryo implantation. Early Pregnancy 1997; 3(2): 81-95.
[PMID: 9429848]
[55]
Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012; 18(12): 1754-67.
[http://dx.doi.org/10.1038/nm.3012] [PMID: 23223073]
[56]
Hamatani T, Carter MG, Sharov AA, Ko MS. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 2004; 6(1): 117-31.
[http://dx.doi.org/10.1016/S1534-5807(03)00373-3] [PMID: 14723852]
[57]
Song H, Lim H, Das SK, Paria BC, Dey SK. Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol Endocrinol 2000; 14(8): 1147-61.
[http://dx.doi.org/10.1210/mend.14.8.0498] [PMID: 10935540]
[58]
Rowlands TM, Symonds JM, Farookhi R, Blaschuk OW. Cadherins: crucial regulators of structure and function in reproductive tissues. Rev Reprod 2000; 5(1): 53-61.
[http://dx.doi.org/10.1530/ror.0.0050053] [PMID: 10711736]
[59]
Bloor D, Metcalfe AD, Rutherford A, et al. Expression of cell adhesion molecules during human preimplantation embryo development. MHR: Basic science of reproductive medicine. Mol Hum Reprod 2002; 8(3): 237-45.
[http://dx.doi.org/10.1093/molehr/8.3.237]
[60]
Kang Y-J, Forbes K, Carver J, Aplin JD. The role of the osteopontin-integrin αvβ3 interaction at implantation: functional analysis using three different in vitro models. Hum Reprod 2014; 29(4): 739-49.
[http://dx.doi.org/10.1093/humrep/det433] [PMID: 24442579]
[61]
Genbacev OD, Prakobphol A, Foulk RA, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science 2003; 299(5605): 405-8.
[http://dx.doi.org/10.1126/science.1079546] [PMID: 12532021]
[62]
Clark K, Pankov R, Travis MA, et al. A specific α5β1-integrin conformation promotes directional integrin translocation and fibronectin matrix formation. J Cell Sci 2005; 118(Pt 2): 291-300.
[http://dx.doi.org/10.1242/jcs.01623] [PMID: 15615773]
[63]
Lessey BA, Castelbaum AJ, Sawin SW, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril 1995; 63(3): 535-42.
[http://dx.doi.org/10.1016/S0015-0282(16)57422-6] [PMID: 7851583]
[64]
Dorostghoal M, Ghaffari HO, Shahbazian N, Mirani M. Endometrial expression of β3 integrin, calcitonin and plexin-B1 in the window of implantation in women with unexplained infertility. Int J Reprod Biomed (Yazd) 2017; 15(1): 33-40.
[http://dx.doi.org/10.29252/ijrm.15.1.33] [PMID: 28280798]
[65]
Chen G, et al. Integrins β1 and β3 are biomarkers of uterine condition for embryo transfer. J Transl Med 2016; 14(1): 1-10.
[http://dx.doi.org/10.1186/s12967-016-1052-0]
[66]
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, et al. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161: 105133.
[http://dx.doi.org/10.1016/j.phrs.2020.105133] [PMID: 32822869]
[67]
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, et al. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153: 103063.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103063] [PMID: 32712519]
[68]
Mirzaei H, Masoudifar A, Sahebkar A, et al. MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol 2018; 233(4): 3004-15.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[69]
Moridikia A, Mirzaei H. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer. 2018; 233(2): 901-13.
[http://dx.doi.org/10.1002/jcp.25801]
[70]
Mirzaei H, Fathullahzadeh S, Khanmohammadi R, et al. State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia. J Cell Physiol 2018; 233(2): 888-900.
[http://dx.doi.org/10.1002/jcp.25799] [PMID: 28084621]
[71]
Mirzaei H, Momeni F, Saadatpour L, et al. MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol 2018; 233(2): 856-65.
[http://dx.doi.org/10.1002/jcp.25787] [PMID: 28067403]
[72]
Rabieian R, Boshtam M. ZareeI M et al. Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis. 2018; 119(1): 17-27.
[http://dx.doi.org/10.1002/jcb.26146]
[73]
Mirzaei H. Stroke in Women: Risk Factors and Clinical Biomarkers. J Cell Biochem 2017; 118(12): 4191-202.
[http://dx.doi.org/10.1002/jcb.26130] [PMID: 28498508]
[74]
Keshavarzi M, Sorayayi S, Rezaei MJ, et al. MicroRNAs-Based Imaging Techniques in Cancer Diagnosis and Therapy J Cell Biochem 2017; 118(12): 4121-8.
[75]
Leonard SS, Xia C, Jiang BH, et al. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 2003; 309(4): 1017-26.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.105] [PMID: 13679076]
[76]
Gholamin S, Mirzaei H. GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma. 2018; 233(2): 866-79.
[http://dx.doi.org/10.1002/jcp.25793]
[77]
Mohammadi S, Yousefi F, Shabaninejad Z, et al. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life 2020; 72(4): 724-48.
[http://dx.doi.org/10.1002/iub.2182]
[78]
Amiri A, Pourhanifeh MH, Mirzaei HR, et al. Exosomes and Lung Cancer: Roles in Pathophysiology, Diagnosis and Therapeutic Applications. Curr Med Chem 2021; 28(2): 308-28.
[http://dx.doi.org/10.2174/0929867327666200204141952] [PMID: 32013817]
[79]
Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, et al. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019; 10(1): 340.
[http://dx.doi.org/10.1186/s13287-019-1445-0] [PMID: 31753036]
[80]
Nahand JS, Vandchali NR, Darabi H, et al. Exosomal microRNAs: novel players in cervical cancer. Epigenomics 2020; Sep; 12(18): 1651-60.
[http://dx.doi.org/10.2217/epi-2020-0026]
[81]
Asgarpour K, Shojaei Z, Amiri F, et al. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal 2020; 18(1): 149.
[http://dx.doi.org/10.1186/s12964-020-00650-6] [PMID: 32917227]
[82]
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, et al. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 2020; 18(1): 120.
[http://dx.doi.org/10.1186/s12964-020-00623-9] [PMID: 32746854]
[83]
Mashreghi M, Azarpara H, Bazaz MR, et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2018; 233(4): 2949-65.
[http://dx.doi.org/10.1002/jcp.26049]
[84]
Hashemi Goradel N, Azarpara H, Bazaz MR, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol 2018; 233(4): 2902-10.
[http://dx.doi.org/10.1002/jcp.26029]
[85]
Rashidi B, Hoseini Z, Sahebkar A, et al. Anti-Atherosclerotic Effects of Vitamins D and E in Suppression of Atherogenesis. J Cell Physiol 2017; 232(11): 2968-76.
[http://dx.doi.org/10.1002/jcp.25738]
[86]
Pakshir K, Badali H, Nami S. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Pioneer Tuners 2020; 63(1): 4-20.
[http://dx.doi.org/10.1111/myc.13017]
[87]
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2020; 20(2): 90-101.
[http://dx.doi.org/10.2174/1566524019666191001113511] [PMID: 31573883]
[88]
Javandoost E, Firoozi-Majd E, Rostamian H, Khakpoor-Koosheh M, Mirzaei HR. Role of microRNAs in Chronic Lymphocytic Leukemia Pathogenesis. Curr Med Chem 2020; 27(2): 282-97.
[http://dx.doi.org/10.2174/0929867326666190911114842] [PMID: 31544709]
[89]
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234(10): 17064-99.
[90]
Ng YH, Rome S, Jalabert A, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One 2013; 8(3): e58502.
[http://dx.doi.org/10.1371/journal.pone.0058502] [PMID: 23516492]
[91]
Hanke M, Merz H, Feller AC, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 2010; 28(6): 655-61.
[92]
Mirzaei H, Sahebkar A, Jaafari MR, Goodarzi M, Mirzaei HR. Diagnostic and Therapeutic Potential of Exosomes in Cancer: The Beginning of a New Tale? J Cell Physiol 2017; 232(12): 3251-60.
[http://dx.doi.org/10.1002/jcp.25739] [PMID: 27966794]
[93]
Paul ABM, Sadek ST, Mahesan AM. The role of microRNAs in human embryo implantation: a review. J Assist Reprod Genet 2019; 36(2): 179-87.
[http://dx.doi.org/10.1007/s10815-018-1326-y]
[94]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[95]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[96]
Tesfaye D, Salilew-Wondim D, Gebremedhn S, et al. Potential role of microRNAs in mammalian female fertility. Reprod Fertil Dev 2016; 29(1): 8-23.
[http://dx.doi.org/10.1071/RD16266] [PMID: 28278789]
[97]
Teague EM, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2010; 16(2): 142-65.
[http://dx.doi.org/10.1093/humupd/dmp034] [PMID: 19773286]
[98]
Kresowik JD, Devor EJ, Van Voorhis BJ, Leslie KK. MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: a potential biomarker for optimum receptivity. Biol Reprod 2014; 91(1): 17.
[http://dx.doi.org/10.1095/biolreprod.113.116590] [PMID: 24855107]
[99]
Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 2010; 82(4): 791-801.
[http://dx.doi.org/10.1095/biolreprod.109.081059] [PMID: 19864316]
[100]
Estella C, Herrer I, Moreno-Moya JM, et al. miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro. PLoS One 2012; 7(7): e41080.
[http://dx.doi.org/10.1371/journal.pone.0041080] [PMID: 22911744]
[101]
Tochigi H, Kajihara T, Mizuno Y, et al. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci Rep 2017; 7: 40001.
[http://dx.doi.org/10.1038/srep40001] [PMID: 28051155]
[102]
Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod 2011; 26(10): 2830-40.
[http://dx.doi.org/10.1093/humrep/der255] [PMID: 21849299]
[103]
Shi C, Shen H, Fan LJ, et al. Endometrial MicroRNA Signature during the Window of Implantation Changed in Patients with Repeated Implantation Failure. Chin Med J (Engl) 2017; 130(5): 566-73.
[http://dx.doi.org/10.4103/0366-6999.200550] [PMID: 28229988]
[104]
Altmäe S, Martinez-Conejero JA, Esteban FJ, et al. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci 2013; 20(3): 308-17.
[http://dx.doi.org/10.1177/1933719112453507] [PMID: 22902743]
[105]
Parks J, et al. Non-invasive omics analysis of endometrial secretions 24 hours prior to frozen embryo transfer is predictive of implantation outcome. Fertil Steril 2014; 102(3): e134-5.
[http://dx.doi.org/10.1016/j.fertnstert.2014.07.460]
[106]
Baxter Bendus AE, Mayer JF, Shipley SK, Catherino WH. Interobserver and intraobserver variation in day 3 embryo grading. Fertil Steril 2006; 86(6): 1608-15.
[http://dx.doi.org/10.1016/j.fertnstert.2006.05.037] [PMID: 17074349]
[107]
Cuman C, Van Sinderen M, Gantier MP, et al. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion. EBioMedicine 2015; 2(10): 1528-35.
[http://dx.doi.org/10.1016/j.ebiom.2015.09.003] [PMID: 26629549]
[108]
Rosenbluth EM, Shelton DN, Wells LM, Sparks AE, Van Voorhis BJ. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation. Fertil Steril 2014; 101(5): 1493-500.
[http://dx.doi.org/10.1016/j.fertnstert.2014.01.058] [PMID: 24786747]
[109]
Rosenbluth EM, Shelton DN, Sparks AE, Devor E, Christenson L, Van Voorhis BJ. MicroRNA expression in the human blastocyst. Fertil Steril 2013; 99(3): 855-861.e3.
[http://dx.doi.org/10.1016/j.fertnstert.2012.11.001] [PMID: 23211712]
[110]
McCallie B, Schoolcraft WB, Katz-Jaffe MG. Aberration of blastocyst microRNA expression is associated with human infertility. Fertil Steril 2010; 93(7): 2374-82.
[http://dx.doi.org/10.1016/j.fertnstert.2009.01.069] [PMID: 19296935]
[111]
Sathyapalan T, David R, Gooderham NJ, Atkin SL. Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci Rep 2015; 5: 16890.
[http://dx.doi.org/10.1038/srep16890] [PMID: 26582398]
[112]
Capalbo A, Ubaldi FM, Cimadomo D, et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment Fertil Steril 2016;105(1):225-35.e1-3.
[http://dx.doi.org/10.1016/j.fertnstert.2015.09.014]
[113]
Rosenbluth EM, et al. MicroRNA expression in the human blastocyst Fertility and sterility 2013; 99(3): 855-861. e3.
[http://dx.doi.org/10.1016/j.fertnstert.2012.11.001]
[114]
Borges E Jr, Setti AS, Braga DP, Geraldo MV, Figueira RC, Iaconelli A Jr. miR-142-3p as a biomarker of blastocyst implantation failure - A pilot study. JBRA Assist Reprod 2016; 20(4): 200-5.
[http://dx.doi.org/10.5935/1518-0557.20160039] [PMID: 28050953]
[115]
Teh WT, McBain J, Rogers P. What is the contribution of embryo-endometrial asynchrony to implantation failure? J Assist Reprod Genet 2016; 33(11): 1419-30.
[http://dx.doi.org/10.1007/s10815-016-0773-6] [PMID: 27480540]
[116]
Berlanga O, Bradshaw HB, Vilella-Mitjana F, Garrido-Gómez T, Simón C. How endometrial secretomics can help in predicting implantation. Placenta 2011; 32(Suppl. 3): S271-5.
[http://dx.doi.org/10.1016/j.placenta.2011.06.002] [PMID: 21700334]
[117]
Salamonsen LA, Evans J, Nguyen HP, Edgell TA. The Microenvironment of Human Implantation: Determinant of Reproductive Success. Am J Reprod Immunol 2016; 75(3): 218-25.
[http://dx.doi.org/10.1111/aji.12450] [PMID: 26661899]
[118]
Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18(10): 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[119]
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513-8.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[120]
Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE. Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One 2014; 9(3): e90913.
[http://dx.doi.org/10.1371/journal.pone.0090913] [PMID: 24614226]
[121]
Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence 2010; 1(1): 7.
[http://dx.doi.org/10.1186/1758-907X-1-7] [PMID: 20226005]
[122]
Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 2010; 28(6): 655-61.
[http://dx.doi.org/10.1016/j.urolonc.2009.01.027] [PMID: 19375957]
[123]
Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS. Genomewide Study of Salivary MicroRNAs for Detection of Oral Cancer. J Dent Res 2014; 93(7)(Suppl.): 86S-93S.
[http://dx.doi.org/10.1177/0022034514531018] [PMID: 24718111]
[124]
Vojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 2014; 42(11): 7290-304.
[http://dx.doi.org/10.1093/nar/gku347] [PMID: 24838567]
[125]
Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010; 38(20): 7248-59.
[http://dx.doi.org/10.1093/nar/gkq601] [PMID: 20615901]
[126]
Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2(100): ra81.
[http://dx.doi.org/10.1126/scisignal.2000610] [PMID: 19996457]
[127]
Maida Y, Takakura M, Nishiuchi T, Yoshimoto T, Kyo S. Exosomal transfer of functional small RNAs mediates cancer-stroma communication in human endometrium. Cancer Med 2016; 5(2): 304-14.
[http://dx.doi.org/10.1002/cam4.545] [PMID: 26700550]
[128]
Tabet F, Vickers KC, Cuesta Torres LF, et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun 2014; 5: 3292.
[http://dx.doi.org/10.1038/ncomms4292] [PMID: 24576947]
[129]
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011; 39(16): 7223-33.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[130]
Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 2012; 37(11): 460-5.
[http://dx.doi.org/10.1016/j.tibs.2012.08.003] [PMID: 22944280]
[131]
Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update 2016; 22(2): 182-93.
[PMID: 26663221]
[132]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-89.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[133]
Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39(1): 133-44.
[http://dx.doi.org/10.1016/j.molcel.2010.06.010] [PMID: 20603081]
[134]
Azmi AS, Bao B, Sarkar FH. Exosomes in cancer develop-ment, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 2013; 32(3-4): 623-42.
[http://dx.doi.org/10.1007/s10555-013-9441-9] [PMID: 23709120]
[135]
Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl) 2013; 91(4): 431-7.
[http://dx.doi.org/10.1007/s00109-013-1020-6] [PMID: 23519402]
[136]
Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016; 164(6): 1226-32.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
[137]
Murray MJ, Lessey BA. Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin Reprod Endocrinol 1999; 17(3): 275-90.
[http://dx.doi.org/10.1055/s-2007-1016235] [PMID: 10797946]
[138]
Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA. Human Endometrial Exosomes Contain Hormone-Specific Cargo Modulating Trophoblast Adhesive Capacity: Insights into Endometrial-Embryo Interactions. Biol Reprod 2016; 94(2): 38.
[http://dx.doi.org/10.1095/biolreprod.115.134890] [PMID: 26764347]
[139]
Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther 2010; 10(3): 219-22.
[http://dx.doi.org/10.4161/cbt.10.3.12548] [PMID: 20592490]
[140]
Li Z, Gou J, Jia J, Zhao X. MicroRNA-429 functions as a regulator of epithelial-mesenchymal transition by targeting Pcdh8 during murine embryo implantation. Hum Reprod 2015; 30(3): 507-18.
[http://dx.doi.org/10.1093/humrep/dev001] [PMID: 25609238]
[141]
Li Z, Jia J, Gou J, et al. Mmu-miR-126a-3p plays a role in murine embryo implantation by regulating Itga11. Reprod Biomed Online 2015; 31(3): 384-93.
[http://dx.doi.org/10.1016/j.rbmo.2015.05.016] [PMID: 26194885]
[142]
Chen C, Zhao Y, Yu Y, Li R, Qiao J. MiR-125b regulates endometrial receptivity by targeting MMP26 in women undergoing IVF-ET with elevated progesterone on HCG priming day. Sci Rep 2016; 6: 25302.
[http://dx.doi.org/10.1038/srep25302] [PMID: 27143441]
[143]
Bazer FW, Spencer TE, Johnson GA, Burghardt RC. Uterine receptivity to implantation of blastocysts in mammals. Front Biosci (Schol Ed) 2011; 3: 745-67.
[http://dx.doi.org/10.2741/s184] [PMID: 21196409]
[144]
Yang Y, Xie Y, Wu M, et al. Expression of mmu-miR-96 in the endometrium during early pregnancy and its regulatory effects on stromal cell apoptosis via Bcl2. Mol Med Rep 2017; 15(4): 1547-54.
[http://dx.doi.org/10.3892/mmr.2017.6212] [PMID: 28259902]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy