Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

Therapeutic Dilemma in Personalized Medicine

Author(s): Ehab S. EL Desoky*

Volume 17, Issue 2, 2022

Published on: 25 May, 2021

Page: [94 - 102] Pages: 9

DOI: 10.2174/1574884716666210525153454

Price: $65

Abstract

The practice of medicine depends, over a long time, on identifying therapies that target an entire population. The increase in scientific knowledge over the years has led to the gradual change towards individualization and personalization of drug therapy. The hope of this change is to achieve a better clinical response to given medications and reduction of their adverse effects. Tailoring of medicine on the road of personalized medicine considers molecular and genetic mapping of the individual. However, many factors still impede the smooth application of personalized medicine and represent challenges or limitations in its achievement. In this article, we put some clinical examples that show dilemmas in the application of personalized medicine such as opioids in pain control, fluoropyrimidines in malignancy, clopidogrel as antiplatelet therapy and oral hypoglycemic drugs in Type2 diabetes in adults. Shaping the future of medicine through the application of personalized medicine for a particular patient needs to put into consideration many factors such as patient’s genetic makeup and life style, pathology of the disease and dynamic changes in its course as well as interactions between administered drugs and their effects on metabolizing enzymes. We hope in the coming years, the personalized medicine will foster changes in health care system in the way not only to treat patients but also to prevent diseases.

Keywords: Personalized medicine, therapeutic dilemma, opioids, fluoropyrimidines, clopidogrel, oral hypoglycemic drugs.

Graphical Abstract

[1]
Duffy DJ. Problems, challenges and promises: Perspectives on precision medicine. Brief Bioinform 2016; 17(3): 494-504.
[http://dx.doi.org/10.1093/bib/bbv060] [PMID: 26249224]
[2]
Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics. Lancet 2019; 394(10197): 521-32.
[http://dx.doi.org/10.1016/S0140-6736(19)31276-0]
[3]
Kaye AD, Garcia AJ, Hall OM, et al. Update on the pharmacogenomics of pain management. Pharm Genomics Pers Med 2019; 12: 125-43.
[http://dx.doi.org/10.2147/PGPM.S179152] [PMID: 31308726]
[4]
Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical pharmacogenetics implementation consortium. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 2014; 95(4): 376-82.
[http://dx.doi.org/10.1038/clpt.2013.254] [PMID: 24458010]
[5]
Stamer UM, Stüber F, Muders T, Musshoff F. Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg 2008; 107(3): 926-9.
[http://dx.doi.org/10.1213/ane.0b013e31817b796e] [PMID: 18713907]
[6]
Gamelin E, Delva R, Jacob J, et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(13): 2099-105.
[http://dx.doi.org/10.1200/JCO.2007.13.3934] [PMID: 18445839]
[7]
Lee JJ, Beumer JH, Chu E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol 2016; 78(3): 447-64.
[http://dx.doi.org/10.1007/s00280-016-3054-2] [PMID: 27217046]
[8]
Beuzeboc P, Pierga JY, Stoppa-Lyonnet D, Etienne MC, Milano G, Pouillart P. Severe 5-fluorouracil toxicity possibly secondary to dihydropyrimidine dehydrogenase deficiency in a breast cancer patient with osteogenesis imperfecta. Eur J Cancer 1996; 32A(2): 369-70.
[http://dx.doi.org/10.1016/0959-8049(95)00573-0] [PMID: 8664058]
[9]
Amstutz U, Henricks LM, Offer SM, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther 2018; 103(2): 210-6.
[http://dx.doi.org/10.1002/cpt.911] [PMID: 29152729]
[10]
Fidai SS, Sharma AE, Johnson DN, Segal JP, Lastra RR. Dihydropyrimidine dehydrogenase deficiency as a cause of fatal 5-Fluorouracil toxicity. Autops Case Rep 2018; 8(4): e2018049.
[http://dx.doi.org/10.4322/acr.2018.049] [PMID: 30775324]
[11]
Tong CC, Lam CW, Lam KO, Lee VHF, Luk MY. A novel DPYD variant associated with severe toxicity of fluoropyrimidines: role of pre-emptive DPYD genotype screening. Front Oncol 2018; 8: 279.
[http://dx.doi.org/10.3389/fonc.2018.00279] [PMID: 30087856]
[12]
Lu Z, Zhang R, Diasio RB. Population characteristics of hepatic dihydropyrimidine dehydrogenase activity, a key metabolic enzyme in 5-fluorouracil chemotherapy. Clin Pharmacol Ther 1995; 58(5): 512-22.
[http://dx.doi.org/10.1016/0009-9236(95)90171-X] [PMID: 7586945]
[13]
Meulendijks D, Cats A, Beijnen JH, Schellens JH. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - Ready for clinical practice? Cancer Treat Rev 2016; 50: 23-34.
[http://dx.doi.org/10.1016/j.ctrv.2016.08.002] [PMID: 27589829]
[14]
Milano G, Chamorey AL. Clinical pharmacokinetics of 5-fluorouracil with consideration of chronopharmacokinetics. Chronobiol Int 2002; 19(1): 177-89.
[http://dx.doi.org/10.1081/CBI-120002597] [PMID: 11962674]
[15]
Beumer JH. Without therapeutic drug monitoring, there is no personalized cancer care. Clin Pharmacol Ther 2013; 93(3): 228-30.
[http://dx.doi.org/10.1038/clpt.2012.243] [PMID: 23419487]
[16]
Beumer JH, Chu E, Allegra C, et al. Therapeutic drug monitoring in oncology: International association of therapeutic drug monitoring and clinical toxicology recommendations for 5-fluorouracil therapy. Clin Pharmacol Ther 2019; 105(3): 598-613.
[http://dx.doi.org/10.1002/cpt.1124] [PMID: 29923599]
[17]
Wigle TJ, Tsvetkova EV, Welch SA, Kim RB. DPYD and fluorouracil-based chemotherapy: Mini review and case report. Pharmaceutics 2019; 11(5): 199.
[http://dx.doi.org/10.3390/pharmaceutics11050199] [PMID: 31052357]
[18]
Deenen MJ, Meulendijks D, Cats A, et al. Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: A safety and cost analysis. J Clin Oncol 2016; 34(3): 227-34.
[http://dx.doi.org/10.1200/JCO.2015.63.1325] [PMID: 26573078]
[19]
van Staveren MC, van Kuilenburg AB, Guchelaar HJ, et al. Evaluation of an oral uracil loading test to identify DPD-deficient patients using a limited sampling strategy. Br J Clin Pharmacol 2016; 81(3): 553-61.
[http://dx.doi.org/10.1111/bcp.12821] [PMID: 26551538]
[20]
Cannon CP, Harrington RA, James S, et al. Comparison of ticagrelor with clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO): A randomised double-blind study. Lancet 2010; 375(9711): 283-93.
[http://dx.doi.org/10.1016/S0140-6736(09)62191-7] [PMID: 20079528]
[21]
Kim K, Lee TA, Touchette DR, DiDomenico RJ, Ardati AK, Walton SM. Contemporary trends in oral antiplatelet agent use in patients treated with percutaneous coronary intervention for acute coronary syndrome. J Manag Care Spec Pharm 2017; 23(1): 57-63.
[http://dx.doi.org/10.18553/jmcp.2017.23.1.57] [PMID: 28025925]
[22]
Ford NF, Taubert D. Clopidogrel, CYP2C19, and a black box. J Clin Pharmacol 2013; 53(3): 241-8.
[http://dx.doi.org/10.1002/jcph.17] [PMID: 23381692]
[23]
Cavallari LH, Duarte JD. Clopidogrel pharmacogenetics: From evidence to implementation. Future Cardiol 2016; 12(5): 511-4.
[http://dx.doi.org/10.2217/fca-2016-0045] [PMID: 27539287]
[24]
Amin AM, Sheau Chin L, Azri Mohamed Noor D, Sk Abdul Kader MA, Kah Hay Y, Ibrahim B. The personalization of clopidogrel antiplatelet therapy: The role of integrative pharmacogenetics and pharmacometabolomics. Cardiol Res Pract 2017; 2017: 8062796.
[http://dx.doi.org/10.1155/2017/8062796] [PMID: 28421156]
[25]
Pereira NL, Rihal CS, So DYF, et al. Clopidogrel pharmacogenetics. Circ Cardiovasc Interv 2019; 12(4): e007811.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.119.007811] [PMID: 30998396]
[26]
Angiolillo DJ, Bernardo E, Zanoni M, et al. Impact of insulin receptor substrate-1 genotypes on platelet reactivity and cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 2011; 58(1): 30-9.
[http://dx.doi.org/10.1016/j.jacc.2011.02.040] [PMID: 21700086]
[27]
Price MJ. Diabetes mellitus and clopidogrel response variability. J Am Coll Cardiol 2014; 64(10): 1015-8.
[http://dx.doi.org/10.1016/j.jacc.2014.07.003] [PMID: 25190237]
[28]
Gremmel T, Müller M, Steiner S, et al. Chronic kidney disease is associated with increased platelet activation and poor response to antiplatelet therapy. Nephrol Dial Transplant 2013; 28(8): 2116-22.
[http://dx.doi.org/10.1093/ndt/gft103] [PMID: 23729489]
[29]
Bates ER, Lau WC, Angiolillo DJ. Clopidogrel-drug interactions. J Am Coll Cardiol 2011; 57(11): 1251-63.
[http://dx.doi.org/10.1016/j.jacc.2010.11.024] [PMID: 21392639]
[30]
Farhat N, Haddad N, Crispo J, et al. Trends in concomitant clopidogrel and proton pump inhibitor treatment among ACS inpatients, 2000-2016. Eur J Clin Pharmacol 2019; 75(2): 227-35.
[http://dx.doi.org/10.1007/s00228-018-2564-8] [PMID: 30324301]
[31]
Verdoia M, Pergolini P, Rolla R, et al. Advanced age and high-residual platelet reactivity in patients receiving dual antiplatelet therapy with clopidogrel or ticagrelor. J Thromb Haemost 2016; 14(1): 57-64.
[http://dx.doi.org/10.1111/jth.13177] [PMID: 26512550]
[32]
Schilling U, Dingemanse J, Ufer M. Pharmacokinetics and pharmacodynamics of approved and investigational P2Y12 receptor antagonists. Clin Pharmacokinet 2020; 59(5): 545-66.
[http://dx.doi.org/10.1007/s40262-020-00864-4] [PMID: 32056160]
[33]
Gremmel T, Steiner S, Seidinger D, Koppensteiner R, Panzer S, Kopp CW. Obesity is associated with poor response to clopidogrel and an increased susceptibility to protease activated receptor-1 mediated platelet activation. Transl Res 2013; 161(5): 421-9.
[http://dx.doi.org/10.1016/j.trsl.2012.12.015] [PMID: 23340049]
[34]
Lev EI, Arikan ME, Vaduganathan M, et al. Effect of caffeine on platelet inhibition by clopidogrel in healthy subjects and patients with coronary artery disease. Am Heart J 2007; 154(4): 694.e1-7.
[http://dx.doi.org/10.1016/j.ahj.2007.07.014] [PMID: 17892993]
[35]
Friesen MH. Grapefruit juice and clopidogrel. CMAJ 2013; 185(12): 1066.
[http://dx.doi.org/10.1503/cmaj.113-2126] [PMID: 24003187]
[36]
Choi H, Ryu J, Seo H, Kang M, Kim E. Is a high maintenance dose of clopidogrel suitable for overcoming clopidogrel resistance in patients? Int J Clin Pharm 2015; 37(5): 758-61.
[http://dx.doi.org/10.1007/s11096-015-0118-z] [PMID: 25893489]
[37]
Zhang L, Lu J, Dong W, et al. Meta-analysis of comparison of the newer P2Y12 inhibitors (oral preparation or intravenous) to clopidogrel in patients with acute coronary syndrome. J Cardiovasc Pharmacol 2017; 69(3): 147-55.
[http://dx.doi.org/10.1097/FJC.0000000000000451] [PMID: 27922911]
[38]
Fan ZG, Zhang WL, Xu B, Ji J, Tian N-L, He S-H. Comparisons between ticagrelor and clopidogrel following percutaneous coronary intervention in patients with acute coronary syndrome: A comprehensive meta-analysis. Drug Des Devel Ther 2019; 13: 719-30.
[http://dx.doi.org/10.2147/DDDT.S196535] [PMID: 30863011]
[39]
Rakicevic L, Nestorovic A. Pharmacogenetics of clopidogrel therapy and neurointerventional procedures: We need precision data for precision medicine. Clin Pharmacol Ther 2019; 105(3): 547-9.
[http://dx.doi.org/10.1002/cpt.1105] [PMID: 29920652]
[40]
Scott SA, Sangkuhl K, Stein CM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 2013; 94(3): 317-23.
[http://dx.doi.org/10.1038/clpt.2013.105] [PMID: 23698643]
[41]
Lin M, Todaro M, Chan J, et al. Association between CYP2C19 polymorphisms and outcomes in cerebral endovascular therapy. AJNR Am J Neuroradiol 2016; 37(1): 108-13.
[http://dx.doi.org/10.3174/ajnr.A4481] [PMID: 26338921]
[42]
Gurbel PA, Bliden KP, Logan DK, et al. The influence of smoking status on the pharmacokinetics and pharmacodynamics of clopidogrel and prasugrel: the PARADOX study. J Am Coll Cardiol 2013; 62(6): 505-12.
[http://dx.doi.org/10.1016/j.jacc.2013.03.037] [PMID: 23602770]
[43]
Gurbel PA, Baker BA, Bailey WL, Bliden KP, Tantry US. Unravelling the smokers’ paradox: Cigarette smoking, high-risk coronary artery disease and enhanced clinical efficacy of oral P2Y12 inhibitors. Thromb Haemost 2014; 111(6): 1187-90.
[http://dx.doi.org/10.1160/TH13-08-0642] [PMID: 24553730]
[44]
Reed GW, Cannon CP, Waalen J, et al. Influence of smoking on the antiplatelet effect of clopidogrel differs according to clopidogrel dose: Insights from the GRAVITAS trial. Catheter Cardiovasc Interv 2017; 89(2): 190-8.
[http://dx.doi.org/10.1002/ccd.26428] [PMID: 26909669]
[45]
Ramotowski B, Gurbel PA, Tantry U, Budaj A. Smoking and cardiovascular diseases: paradox greater than expected? Pol Arch Intern Med 2019; 129(10): 700-6.
[http://dx.doi.org/10.20452/pamw.14931] [PMID: 31418753]
[46]
Sibbing D, Bernlochner I, Kastrati A, Paré G, Eikelboom JW. Current evidence for genetic testing in clopidogrel-treated patients undergoing coronary stenting. Circ Cardiovasc Interv 2011; 4(5): 505-13.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.962183] [PMID: 22010189]
[47]
Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011; 94(3): 311-21.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[48]
Zhou K, Pedersen HK, Dawed AY, Pearson ER. Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat Rev Endocrinol 2016; 12(6): 337-46.
[http://dx.doi.org/10.1038/nrendo.2016.51] [PMID: 27062931]
[49]
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev 2019; 35(3): e3109.
[http://dx.doi.org/10.1002/dmrr.3109] [PMID: 30515958]
[50]
Bejan-Angoulvant T, Cornu C, Archambault P, et al. Is HbA1c a valid surrogate for macrovascular and microvascular complications in type 2 diabetes? Diabetes Metab 2015; 41(3): 195-201.
[http://dx.doi.org/10.1016/j.diabet.2015.04.001] [PMID: 25958125]
[51]
Chung WK, Erion K, Florez JC, et al. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020; 63(9): 1671-93.
[http://dx.doi.org/10.1007/s00125-020-05181-w] [PMID: 32556613]
[52]
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41(12): 2669-701.
[http://dx.doi.org/10.2337/dci18-0033] [PMID: 30291106]
[53]
Singh S, Usman K, Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes 2016; 7(15): 302-15.
[http://dx.doi.org/10.4239/wjd.v7.i15.302] [PMID: 27555891]
[54]
Boussageon R, Pouchain D, Renard V. Prevention of complications in type 2 diabetes: is drug glucose control evidence based? Br J Gen Pract 2017; 67(655): 85-7.
[http://dx.doi.org/10.3399/bjgp17X689317] [PMID: 28126879]
[55]
Dennis JM, Henley WE, Weedon MN, et al. Sex and BMI alter the benefits and risks of sulfonylureas and thiazolidinediones in type 2 diabetes: a framework for evaluating stratification using routine clinical and individual trial data. Diabetes Care 2018; 41(9): 1844-53.
[http://dx.doi.org/10.2337/dc18-0344] [PMID: 30072404]
[56]
Fitipaldi H, McCarthy MI, Florez JC, Franks PW. A global overview of precision medicine in Type 2 diabetes. Diabetes 2018; 67(10): 1911-22.
[http://dx.doi.org/10.2337/dbi17-0045] [PMID: 30237159]
[57]
Huang Q, Fang Q, Hu Z. A P4 medicine perspective of gut microbiota and prediabetes: systems analysis and personalized intervention. J Transl Int Med 2020; 8(3): 119-30.
[http://dx.doi.org/10.2478/jtim-2020-0020] [PMID: 33062587]
[58]
Dennis JM, Shields BM, Hill AV, et al. Precision medicine in type 2 diabetes: clinical markers of insulin resistance are associated with altered short- and long-term glycemic response to DPP-4 inhibitor therapy. Diabetes Care 2018; 41(4): 705-12.
[http://dx.doi.org/10.2337/dc17-1827] [PMID: 29386249]
[59]
Hsia DS, Grove O, Cefalu WT. An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017; 24(1): 73-9.
[http://dx.doi.org/10.1097/MED.0000000000000311] [PMID: 27898586]
[60]
Goldenberg RM. Choosing dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter-2 inhibitors, or both, as add-ons to metformin: Patient baseline characteristics are Crucial. Clin Ther 2017; 39(12): 2438-47.
[http://dx.doi.org/10.1016/j.clinthera.2017.10.016] [PMID: 29174215]
[61]
Salvatore T, Pafundi PC, Morgillo F, et al. Metformin: An old drug against old age and associated morbidities. Diabetes Res Clin Pract 2020; 160: 108025.
[http://dx.doi.org/10.1016/j.diabres.2020.108025] [PMID: 31954752]
[62]
Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 2016; 48(9): 1055-9.
[http://dx.doi.org/10.1038/ng.3632] [PMID: 27500523]
[63]
Burcelin R, Dolci W, Thorens B. Glucose sensing by the hepatoportal sensor is GLUT2-dependent: in vivo analysis in GLUT2-null mice. Diabetes 2000; 49(10): 1643-8.
[http://dx.doi.org/10.2337/diabetes.49.10.1643] [PMID: 11016447]
[64]
Liang X, Giacomini KM. Transporters involved in metformin pharmacokinetics and treatment response. J Pharm Sci 2017; 106(9): 2245-50.
[http://dx.doi.org/10.1016/j.xphs.2017.04.078] [PMID: 28495567]
[65]
Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A GoDARTS study. Diabetes 2015; 64(5): 1786-93.
[http://dx.doi.org/10.2337/db14-1388] [PMID: 25510240]
[66]
Dujic T, Zhou K, Tavendale R, Palmer CN, Pearson ER. Effect of serotonin transporter 5-HTTLPR polymorphism on gastrointestinal intolerance to metformin: A GoDARTS study. Diabetes Care 2016; 39(11): 1896-901.
[http://dx.doi.org/10.2337/dc16-0706] [PMID: 27493135]
[67]
Dawed AY, Zhou K, van Leeuwen N, et al. Variation in the Plasma Membrane monoamine Transporter (PMAT) (encoded by SLC29A4) and Organic Cation Transporter 1 (OCT1) (encoded by SLC22A1) and gastrointestinal intolerance to metformin in Type 2 diabetes: An IMI DIRECT study. Diabetes Care 2019; 42(6): 1027-33.
[http://dx.doi.org/10.2337/dc18-2182] [PMID: 30885951]
[68]
Desai NR, Shrank WH, Fischer MA, et al. Patterns of medication initiation in newly diagnosed diabetes mellitus: Quality and cost implications. Am J Med 2012; 125(3): 302 e1-7.
[http://dx.doi.org/10.1016/j.amjmed.2011.07.033]
[69]
Hirst JA, Farmer AJ, Dyar A, Lung TWC, Stevens RJ. Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia 2013; 56(5): 973-84.
[http://dx.doi.org/10.1007/s00125-013-2856-6] [PMID: 23494446]
[70]
Liao WL, Tsai FJ. Personalized medicine in Type 2 Diabetes. Biomedicine (Taipei) 2014; 4(2): 8.
[http://dx.doi.org/10.7603/s40681-014-0008-z] [PMID: 25520921]
[71]
Ashcroft FM. Mechanisms of the glycaemic effects of sulfonylureas. Horm Metab Res 1996; 28(9): 456-63.
[http://dx.doi.org/10.1055/s-2007-979837] [PMID: 8911983]
[72]
Hamming KSC, Soliman D, Matemisz LC, et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes 2009; 58(10): 2419-24.
[http://dx.doi.org/10.2337/db09-0143] [PMID: 19587354]
[73]
Lang VY, Fatehi M, Light PE. Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A. Pharmacogenet Genomics 2012; 22(3): 206-14.
[http://dx.doi.org/10.1097/FPC.0b013e32835001e7] [PMID: 22209866]
[74]
Zhou K, Donnelly L, Burch L, et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clin Pharmacol Ther 2010; 87(1): 52-6.
[http://dx.doi.org/10.1038/clpt.2009.176] [PMID: 19794412]
[75]
Zhou Y, Park SY, Su J, et al. TCF7L2 is a master regulator of insulin production and processing. Hum Mol Genet 2014; 23(24): 6419-31.
[http://dx.doi.org/10.1093/hmg/ddu359] [PMID: 25015099]
[76]
Avery P, Mousa SS, Mousa SA. Pharmacogenomics in type II diabetes mellitus management: Steps toward personalized medicine. Pharm Genomics Pers Med 2009; 2: 79-91.
[http://dx.doi.org/10.2147/pgpm.s5806] [PMID: 23226037]
[77]
Schroner Z, Javorsky M, Tkacova R, et al. Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab 2011; 13(1): 89-91.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01324.x] [PMID: 21114608]
[78]
Javorský M, Babjaková E, Klimčáková L, et al. Association between TCF7L2 genotype and glycemic control in diabetic patients treated with gliclazide. Int J Endocrinol 2013; 2013: 374858.
[http://dx.doi.org/10.1155/2013/374858] [PMID: 23509454]
[79]
Srinivasan S, Kaur V, Chamarthi B, et al. TCF7L2 genetic variation augments incretin resistance and influences response to a sulfonylurea and metformin: the study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH). Diabetes Care 2018; 41(3): 554-61.
[http://dx.doi.org/10.2337/dc17-1386] [PMID: 29326107]
[80]
Castelán-Martínez OD, Hoyo-Vadillo C, Bazán-Soto TB, Cruz M, Tesoro-Cruz E, Valladares-Salgado A. CYP2C9*3 gene variant contributes independently to glycaemic control in patients with type 2 diabetes treated with glibenclamide. J Clin Pharm Ther 2018; 43(6): 768-74.
[http://dx.doi.org/10.1111/jcpt.12710] [PMID: 29802808]
[81]
Pearson ER. Diabetes: Is there a future for pharmacogenomics guided treatment? Clin Pharmacol Ther 2019; 106(2): 329-37.
[http://dx.doi.org/10.1002/cpt.1484] [PMID: 31012484]
[82]
Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2011; 2(4): 236-40.
[http://dx.doi.org/10.4103/2231-4040.90879] [PMID: 22247890]
[83]
Chang C, Pang KS, Swaan PW, Ekins S. Comparative pharmacophore modeling of organic anion transporting polypeptides: A meta-analysis of rat Oatp1a1 and human OATP1B1. J Pharmacol Exp Ther 2005; 314(2): 533-41.
[http://dx.doi.org/10.1124/jpet.104.082370] [PMID: 15845861]
[84]
Jaakkola T, Laitila J, Neuvonen PJ, Backman JT. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: Potential for interactions with CYP2C8 inhibitors. Basic Clin Pharmacol Toxicol 2006; 99(1): 44-51.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_437.x] [PMID: 16867170]
[85]
Dawed AY, Donnelly L, Tavendale R, et al. CYP2C8 and SLCO1B1 variants and therapeutic response to thiazolidinediones in patients with type 2 diabetes. Diabetes Care 2016; 39(11): 1902-8.
[http://dx.doi.org/10.2337/dc15-2464] [PMID: 27271184]
[86]
Hanefeld M. Pharmacokinetics and clinical efficacy of pioglitazone. Int J Clin Pract Suppl 2001; 121(121): 19-25.
[PMID: 11594240]
[87]
Nauck MA. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 2011; 124(1)(Suppl.): S3-S18.
[http://dx.doi.org/10.1016/j.amjmed.2010.11.002] [PMID: 21194578]
[88]
Chon S, Gautier JF. An update on the effect of incretin based therapies on beta-cell function and mass. Diabetes Metab J 2016; 40(2): 99-114.
[http://dx.doi.org/10.4093/dmj.2016.40.2.99] [PMID: 27126881]
[89]
’t Hart LM, Fritsche A, Nijpels G, et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes 2013; 62(9): 3275-81.
[http://dx.doi.org/10.2337/db13-0227] [PMID: 23674605]
[90]
Rathmann W, Bongaerts B. Pharmacogenetics of novel glucose-lowering drugs. Diabetologia 2021.
[http://dx.doi.org/10.1007/s00125-021-05402-w] [PMID: 33594477]
[91]
Vicente AM, Ballensiefen W, Jönsson J-I. How personalised medicine will transform healthcare by 2030: The ICPerMed vision. J Transl Med 2014; 18(1): 180.
[http://dx.doi.org/10.1186/s12967-020-02316-w] [PMID: 32345312]
[92]
Chakraborty B, Murphy SA. Dynamic treatment regimes. Annu Rev Stat Appl 2014; 1(447): 464.
[http://dx.doi.org/10.1146/annurev-statistics-022513-115553]
[93]
Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril 2018; 109(6): 952-63.
[http://dx.doi.org/10.1016/j.fertnstert.2018.05.006] [PMID: 29935653]
[94]
Jess T, Riis L, Vind I, et al. Changes in clinical characteristics, course, and prognosis of inflammatory bowel disease during the last 5 decades: A population-based study from Copenhagen, Denmark. Inflamm Bowel Dis 2007; 13(4): 481-9.
[http://dx.doi.org/10.1002/ibd.20036] [PMID: 17206705]
[95]
Solberg IC, Vatn MH, Høie O, et al. Clinical course in Crohn’s disease: Results of a Norwegian population-based ten-year follow-up study. Clin Gastroenterol Hepatol 2007; 5(12): 1430-8.
[http://dx.doi.org/10.1016/j.cgh.2007.09.002] [PMID: 18054751]
[96]
Lee JC, Lyons PA, McKinney EF, et al. Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 2011; 121(10): 4170-9.
[http://dx.doi.org/10.1172/JCI59255] [PMID: 21946256]
[97]
Kleinberger JW, Pollin TI. Personalized medicine in diabetes mellitus: Current opportunities and future prospects. Ann N Y Acad Sci 2015; 1346(1): 45-56.
[http://dx.doi.org/10.1111/nyas.12757] [PMID: 25907167]
[98]
Kalra S, Chaudhary S. Precision medicine in diabetes. J Pak Med Assoc 2019; 69(9): 1394-5.
[PMID: 31511734]
[99]
Rubio-Cabezas O, Hattersley AT, Njølstad PR, et al. ISPAD Clinical Practice Consensus Guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2014; 15(Suppl. 20): 47-64.
[http://dx.doi.org/10.1111/pedi.12192] [PMID: 25182307]
[100]
Arar NH, Freedman BI, Adler SG, et al. Heritability of the severity of diabetic retinopathy: The FIND-Eye study. Invest Ophthalmol Vis Sci 2008; 49(9): 3839-45.
[http://dx.doi.org/10.1167/iovs.07-1633] [PMID: 18765632]
[101]
Zhou K, Donnelly L, Yang J, et al. Heritability of variation in glycaemic response to metformin: A genome-wide complex trait analysis. Lancet Diabetes Endocrinol 2014; 2(6): 481-7.
[http://dx.doi.org/10.1016/S2213-8587(14)70050-6] [PMID: 24731673]
[102]
Nasykhova YA, Tonyan ZN, Mikhailova AA, Danilova MM, Glotov AS. Pharmacogenetics of type 2 diabetes-progress and prospects. Int J Mol Sci 2020; 21(18): 6842.
[http://dx.doi.org/10.3390/ijms21186842] [PMID: 32961860]
[103]
Mizuno T, Dong M, Taylor ZL, Ramsey LB, Vinks AA. Clinical implementation of pharmacogenetics and model-informed precision dosing to improve patient care. Br J Clin Pharmacol 2020.
[http://dx.doi.org/10.1111/bcp.14426] [PMID: 32529759]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy