Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Effects of Xenogen Mesenchymal Stem Cells and Cryo-Platelet Gel on Intractable Wound Healing in Animal Model (Rat)

Author(s): Babak Alavi-Farzaneh, Ali Shojaeian, Mehdi Banitalebi-Dehkordi*, Fatemeh Mirahmadi, Ameneh Mehri-Ghahfarrokhi, Alireza Ghorbanpour, Shima Rahmati-Dehkordi and Farshad Yazdani

Volume 20, Issue 4, 2021

Published on: 13 May, 2021

Page: [344 - 352] Pages: 9

DOI: 10.2174/1871523020666210514002722

Price: $65

Abstract

Background: Today, the effects of growth factors and mesenchymal stem cells (MSCs) in promoting wound healing has been confirmed.

Objective: This study aimed to investigate the effect of MSCs and platelet cryogel on wound healing.

Methods: 40 male wistar rats were randomly divided into five groups (n=8). The control group was just dressed, the second group received platelet cryogel, the third group received platelet cryogel containing MSCs, the fourth group received plasma, and the fifth group received plasma plus MSCs. The biopsy was obtained from the wounds in the 2, 4, 6, and 8 days of the treatment. Then, pathological evaluation was conducted. Finally, qRT-PCR was performed to determine angiogenesis.

Results: The intervention groups had faster wound healing and lower wound area than the control group (p<0.05). The highest wound healing rate and the smallest wound area was observed in the group receiving platelet cryogel plus MSCs. Angiogenesis, fibrosis, myoepithelial and epithelialization in the pathologic examination using H & E staining were not significantly different between the groups. The expression of Ang-1 in the intervention groups was higher than the control group and the highest expression was observed in the platelet cryogel plus MSCs, followed by the platelet cryogel group. The expression of VEGF in the plasma plus MSCs was higher than in the other groups.

Conclusion: Further studies require to determine the effects of combined use of platelet cryogel plus MSCs on other types of wound and evaluate mechanisms involved in wound healing like collagenesis and inflammatory factors.

Keywords: Ang-1, cryogel, mesenchymal stem cells, VEGF, wound healing, xenogen mesenchymal stem cells.

Graphical Abstract

[1]
Ghaderi, R. Afshar m. Novel advancements in wound healing. J. Birjand Uni. Med. Sci., 2014, 21(1), 1-19.
[2]
Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[3]
Kazakos, K.; Lyras, D.N.; Verettas, D.; Tilkeridis, K.; Tryfonidis, M. The use of autologous PRP gel as an aid in the management of acute trauma wounds. Injury, 2009, 40(8), 801-805.
[http://dx.doi.org/10.1016/j.injury.2008.05.002] [PMID: 18703188]
[4]
Cervelli, V.; Scioli, M.G.; Gentile, P.; Doldo, E.; Bonanno, E.; Spagnoli, L.G.; Orlandi, A. Platelet-rich plasma greatly potentiates insulin-induced adipogenic differentiation of human adipose-derived stem cells through a serine/threonine kinase Akt-dependent mechanism and promotes clinical fat graft maintenance. Stem Cells Transl. Med., 2012, 1(3), 206-220.
[http://dx.doi.org/10.5966/sctm.2011-0052] [PMID: 23197780]
[5]
Murphy, M.B.; Blashki, D.; Buchanan, R.M.; Yazdi, I.K.; Ferrari, M.; Simmons, P.J.; Tasciotti, E. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials, 2012, 33(21), 5308-5316.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.007] [PMID: 22542609]
[6]
D’Esposito, V.; Passaretti, F.; Perruolo, G.; Ambrosio, M.R.; Valentino, R.; Oriente, F.; Raciti, G.A.; Nigro, C.; Miele, C.; Sammartino, G.; Beguinot, F.; Formisano, P. Platelet-rich plasma increases growth and motility of adipose tissue-derived mesenchymal stem cells and controls adipocyte secretory function. J. Cell. Biochem., 2015, 116(10), 2408-2418.
[http://dx.doi.org/10.1002/jcb.25235] [PMID: 26012576]
[7]
Heidari Bateni, M; Alizade, S; Hashemi Tayer, A; Almasi Hashyani, A. The Effect of Autologus Platelet Glue on Healing Burn Wounds: An In Vivo Study. J. Arak Uni. Med. Sci., 2013, 16(3), 0.
[8]
Wu, Y.; Chen, L.; Scott, P.G.; Tredget, E.E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 2007, 25(10), 2648-2659.
[http://dx.doi.org/10.1634/stemcells.2007-0226] [PMID: 17615264]
[9]
Chen, L.; Tredget, E.E.; Wu, P.Y.; Wu, Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 2008, 3(4), e1886.
[http://dx.doi.org/10.1371/journal.pone.0001886] [PMID: 18382669]
[10]
Nie, C.; Yang, D.; Xu, J.; Si, Z.; Jin, X.; Zhang, J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant., 2011, 20(2), 205-216.
[http://dx.doi.org/10.3727/096368910X520065] [PMID: 20719083]
[11]
Kim, H.; Choi, K.; Kweon, O-K.; Kim, W.H. Enhanced wound healing effect of canine adipose-derived mesenchymal stem cells with low-level laser therapy in athymic mice. J. Dermatol. Sci., 2012, 68(3), 149-156.
[http://dx.doi.org/10.1016/j.jdermsci.2012.09.013] [PMID: 23084629]
[12]
Maharlooei, M.K.; Bagheri, M.; Solhjou, Z.; Jahromi, B.M.; Akrami, M.; Rohani, L.; Monabati, A.; Noorafshan, A.; Omrani, G.R. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res. Clin. Pract., 2011, 93(2), 228-234.
[http://dx.doi.org/10.1016/j.diabres.2011.04.018] [PMID: 21632142]
[13]
McCallum, I.; King, P.M.; Bruce, J. Healing by primary versus secondary intention after surgical treatment for pilonidal sinus. Cochrane Database Syst. Rev., 2007, (4), CD006213.
[http://dx.doi.org/10.1002/14651858.CD006213.pub2] [PMID: 17943897]
[14]
Chintapatla, S.; Safarani, N.; Kumar, S.; Haboubi, N. Sacrococcygeal pilonidal sinus: historical review, pathological insight and surgical options. Tech. Coloproctol., 2003, 7(1), 3-8.
[http://dx.doi.org/10.1007/s101510300001] [PMID: 12750948]
[15]
Lubkowska, A.; Dolegowska, B.; Banfi, G. Growth factor content in PRP and their applicability in medicine. J. Biol. Regul. Homeost. Agents, 2012, 26(2)(Suppl. 1), 3S-22S.
[PMID: 23648195]
[16]
Lu, D.; Chen, B.; Liang, Z.; Deng, W.; Jiang, Y.; Li, S.; Xu, J.; Wu, Q.; Zhang, Z.; Xie, B.; Chen, S. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res. Clin. Pract., 2011, 92(1), 26-36.
[http://dx.doi.org/10.1016/j.diabres.2010.12.010] [PMID: 21216483]
[17]
Beltrami, A.P.; Barlucchi, L.; Torella, D.; Baker, M.; Limana, F.; Chimenti, S.; Kasahara, H.; Rota, M.; Musso, E.; Urbanek, K.; Leri, A.; Kajstura, J.; Nadal-Ginard, B.; Anversa, P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 2003, 114(6), 763-776.
[http://dx.doi.org/10.1016/S0092-8674(03)00687-1] [PMID: 14505575]
[18]
Wagner, W.; Wein, F.; Seckinger, A.; Frankhauser, M.; Wirkner, U.; Krause, U.; Blake, J.; Schwager, C.; Eckstein, V.; Ansorge, W.; Ho, A.D. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol., 2005, 33(11), 1402-1416.
[http://dx.doi.org/10.1016/j.exphem.2005.07.003] [PMID: 16263424]
[19]
Yoshikawa, T.; Mitsuno, H.; Nonaka, I.; Sen, Y.; Kawanishi, K.; Inada, Y.; Takakura, Y.; Okuchi, K.; Nonomura, A. Wound therapy by marrow mesenchymal cell transplantation. Plast. Reconstr. Surg., 2008, 121(3), 860-877.
[http://dx.doi.org/10.1097/01.prs.0000299922.96006.24] [PMID: 18317135]
[20]
Dash, N.R.; Dash, S.N.; Routray, P.; Mohapatra, S.; Mohapatra, P.C. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res., 2009, 12(5), 359-366.
[http://dx.doi.org/10.1089/rej.2009.0872] [PMID: 19929258]
[21]
Kocaoemer, A.; Kern, S.; Klüter, H.; Bieback, K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells, 2007, 25(5), 1270-1278.
[http://dx.doi.org/10.1634/stemcells.2006-0627] [PMID: 17255520]
[22]
Banitalebi Dehkordi, M.; Madjd, Z.; Chaleshtori, M.H.; Meshkani, R.; Nikfarjam, L.; Kajbafzadeh, A.M.A. A Simple, Rapid, and Efficient Method for Isolating Mesenchymal Stem Cells From the Entire Umbilical Cord. Cell Transplant., 2016, 25(7), 1287-1297.
[http://dx.doi.org/10.3727/096368915X688911] [PMID: 26270183]
[23]
Shojaeian, A.; Mehri-Ghahfarrokhi, A.; Banitalebi-Dehkordi, M. Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus. Hum. Cell, 2020, 33(1), 10-22.
[http://dx.doi.org/10.1007/s13577-019-00308-7] [PMID: 31811569]
[24]
Somal, A.; Bhat, I.A.; B, I.; Singh, A.P.; Panda, B.S.K.; Desingu, P.A.; Pandey, S.; Bharti, M.K.; Pal, A.; Saikumar, G.; Chandra, V.; Sharma, G.T. Impact of cryopreservation on caprine fetal adnexa derived stem cells and its evaluation for growth kinetics, phenotypic characterization, and wound healing potential in xenogenic rat model. J. Cell. Physiol., 2017, 232(8), 2186-2200.
[http://dx.doi.org/10.1002/jcp.25731] [PMID: 27966782]
[25]
Eklund, L.; Olsen, B.R. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp. Cell Res., 2006, 312(5), 630-641.
[http://dx.doi.org/10.1016/j.yexcr.2005.09.002] [PMID: 16225862]
[26]
Kular, J.K.; Basu, S.; Sharma, R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng., 2014, 5, 2041731414557112.
[http://dx.doi.org/10.1177/2041731414557112] [PMID: 25610589]
[27]
Nielsen, M.J.; Karsdal, M.A. Chapter 3 - Type III Collagen.Biochemistry of Collagens, Laminins and Elastin; Karsdal, MA, Ed.; Academic Press, 2016, pp. 21-30.
[28]
Tiong, K.H.; Mah, L.Y.; Leong, C-O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis, 2013, 18(12), 1447-1468.
[http://dx.doi.org/10.1007/s10495-013-0886-7] [PMID: 23900974]
[29]
Liu, W.; Dong, Z.; Hu, R.; Wang, C. Association of vascular endothelial growth factor (VEGF) gene polymorphisms with gastric cancer and its development, prognosis, and survival. Technol. Cancer Res. Treat., 2018, 17, 1533034617753810.
[http://dx.doi.org/10.1177/1533034617753810] [PMID: 29390928]
[30]
Mitsunaga Junior, J.K.; Gragnani, A.; Ramos, M.L.C.; Ferreira, L.M. Rat an experimental model for burns: a systematic review. Acta Cir. Bras., 2012, 27(6), 417-423.
[http://dx.doi.org/10.1590/S0102-86502012000600010] [PMID: 22666760]
[31]
Luo, G.; Cheng, W.; He, W.; Wang, X.; Tan, J.; Fitzgerald, M.; Li, X.; Wu, J. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen., 2010, 18(5), 506-513.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00616.x] [PMID: 20840520]
[32]
Nakagawa, H.; Akita, S.; Fukui, M.; Fujii, T.; Akino, K. Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br. J. Dermatol., 2005, 153(1), 29-36.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06554.x] [PMID: 16029323]
[33]
Badiavas, E.V.; Falanga, V. Treatment of chronic wounds with bone marrow-derived cells. Arch. Dermatol., 2003, 139(4), 510-516.
[http://dx.doi.org/10.1001/archderm.139.4.510] [PMID: 12707099]
[34]
Jr-Jiun, Liou; Benjamin B., Rothrauff; Peter G., Alexander; Rocky S., Tuan Effect of Platelet-Rich Plasma on Chondrogenic Differentiation of Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Eng. Part A, 2018, 24, 19-20.
[35]
Lacci, K.M.; Dardik, A. Platelet-rich plasma: support for its use in wound healing. Yale J. Biol. Med., 2010, 83(1), 1-9.
[PMID: 20351977]
[36]
Demidova-Rice, T.N.; Wolf, L.; Deckenback, J.; Hamblin, M.R.; Herman, I.M. Human platelet-rich plasma- and extracellular matrix-derived peptides promote impaired cutaneous wound healing in vivo. PLoS One, 2012, 7(2), e32146.
[http://dx.doi.org/10.1371/journal.pone.0032146] [PMID: 22384158]
[37]
Intini, G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials, 2009, 30(28), 4956-4966.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.055] [PMID: 19573909]
[38]
Ghaneialvar, H.; Arjmand, S.; Sahebghadam Lotfi, A.; Soleimani, M.; Mashhadi Abbas, F. Influence of adipose derived mesenchymal stem cells on the effective inflammatory factors of diabetic wound healing in animal models. Majallah-i Danishgah-i Ulum-i Pizishki-i Mazandaran, 2017, 27(148), 12-21.
[39]
Liu, L.; Yu, Y.; Hou, Y.; Chai, J.; Duan, H.; Chu, W.; Zhang, H.; Hu, Q.; Du, J. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One, 2014, 9(2), e88348.
[http://dx.doi.org/10.1371/journal.pone.0088348] [PMID: 24586314]
[40]
Henderson, J.L.; Cupp, C.L.; Ross, E.V.; Shick, P.C.; Keefe, M.A.; Wester, D.C.; Hannon, T.; McConnell, D. The effects of autologous platelet gel on wound healing. Ear Nose Throat J., 2003, 82(8), 598-602.
[http://dx.doi.org/10.1177/014556130308200814] [PMID: 14503096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy