Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Therapeutic Journey of Potential Drugs Against COVID-19

Author(s): Fayaz Ali*, Shahid Hussain and Yi Z. Zhu*

Volume 22, Issue 14, 2022

Published on: 01 April, 2022

Page: [1876 - 1894] Pages: 19

DOI: 10.2174/1389557521666210412161157

Price: $65

Abstract

Coronavirus disease (CoVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) scrambles the world by infecting millions of peoples all over the globe. It has caused tremendous morbidity, mortality and greatly impacted the lives and economy worldwide as an outcome of mandatory quarantines or isolations. Despite the worsening trends of COVID-19, no drugs are validated to have significant efficacy in the clinical treatment of COVID-19 patients in large-scale studies. Physicians and researchers throughout the world are working to understand the pathophysiology to expose the conceivable handling regimens and to determine the effective vaccines and/or therapeutic agents. Some of them re-purposed drugs for clinical trials which were primarily known to be effective against the RNA viruses including MERS-CoV and SARS-CoV-1. In the absence of a proven efficacy therapy, the current management use therapies based on antivirals, anti-inflammatory drugs, convalescent plasma, anti-parasitic agents in both oral and parenteral formulation, oxygen therapy, and heparin support. What is needed at this hour, however, is a definitive drug therapy or vaccine. Different countries are rushing to find this, and various trials are already underway. We aimed to summarize the potential therapeutic strategies as treatment options for COVID-19 that could be helpful to stop further spread of SARS-CoV-2 by affecting its structural components or modulation of immune response and discuss the leading drugs/vaccines, which are considered as potential agents for controlling this pandemic.

Keywords: COVID-19 outbreak, pandemic, therapeutic agents, clinical trials, approved drugs, MERS-CoV.

[1]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[2]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[3]
Zhang, Y. Novel 2019 coronavirus genome. Virological, 2020. Available from: https://virological.org/t/novel-2019-coronavirus-genome/319
[4]
Hussain, S.; Xie, Y.J.; Li, D.; Malik, S.I.; Hou, J.C.; Leung, E.L.; Fan, X.X. Current strategies against COVID-19. Chin. Med., 2020, 15, 70.
[http://dx.doi.org/10.1186/s13020-020-00353-7] [PMID: 32665783]
[5]
de Groot, R.J.; Baker, S.; Baric, R.; Enjuanes, L.; Gorbalenya, A.; Holmes, K. Family coronaviridae. In: Virus Taxonomy; Elsveir: Cambridge, 2012, pp. 806-828.
[6]
Perlman, S. Another decade, another coronavirus. N. Engl. J. Med., 2020, 382, 760-762.
[http://dx.doi.org/10.1056/NEJMe2001126]
[7]
Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020, 26(4), 450-452.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[8]
Wang, N.; Li, S.Y.; Yang, X.L.; Huang, H.M.; Zhang, Y.J.; Guo, H.; Luo, C.M.; Miller, M.; Zhu, G.; Chmura, A.A.; Hagan, E.; Zhou, J.H.; Zhang, Y.Z.; Wang, L.F.; Daszak, P.; Shi, Z.L. Serological evidence of bat SARS-Related Coronavirus Infection in Humans, China. Virol. Sin., 2018, 33(1), 104-107.
[http://dx.doi.org/10.1007/s12250-018-0012-7] [PMID: 29500691]
[9]
Law, S.; Leung, A.W.; Xu, C. Severe acute respiratory syndrome (SARS) and coronavirus disease-2019 (COVID-19): From causes to preventions in Hong Kong. Int. J. Infect. Dis., 2020, 94, 156-163.
[http://dx.doi.org/10.1016/j.ijid.2020.03.059] [PMID: 32251790]
[10]
Jin, Y.H.; Cai, L.; Cheng, Z.S.; Cheng, H.; Deng, T.; Fan, Y.P.; Fang, C.; Huang, D.; Huang, L.Q.; Huang, Q.; Han, Y.; Hu, B.; Hu, F.; Li, B.H.; Li, Y.R.; Liang, K.; Lin, L.K.; Luo, L.S.; Ma, J.; Ma, L.L.; Peng, Z.Y.; Pan, Y.B.; Pan, Z.Y.; Ren, X.Q.; Sun, H.M.; Wang, Y.; Wang, Y.Y.; Weng, H.; Wei, C.J.; Wu, D.F.; Xia, J.; Xiong, Y.; Xu, H.B.; Yao, X.M.; Yuan, Y.F.; Ye, T.S.; Zhang, X.C.; Zhang, Y.W.; Zhang, Y.G.; Zhang, H.M.; Zhao, Y.; Zhao, M.J.; Zi, H.; Zeng, X.T.; Wang, Y.Y.; Wang, X.H. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res., 2020, 7(1), 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[11]
Amanat, F.; Krammer, F. SARS-CoV-2 vaccines: status report. Immunity, 2020, 52(4), 583-589.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]
[12]
Chen, W.H.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep., 2020, 1-4.
[PMID: 32219057]
[13]
Deming, M.E.; Michael, N.L.; Robb, M.; Cohen, M.S.; Neuzil, K.M. Accelerating development of sars-cov-2 vaccines-the role for controlled human infection models. N. Engl. J. Med., 2020, 383(10), e63.
[http://dx.doi.org/10.1056/NEJMp2020076] [PMID: 32610006]
[14]
Astuti, I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[15]
Chen, X.; Yang, Y.; Huang, M.; Liu, L.; Zhang, X.; Xu, J.; Geng, S.; Han, B.; Xiao, J.; Wan, Y. Differences between COVID-19 and suspected then confirmed SARS-CoV-2-negative pneumonia: A retrospective study from a single center. J. Med. Virol., 2020, 92(9), 1572-1579.
[http://dx.doi.org/10.1002/jmv.25810] [PMID: 32237148]
[16]
Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res., 2020, 116(6), 1097-1100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[17]
Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.R. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev. Respir. Med., 2020, •••, 1-4.
[18]
Zhang, Y.; Geng, X.; Tan, Y.; Li, Q.; Xu, C.; Xu, J.; Hao, L.; Zeng, Z.; Luo, X.; Liu, F.; Wang, H. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother., 2020, 127, 110195.
[http://dx.doi.org/10.1016/j.biopha.2020.110195] [PMID: 32361161]
[19]
Najjar, S.; Najjar, A.; Chong, D.J.; Pramanik, B.K.; Kirsch, C.; Kuzniecky, R.I.; Pacia, S.V.; Azhar, S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J. Neuroinflammation, 2020, 17(1), 231.
[http://dx.doi.org/10.1186/s12974-020-01896-0] [PMID: 32758257]
[20]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19, 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0]
[21]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[22]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K-Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[23]
Yoon, J.S.; Kim, G.; Jarhad, D.B.; Kim, H.R.; Shin, Y.S.; Qu, S.; Sahu, P.K.; Kim, H.O.; Lee, H.W.; Wang, S.B.; Kong, Y.J.; Chang, T.S.; Ogando, N.S.; Kovacikova, K.; Snijder, E.J.; Posthuma, C.C.; van Hemert, M.J.; Jeong, L.S. Design, synthesis, and anti-RNA virus activity of 6′-fluorinated-aristeromycin analogues. J. Med. Chem., 2019, 62(13), 6346-6362.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00781] [PMID: 31244113]
[24]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[25]
Peng, Z.; Xing-Lou, Y.; Xian-Guang, W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579, 270-273.
[26]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[27]
Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, 5(4), 562-569.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[28]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), 94.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[29]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV- 2 spike glycoprotein. Cell, 2020, 181, 281-92. e6.
[30]
De Clercq, E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J., 2019, 14(22), 3962-3968.
[http://dx.doi.org/10.1002/asia.201900841] [PMID: 31389664]
[31]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 323(18), 1824-1836.
[PMID: 32282022]
[32]
Li, H.; Yang, L.; Liu, F.F.; Ma, X.N.; He, P.L.; Tang, W.; Tong, X.K.; Zuo, J.P. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol. Sin., 2020, 41(9), 1133-1140.
[http://dx.doi.org/10.1038/s41401-020-0438-y] [PMID: 32555446]
[33]
Ferner, R.E.; Aronson, J.K. Chloroquine and hydroxychloroquine in covid-19. BMJ, 2020, 369, m1432.
[http://dx.doi.org/10.1136/bmj.m1432]
[34]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[35]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv, 2020.
[36]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92, 2249-2249.
[http://dx.doi.org/10.1002/jmv.26234]
[37]
Chan, J.F-W.; Kok, K-H.; Zhu, Z.; Chu, H.; To, K.K-W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[38]
Needle, D.; Lountos, G.T.; Waugh, D.S. Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 5), 1102-1111.
[http://dx.doi.org/10.1107/S1399004715003521] [PMID: 25945576]
[39]
Kumar, V.; Tan, K.P.; Wang, Y.M.; Lin, S.W.; Liang, P.H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2016, 24(13), 3035-3042.
[http://dx.doi.org/10.1016/j.bmc.2016.05.013] [PMID: 27240464]
[40]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S-H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[41]
Pang, X.C.; Zhang, H.X.; Zhang, Z.; Rinkiko, S.; Cui, Y.M.; Zhu, Y.Z. The two-way switch role of ACE2 in the treatment of novel coronavirus pneumonia and underlying comorbidities. Molecules, 2020, 26(1), 142.
[http://dx.doi.org/10.3390/molecules26010142] [PMID: 33396184]
[42]
Pang, X.; Cui, Y.; Zhu, Y. Recombinant human ACE2: potential therapeutics of SARS-CoV-2 infection and its complication. Acta Pharmacol. Sin., 2020, 41(9), 1255-1257.
[http://dx.doi.org/10.1038/s41401-020-0430-6] [PMID: 32581256]
[43]
Han, D.P.; Penn-Nicholson, A.; Cho, M.W. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology, 2006, 350(1), 15-25.
[http://dx.doi.org/10.1016/j.virol.2006.01.029] [PMID: 16510163]
[44]
Zhou, Q.; Yan, R.; Zhang, Y.; Li, Y.; Xia, L. Structure of dimeric full-length human ACE2 in complex with B0AT1. bioRxiv, 2020.
[45]
Simmons, G.; Zmora, P.; Gierer, S.; Heurich, A.; Pöhlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res., 2013, 100(3), 605-614.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[46]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[47]
Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. a multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[48]
Vigerust, D.J.; Shepherd, V.L. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol., 2007, 15(5), 211-218.
[http://dx.doi.org/10.1016/j.tim.2007.03.003] [PMID: 17398101]
[49]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[50]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[51]
Menachery, V.D.; Dinnon, K.H., III; Yount, B.L., Jr; McAnarney, E.T.; Gralinski, L.E.; Hale, A.; Graham, R.L.; Scobey, T.; Anthony, S.J.; Wang, L.; Graham, B.; Randell, S.H.; Lipkin, W.I.; Baric, R.S. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J. Virol., 2020, 94(5), 94.
[PMID: 31801868]
[52]
Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 2019, 93(6), e01815-e01818.
[http://dx.doi.org/10.1128/JVI.01815-18] [PMID: 30626688]
[53]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[54]
Boserup, B.; McKenney, M.; Elkbuli, A. An overview of current COVID-19 clinical trials and ethical considerations editorial. Ann. Med. Surg., 2020, 58, 84-86.
[http://dx.doi.org/10.1016/j.amsu.2020.08.041]
[55]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[56]
Bhattacharjee, M.K. Chemistry of Antibiotics and Related Drugs; Springer Nature: Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-40746-3]
[57]
World Health Organization. Model List of Essential Medicines, 21st List 2019. Available from: https://apps.who.int/iris/rest/bitstreams/1237479/retrieve
[58]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[59]
Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, 323(1), 264-268.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[60]
Devaux, C.A.; Rolain, J-M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[61]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[62]
Colson, P.; Rolain, J-M.; Lagier, J-C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents, 2020, 55(4), 105932.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932]
[63]
Kearney, J. Chloroquine as a potential treatment and prevention measure for the 2019 novel coronavirus. Preprints, 2020, 2020030275.
[64]
Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr; Nahid, M.; Ringel, J.B.; Hoffman, K.L.; Alshak, M.N.; Li, H.A.; Wehmeyer, G.T.; Rajan, M.; Reshetnyak, E.; Hupert, N.; Horn, E.M.; Martinez, F.J.; Gulick, R.M.; Safford, M.M. Clinical characteristics of Covid-19 in New York city. N. Engl. J. Med., 2020, 382(24), 2372-2374.
[http://dx.doi.org/10.1056/NEJMc2010419] [PMID: 32302078]
[65]
Bonow, R.O.; Fonarow, G.C.; O’Gara, P.T.; Yancy, C.W. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol., 2020, 5(7), 751-753.
[http://dx.doi.org/10.1001/jamacardio.2020.1105] [PMID: 32219362]
[66]
Gevers, S.; Kwa, M.S.G.; Wijnans, E.; van Nieuwkoop, C. Safety considerations for chloroquine and hydroxychloroquine in the treatment of COVID-19. Clin. Microbiol. Infect., 2020, 26(9), 1276-1277.
[http://dx.doi.org/10.1016/j.cmi.2020.05.006] [PMID: 32422406]
[67]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248, 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[68]
Klein, A. Drug trials under way. New Scientist, 245(3270), 22.
[http://dx.doi.org/10.1016/S0262-4079(20)30376-6]
[69]
Dotolo, S.; Marabotti, A.; Facchiano, A.; Tagliaferri, R. A review on drug repurposing applicable to COVID-19. Brief. Bioinformatics., 2021, 22(2), 726-741.
[70]
Jin, Z.; Smith, L.K.; Rajwanshi, V.K.; Kim, B.; Deval, J. The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLoS One, 2013, 8(7), e68347.
[http://dx.doi.org/10.1371/journal.pone.0068347] [PMID: 23874596]
[71]
Naesens, L.; Guddat, L.W.; Keough, D.T.; van Kuilenburg, A.B.; Meijer, J.; Vande Voorde, J.; Balzarini, J. Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir). Mol. Pharmacol., 2013, 84(4), 615-629.
[http://dx.doi.org/10.1124/mol.113.087247] [PMID: 23907213]
[72]
Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D.F.; Barnard, D.L.; Gowen, B.B.; Julander, J.G.; Morrey, J.D. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res., 2009, 82(3), 95-102.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.198] [PMID: 19428599]
[73]
Shrestha, D.B.; Budhathoki, P.; Khadka, S.; Shah, P.B.; Pokharel, N.; Rashmi, P. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol. J., 2020, 17(1), 141.
[http://dx.doi.org/10.1186/s12985-020-01412-z] [PMID: 32972430]
[74]
Agrawal, U.; Raju, R.; Udwadia, Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India, 2020, 76(4), 370-376.
[http://dx.doi.org/10.1016/j.mjafi.2020.08.004] [PMID: 32895599]
[75]
Pilkington, V.; Pepperrell, T.; Hill, A. A review of the safety of favipiravir - a potential treatment in the COVID-19 pandemic? J. Virus Erad., 2020, 6(2), 45-51.
[http://dx.doi.org/10.1016/S2055-6640(20)30016-9] [PMID: 32405421]
[76]
Ren, J.L.; Zhang, A-H.; Wang, X-J. Traditional Chinese medicine for COVID-19 treatment. Pharmacol. Res., 2020, 155, 104743.
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[77]
Chan, K.W.; Wong, V.T.; Tang, S.C.W. COVID-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese-Western medicine for the management of 2019 novel coronavirus disease. Am. J. Chin. Med., 2020, 48(3), 737-762.
[http://dx.doi.org/10.1142/S0192415X20500378] [PMID: 32164424]
[78]
Lu, R.; Wang, W.; Li, X. Clinical observation on 63 cases of suspected cases of new coronavirus pneumonia treated by Chinese medicine Lianhua Qingwen. J. Tradit. Chin. Med, 2020, ID: czh-1331.
[79]
Yao, K.; Liu, M.; Li, X.; Huang, J.; Cai, H. Retrospective clinical analysis on treatment of novel coronavirus-infected pneumonia with traditional Chinese medicine Lianhua Qingwen. Chin. J. Exp. Tradit. Med. Form., 2020, 2020, 1-7.
[80]
Brown, A.J.; Won, J.J.; Graham, R.L.; Dinnon, K.H., III; Sims, A.C.; Feng, J.Y.; Cihlar, T.; Denison, M.R.; Baric, R.S.; Sheahan, T.P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res., 2019, 169, 104541.
[http://dx.doi.org/10.1016/j.antiviral.2019.104541] [PMID: 31233808]
[81]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-e18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[82]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[83]
Corbett, A.H.; Lim, M.L.; Kashuba, A.D. Kaletra (lopinavir/ritonavir). Ann. Pharmacother., 2002, 36(7-8), 1193-1203.
[http://dx.doi.org/10.1345/aph.1A363] [PMID: 12086554]
[84]
Lim, S-Y.; Osuna, C.; Lakritz, J.; Chen, E.; Yoon, G.; Taylor, R. Galidesivir, a direct-acting antiviral drug, abrogates viremia in Rhesus macaques challenged with Zika virus. Open Forum Infect. Dis., 2017, 4(Suppl. 1), S55.
[85]
Warren, T.; MacLennan, S.; Mathis, A.; Giuliano, E.; Taylor, R.; Sheridan, W. Efficacy of Galidesivir against Ebola virus disease in Rhesus monkeys. Open Forum Infect. Dis., 2017, 4(Suppl. 1), S302.
[86]
Chang, Y-C.; Tung, Y-A.; Lee, K-H.; Chen, T-F.; Hsiao, Y-C.; Chang, H-C. Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking. Preprints, 2020, 2020020242.
[87]
Xu, J.; Jia, W.; Wang, P.; Zhang, S.; Shi, X.; Wang, X.; Zhang, L. Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect., 2019, 8(1), 841-856.
[http://dx.doi.org/10.1080/22221751.2019.1624482] [PMID: 31169078]
[88]
Pascal, K.E.; Coleman, C.M.; Mujica, A.O.; Kamat, V.; Badithe, A.; Fairhurst, J.; Hunt, C.; Strein, J.; Berrebi, A.; Sisk, J.M.; Matthews, K.L.; Babb, R.; Chen, G.; Lai, K.M.; Huang, T.T.; Olson, W.; Yancopoulos, G.D.; Stahl, N.; Frieman, M.B.; Kyratsous, C.A. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA, 2015, 112(28), 8738-8743.
[http://dx.doi.org/10.1073/pnas.1510830112] [PMID: 26124093]
[89]
Lu, L.; Zhang, H.; Zhan, M.; Jiang, J.; Yin, H.; Dauphars, D.J. Antibody response and therapy in COVID-19 patients: what can be learned for vaccine development? Sci. China Life Sci., 2020, 63(12), 1833-1849.
[90]
Vetter, V.; Denizer, G.; Friedland, L.R.; Krishnan, J.; Shapiro, M. Understanding modern-day vaccines: what you need to know. Ann. Med., 2018, 50(2), 110-120.
[http://dx.doi.org/10.1080/07853890.2017.1407035] [PMID: 29172780]
[91]
Centers for Disease Control and Prevention. Understanding how vaccines work (2018). Available from: https://www.cdc.gov/vaccines/hcp/conversations/understanding-vacc-work.html
[92]
Wang, F.; Kream, R.M.; Stefano, G.B. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med. Sci. Monit., 2020, 26, e924700.
[http://dx.doi.org/10.12659/MSM.924700] [PMID: 32366816]
[93]
Mukherjee, R. Global efforts on vaccines for COVID-19: Since, sooner or later, we all will catch the coronavirus. J. Biosci., 2020, 45, 1-10.
[http://dx.doi.org/10.1007/s12038-020-00040-7] [PMID: 32385219]
[94]
Robson, B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput. Biol. Med., 2020, 119, 103670.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103670] [PMID: 32209231]
[95]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing COVID-19 vaccines at pandemic speed. N. Engl. J. Med., 2020, 382(21), 1969-1973.
[http://dx.doi.org/10.1056/NEJMp2005630] [PMID: 32227757]
[96]
Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[97]
Graham, B.S. Rapid COVID-19 vaccine development. Science, 2020, 368(6494), 945-946.
[http://dx.doi.org/10.1126/science.abb8923] [PMID: 32385100]
[98]
DRAFT landscape of COVID-19 candidate vaccines –26 November 2020. Available from: https://www.who.int/docs/default-source/blue-print/novel-coronavirus-landscape-covid-19-(7).pdf
[99]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[PMID: 33378609]
[100]
Yu, J.; Tostanoski, L.H.; Peter, L.; Mercado, N.B.; McMahan, K.; Mahrokhian, S.H.; Nkolola, J.P.; Liu, J.; Li, Z.; Chandrashekar, A.; Martinez, D.R.; Loos, C.; Atyeo, C.; Fischinger, S.; Burke, J.S.; Slein, M.D.; Chen, Y.; Zuiani, A.; Lelis, F.J.N.; Travers, M.; Habibi, S.; Pessaint, L.; Van Ry, A.; Blade, K.; Brown, R.; Cook, A.; Finneyfrock, B.; Dodson, A.; Teow, E.; Velasco, J.; Zahn, R.; Wegmann, F.; Bondzie, E.A.; Dagotto, G.; Gebre, M.S.; He, X.; Jacob-Dolan, C.; Kirilova, M.; Kordana, N.; Lin, Z.; Maxfield, L.F.; Nampanya, F.; Nityanandam, R.; Ventura, J.D.; Wan, H.; Cai, Y.; Chen, B.; Schmidt, A.G.; Wesemann, D.R.; Baric, R.S.; Alter, G.; Andersen, H.; Lewis, M.G.; Barouch, D.H. DNA vaccine protection against SARS-CoV-2 in Rhesus macaques. Science, 2020, 369(6505), 806-811.
[http://dx.doi.org/10.1126/science.abc6284] [PMID: 32434945]
[101]
Chen, W.H.; Hotez, P.J.; Bottazzi, M.E. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19. Hum. Vaccin. Immunother., 2020, 16(6), 1239-1242.
[http://dx.doi.org/10.1080/21645515.2020.1740560] [PMID: 32298218]
[102]
van Riel, D.; de Wit, E. Next-generation vaccine platforms for COVID-19. Nat. Mater., 2020, 19(8), 810-812.
[http://dx.doi.org/10.1038/s41563-020-0746-0] [PMID: 32704139]
[103]
Prodromos, C.C.; Rumschlag, T.; Perchyk, T. Hydroxychloroquine is protective to the heart, not harmful: a systematic review. New Microbes New Infect., 2020, 37, 100747.
[http://dx.doi.org/10.1016/j.nmni.2020.100747] [PMID: 32839670]
[104]
Sternberg, A.; Naujokat, C. Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sci., 2020, 257, 118056.
[http://dx.doi.org/10.1016/j.lfs.2020.118056] [PMID: 32645344]
[105]
van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; Feldmann, F.; Allen, E.R.; Sharpe, H.; Schulz, J.; Holbrook, M.; Okumura, A.; Meade-White, K.; Pérez-Pérez, L.; Bissett, C.; Gilbride, C.; Williamson, B.N.; Rosenke, R.; Long, D.; Ishwarbhai, A.; Kailath, R.; Rose, L.; Morris, S.; Powers, C.; Lovaglio, J.; Hanley, P.W.; Scott, D.; Saturday, G.; de Wit, E.; Gilbert, S.C.; Munster, V.J. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in Rhesus macaques. bioRxiv, 2020, 2020.05.13.093195.
[PMID: 32511340]
[106]
Zhu, F.C.; Li, Y.H.; Guan, X.H.; Hou, L.H.; Wang, W.J.; Li, J.X.; Wu, S.P.; Wang, B.S.; Wang, Z.; Wang, L.; Jia, S.Y.; Jiang, H.D.; Wang, L.; Jiang, T.; Hu, Y.; Gou, J.B.; Xu, S.B.; Xu, J.J.; Wang, X.W.; Wang, W.; Chen, W. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 2020, 395(10240), 1845-1854.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[107]
Corbett, K.S.; Edwards, D.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; Dinnon, K.H.; Elbashir, S.M.; Shaw, C.A.; Woods, A.; Fritch, E.J.; Martinez, D.R.; Bock, K.W.; Minai, M.; Nagata, B.M.; Hutchinson, G.B.; Bahl, K.; Garcia-Dominguez, D.; Ma, L.; Renzi, I.; Kong, W.P.; Schmidt, S.D.; Wang, L.; Zhang, Y.; Stevens, L.J.; Phung, E.; Chang, L.A.; Loomis, R.J.; Altaras, N.E.; Narayanan, E.; Metkar, M.; Presnyak, V.; Liu, C.; Louder, M.K.; Shi, W.; Leung, K.; Yang, E.S.; West, A.; Gully, K.L.; Wang, N.; Wrapp, D.; Doria-Rose, N.A.; Stewart-Jones, G.; Bennett, H.; Nason, M.C.; Ruckwardt, T.J.; McLellan, J.S.; Denison, M.R.; Chappell, J.D.; Moore, I.N.; Morabito, K.M.; Mascola, J.R.; Baric, R.S.; Carfi, A.; Graham, B.S. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. bioRxiv, 2020, 2020.06.11.145920.
[PMID: 32577634]
[108]
Koirala, A.; Joo, Y.J.; Khatami, A.; Chiu, C.; Britton, P.N. Vaccines for COVID-19: The current state of play. Paediatr. Respir. Rev., 2020, 35, 43-49.
[PMID: 32653463]
[109]
Thames, A.H.; Wolniak, K.L.; Stupp, S.I.; Jewett, M.C. Principles learned from the international race to develop a safe and effective COVID-19 vaccine. ACS Cent. Sci., 2020, 6(8), 1341-1347.
[http://dx.doi.org/10.1021/acscentsci.0c00644] [PMID: 32868999]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy