Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels

Author(s): Lu Huang, Guangyin Xu*, Ruotian Jiang*, Yuncheng Luo , Yunxia Zuo and Jin Liu

Volume 20, Issue 1, 2022

Page: [16 - 26] Pages: 11

DOI: 10.2174/1570159X19666210407152528

Price: $65

Abstract

Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors, such as mechanical stretch, temperature, and pH. In the peripheral nervous system, K2P channels are widely expressed in nociceptive neurons and play a critical role in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss the advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.

Keywords: Pain, analgesics, ion channels, potassium channels, peripheral nervous system, central nervous system.

Graphical Abstract

[1]
Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; Song, X.J.; Stevens, B.; Sullivan, M.D.; Tutelman, P.R.; Ushida, T.; Vader, K. The revised international association for the study of pain definition of pain: concepts, challenges, and compromises. Pain, 2020, 161(9), 1976-1982.
[http://dx.doi.org/10.1097/j.pain.0000000000001939] [PMID: 32694387]
[2]
Nicholas, M.; Vlaeyen, J.W.S.; Rief, W.; Barke, A.; Aziz, Q.; Benoliel, R.; Cohen, M.; Evers, S.; Giamberardino, M.A.; Goebel, A.; Korwisi, B.; Perrot, S.; Svensson, P.; Wang, S.J.; Treede, R.D. The IASP classification of chronic pain for ICD-11: chronic primary pain. Pain, 2019, 160(1), 28-37.
[http://dx.doi.org/10.1097/j.pain.0000000000001390] [PMID: 30586068]
[3]
Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; National Academies Press: US, 2011.
[4]
Yang, G.; Wang, Y.; Zeng, Y.; Gao, G.F.; Liang, X.; Zhou, M.; Wan, X.; Yu, S.; Jiang, Y.; Naghavi, M.; Vos, T.; Wang, H.; Lopez, A.D.; Murray, C.J. Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet, 2013, 381(9882), 1987-2015.
[http://dx.doi.org/10.1016/S0140-6736(13)61097-1] [PMID: 23746901]
[5]
Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; Liu, J.; Zhang, M.; Qi, J.; Yu, S.; Afshin, A.; Gakidou, E.; Glenn, S.; Krish, V.S.; Miller-Petrie, M.K.; Mountjoy-Venning, W.C.; Mullany, E.C.; Redford, S.B.; Liu, H.; Naghavi, M.; Hay, S.I.; Wang, L.; Murray, C.J.L.; Liang, X. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2019, 394(10204), 1145-1158.
[http://dx.doi.org/10.1016/S0140-6736(19)30427-1] [PMID: 31248666]
[6]
Labianca, R.; Sarzi-Puttini, P.; Zuccaro, S.M.; Cherubino, P.; Vellucci, R.; Fornasari, D. Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain. Clin. Drug Investig., 2012, 32(Suppl. 1), 53-63.
[http://dx.doi.org/10.2165/11630080-000000000-00000]
[7]
Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.A.; Bombardier, C.; Cannon, C.; Farkouh, M.E.; FitzGerald, G.A.; Goss, P.; Halls, H.; Hawk, E.; Hawkey, C.; Hennekens, C.; Hochberg, M.; Holland, L.E.; Kearney, P.M.; Laine, L.; Lanas, A.; Lance, P.; Laupacis, A.; Oates, J.; Patrono, C.; Schnitzer, T.J.; Solomon, S.; Tugwell, P.; Wilson, K.; Wittes, J.; Baigent, C. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: Meta-analyses of individual participant data from randomised trials. Lancet, 2013, 382(9894), 769-779.
[http://dx.doi.org/10.1016/S0140-6736(13)60900-9] [PMID: 23726390]
[8]
Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Physician, 2008, 11(2)(Suppl.), S105-S120.
[PMID: 18443635]
[9]
Salzer, I.; Ray, S.; Schicker, K.; Boehm, S. Nociceptor signalling through ion Channel regulation via GPCRs. Int. J. Mol. Sci., 2019, 20(10)E2488
[http://dx.doi.org/10.3390/ijms20102488] [PMID: 31137507]
[10]
Yekkirala, A.S.; Roberson, D.P.; Bean, B.P.; Woolf, C.J. Breaking barriers to novel analgesic drug development. Nat. Rev. Drug Discov., 2017, 16(8), 545-564.
[http://dx.doi.org/10.1038/nrd.2017.87] [PMID: 28596533]
[11]
Bennett, D.L.; Clark, A.J.; Huang, J.; Waxman, S.G.; Dib-Hajj, S.D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev., 2019, 99(2), 1079-1151.
[http://dx.doi.org/10.1152/physrev.00052.2017] [PMID: 30672368]
[12]
Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev., 2015, 67(4), 821-870.
[http://dx.doi.org/10.1124/pr.114.009654] [PMID: 26362469]
[13]
Tsantoulas, C.; McMahon, S.B. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci., 2014, 37(3), 146-158.
[http://dx.doi.org/10.1016/j.tins.2013.12.002] [PMID: 24461875]
[14]
Lee, C.H.; Chen, C.C. Roles of ASICs in Nociception and Proprioception. Adv. Exp. Med. Biol., 2018, 1099, 37-47.
[http://dx.doi.org/10.1007/978-981-13-1756-9_4] [PMID: 30306513]
[15]
Moran, M.M.; Szallasi, A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br. J. Pharmacol., 2018, 175(12), 2185-2203.
[http://dx.doi.org/10.1111/bph.14044] [PMID: 28924972]
[16]
Minett, M.S.; Pereira, V.; Sikandar, S.; Matsuyama, A.; Lolignier, S.; Kanellopoulos, A.H.; Mancini, F.; Iannetti, G.D.; Bogdanov, Y.D.; Santana-Varela, S.; Millet, Q.; Baskozos, G.; MacAllister, R.; Cox, J.J.; Zhao, J.; Wood, J.N. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat. Commun., 2015, 6, 8967.
[http://dx.doi.org/10.1038/ncomms9967] [PMID: 26634308]
[17]
Gavva, N.R.; Treanor, J.J.; Garami, A.; Fang, L.; Surapaneni, S.; Akrami, A.; Alvarez, F.; Bak, A.; Darling, M.; Gore, A.; Jang, G.R.; Kesslak, J.P.; Ni, L.; Norman, M.H.; Palluconi, G.; Rose, M.J.; Salfi, M.; Tan, E.; Romanovsky, A.A.; Banfield, C.; Davar, G. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain, 2008, 136(1-2), 202-210.
[http://dx.doi.org/10.1016/j.pain.2008.01.024] [PMID: 18337008]
[18]
Devilliers, M.; Busserolles, J.; Lolignier, S.; Deval, E.; Pereira, V.; Alloui, A.; Christin, M.; Mazet, B.; Delmas, P.; Noel, J.; Lazdunski, M.; Eschalier, A. Activation of TREK-1 by morphine results in analgesia without adverse side effects. Nat. Commun., 2013, 4, 2941.
[http://dx.doi.org/10.1038/ncomms3941] [PMID: 24346231]
[19]
Gada, K.; Plant, L.D. Two-pore domain potassium channels: emerging targets for novel analgesic drugs: IUPHAR Review 26. Br. J. Pharmacol., 2019, 176(2), 256-266.
[http://dx.doi.org/10.1111/bph.14518] [PMID: 30325008]
[20]
Heurteaux, C.; Guy, N.; Laigle, C.; Blondeau, N.; Duprat, F.; Mazzuca, M.; Lang-Lazdunski, L.; Widmann, C.; Zanzouri, M.; Romey, G.; Lazdunski, M. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J., 2004, 23(13), 2684-2695.
[http://dx.doi.org/10.1038/sj.emboj.7600234] [PMID: 15175651]
[21]
Conway, K.E.; Cotten, J.F. Covalent modification of a volatile anesthetic regulatory site activates TASK-3 (KCNK9) tandem-pore potassium channels. Mol. Pharmacol., 2012, 81(3), 393-400.
[http://dx.doi.org/10.1124/mol.111.076281] [PMID: 22147752]
[22]
Steinberg, E.A.; Wafford, K.A.; Brickley, S.G.; Franks, N.P.; Wisden, W. The role of K2p channels in anaesthesia and sleep. Pflugers Arch., 2015, 467(5), 907-916.
[http://dx.doi.org/10.1007/s00424-014-1654-4] [PMID: 25482669]
[23]
Pavel, M.A.; Petersen, E.N.; Wang, H.; Lerner, R.A.; Hansen, S.B. Studies on the mechanism of general anesthesia. Proc. Natl. Acad. Sci. USA, 2020, 117(24), 13757-13766.
[http://dx.doi.org/10.1073/pnas.2004259117] [PMID: 32467161]
[24]
Mathie, A.; Veale, E.L.; Cunningham, K.P.; Holden, R.G.; Wright, P.D. Two-pore domain potassium channels as drug targets: anesthesia and beyond. Annu. Rev. Pharmacol. Toxicol., 2021, 61, 401-420.
[http://dx.doi.org/10.1146/annurev-pharmtox-030920-111536] [PMID: 32679007]
[25]
Chae, Y.J.; Zhang, J.; Au, P.; Sabbadini, M.; Xie, G.X.; Yost, C.S. Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK. Anesthesiology, 2010, 113(6), 1326-1337.
[http://dx.doi.org/10.1097/ALN.0b013e3181f90ca5] [PMID: 21042202]
[26]
Pang, D.S.; Robledo, C.J.; Carr, D.R.; Gent, T.C.; Vyssotski, A.L.; Caley, A.; Zecharia, A.Y.; Wisden, W.; Brickley, S.G.; Franks, N.P. An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proc. Natl. Acad. Sci. USA, 2009, 106(41), 17546-17551.
[http://dx.doi.org/10.1073/pnas.0907228106] [PMID: 19805135]
[27]
Ge, F.; Mu, P.; Guo, R.; Cai, L.; Liu, Z.; Dong, Y.; Huang, Y.H. Chronic sleep fragmentation enhances habenula cholinergic neural activity.Mol Psychiatry, 2019. Available from: , www.nature. com/articles/s41380-019-0419-z
[http://dx.doi.org/10.1038/s41380-019-0419-z]
[28]
Mathie, A.; Veale, E.L. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Arch., 2015, 467(5), 931-943.
[http://dx.doi.org/10.1007/s00424-014-1655-3] [PMID: 25420526]
[29]
Bayliss, D.A.; Talley, E.M.; Sirois, J.E.; Lei, Q. TASK-1 is a highly modulated pH-sensitive ‘leak’ K(+) channel expressed in brainstem respiratory neurons. Respir. Physiol., 2001, 129(1-2), 159-174.
[http://dx.doi.org/10.1016/S0034-5687(01)00288-2] [PMID: 11738652]
[30]
Buckler, K.J. TASK-like potassium channels and oxygen sensing in the carotid body. Respir. Physiol. Neurobiol., 2007, 157(1), 55-64.
[http://dx.doi.org/10.1016/j.resp.2007.02.013] [PMID: 17416212]
[31]
Turner, P.J.; Buckler, K.J. Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. J. Physiol., 2013, 591(23), 5977-5998.
[http://dx.doi.org/10.1113/jphysiol.2013.262022] [PMID: 24042502]
[32]
Kang, D.; Choe, C.; Kim, D. Functional expression of TREK-2 in insulin-secreting MIN6 cells. Biochem. Biophys. Res. Commun., 2004, 323(1), 323-331.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.089] [PMID: 15351740]
[33]
Dadi, P.K.; Vierra, N.C.; Jacobson, D.A. Pancreatic β-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology, 2014, 155(10), 3757-3768.
[http://dx.doi.org/10.1210/en.2013-2051] [PMID: 24932805]
[34]
Vierra, N.C.; Dadi, P.K.; Jeong, I.; Dickerson, M.; Powell, D.R.; Jacobson, D.A. Type 2 diabetes-associated K+ Channel TALK-1 Modulates β-Cell electrical excitability, second-phase insulin secretion, and glucose homeostasis. Diabetes, 2015, 64(11), 3818-3828.
[http://dx.doi.org/10.2337/db15-0280] [PMID: 26239056]
[35]
Marsh, B.; Acosta, C.; Djouhri, L.; Lawson, S.N. Leak K+ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol. Cell. Neurosci., 2012, 49(3), 375-386.
[http://dx.doi.org/10.1016/j.mcn.2012.01.002] [PMID: 22273507]
[36]
Pollema-Mays, S.L.; Centeno, M.V.; Ashford, C.J.; Apkarian, A.V.; Martina, M. Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model. Mol. Cell. Neurosci., 2013, 57, 1-9.
[http://dx.doi.org/10.1016/j.mcn.2013.08.002] [PMID: 23994814]
[37]
Acosta, C.; Djouhri, L.; Watkins, R.; Berry, C.; Bromage, K.; Lawson, S.N. TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J. Neurosci., 2014, 34(4), 1494-1509.
[http://dx.doi.org/10.1523/JNEUROSCI.4528-13.2014] [PMID: 24453337]
[38]
Haskins, W.; Benitez, S.; Mercado, J.M.; Acosta, C.G. Cutaneous inflammation regulates THIK1 expression in small C-like nociceptor dorsal root ganglion neurons. Mol. Cell. Neurosci., 2017, 83, 13-26.
[http://dx.doi.org/10.1016/j.mcn.2017.06.010] [PMID: 28676376]
[39]
Plant, L.D. A Role for K2P Channels in the Operation of Somatosensory Nociceptors. Front. Mol. Neurosci., 2012, 5, 21.
[http://dx.doi.org/10.3389/fnmol.2012.00021] [PMID: 22403526]
[40]
Alloui, A.; Zimmermann, K.; Mamet, J.; Duprat, F.; Noël, J.; Chemin, J.; Guy, N.; Blondeau, N.; Voilley, N.; Rubat-Coudert, C.; Borsotto, M.; Romey, G.; Heurteaux, C.; Reeh, P.; Eschalier, A.; Lazdunski, M. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J., 2006, 25(11), 2368-2376.
[http://dx.doi.org/10.1038/sj.emboj.7601116] [PMID: 16675954]
[41]
Descoeur, J.; Pereira, V.; Pizzoccaro, A.; Francois, A.; Ling, B.; Maffre, V.; Couette, B.; Busserolles, J.; Courteix, C.; Noel, J.; Lazdunski, M.; Eschalier, A.; Authier, N.; Bourinet, E. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med., 2011, 3(5), 266-278.
[http://dx.doi.org/10.1002/emmm.201100134] [PMID: 21438154]
[42]
Tulleuda, A.; Cokic, B.; Callejo, G.; Saiani, B.; Serra, J.; Gasull, X. TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol. Pain, 2011, 7, 30.
[http://dx.doi.org/10.1186/1744-8069-7-30] [PMID: 21527011]
[43]
Zhou, J.; Yang, C.X.; Zhong, J.Y.; Wang, H.B. Intrathecal TRESK gene recombinant adenovirus attenuates spared nerve injury-induced neuropathic pain in rats. Neuroreport, 2013, 24(3), 131-136.
[http://dx.doi.org/10.1097/WNR.0b013e32835d8431] [PMID: 23370493]
[44]
Pereira, V.; Busserolles, J.; Christin, M.; Devilliers, M.; Poupon, L.; Legha, W.; Alloui, A.; Aissouni, Y.; Bourinet, E.; Lesage, F.; Eschalier, A.; Lazdunski, M.; Noël, J. Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain, 2014, 155(12), 2534-2544.
[http://dx.doi.org/10.1016/j.pain.2014.09.013] [PMID: 25239074]
[45]
Hwang, H.Y.; Zhang, E.; Park, S.; Chung, W.; Lee, S.; Kim, D.W.; Ko, Y.; Lee, W. TWIK-related spinal Cord K+ channel expression is increased in the spinal dorsal horn after Spinal Nerve Ligation. Yonsei Med. J., 2015, 56(5), 1307-1315.
[http://dx.doi.org/10.3349/ymj.2015.56.5.1307] [PMID: 26256973]
[46]
Han, H.J.; Lee, S.W.; Kim, G.T.; Kim, E.J.; Kwon, B.; Kang, D.; Kim, H.J.; Seo, K.S. Enhanced Expression of TREK-1 is related with chronic constriction injury of neuropathic pain mouse model in dorsal root ganglion. Biomol. Ther. (Seoul), 2016, 24(3), 252-259.
[http://dx.doi.org/10.4062/biomolther.2016.038] [PMID: 27133259]
[47]
Shi, D.N.; Yuan, Y.T.; Ye, D.; Kang, L.M.; Wen, J.; Chen, H.P. MiR-183-5p Alleviates chronic constriction injury-induced neuropathic pain through inhibition of TREK-1. Neurochem. Res., 2018, 43(6), 1143-1149.
[http://dx.doi.org/10.1007/s11064-018-2529-4] [PMID: 29736614]
[48]
Noël, J.; Zimmermann, K.; Busserolles, J.; Deval, E.; Alloui, A.; Diochot, S.; Guy, N.; Borsotto, M.; Reeh, P.; Eschalier, A.; Lazdunski, M. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J., 2009, 28(9), 1308-1318.
[http://dx.doi.org/10.1038/emboj.2009.57] [PMID: 19279663]
[49]
Zhou, J.; Lin, W.; Chen, H.; Fan, Y.; Yang, C. TRESK contributes to pain threshold changes by mediating apoptosis via MAPK pathway in the spinal cord. Neuroscience, 2016, 339, 622-633.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.039] [PMID: 27789381]
[50]
Zhou, J.; Chen, H.; Yang, C.; Zhong, J.; He, W.; Xiong, Q. Reversal of TRESK downregulation alleviates neuropathic pain by inhibiting activation of gliocytes in the spinal cord. Neurochem. Res., 2017, 42(5), 1288-1298.
[http://dx.doi.org/10.1007/s11064-016-2170-z] [PMID: 28160200]
[51]
Weir, G.A.; Pettingill, P.; Wu, Y.; Duggal, G.; Ilie, A.S.; Akerman, C.J.; Cader, M.Z. The Role of TRESK in Discrete Sensory Neuron Populations and Somatosensory Processing. Front. Mol. Neurosci., 2019, 12, 170.
[http://dx.doi.org/10.3389/fnmol.2019.00170] [PMID: 31379497]
[52]
Castellanos, A.; Pujol-Coma, A.; Andres-Bilbe, A.; Negm, A.; Callejo, G.; Soto, D.; Noël, J.; Comes, N.; Gasull, X. TRESK background K+ channel deletion selectively uncovers enhanced mechanical and cold sensitivity. J. Physiol., 2020, 598(5), 1017-1038.
[http://dx.doi.org/10.1113/JP279203] [PMID: 31919847]
[53]
Goldstein, S.A.; Bayliss, D.A.; Kim, D.; Lesage, F.; Plant, L.D.; Rajan, S. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol. Rev., 2005, 57(4), 527-540.
[http://dx.doi.org/10.1124/pr.57.4.12] [PMID: 16382106]
[54]
Lesage, F.; Guillemare, E.; Fink, M.; Duprat, F.; Lazdunski, M.; Romey, G.; Barhanin, J. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J., 1996, 15(5), 1004-1011.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00437.x] [PMID: 8605869]
[55]
Girard, C.; Duprat, F.; Terrenoire, C.; Tinel, N.; Fosset, M.; Romey, G.; Lazdunski, M.; Lesage, F. Genomic and functional characteristics of novel human pancreatic 2P domain K(+) channels. Biochem. Biophys. Res. Commun., 2001, 282(1), 249-256.
[http://dx.doi.org/10.1006/bbrc.2001.4562] [PMID: 11263999]
[56]
Fink, M.; Duprat, F.; Lesage, F.; Reyes, R.; Romey, G.; Heurteaux, C.; Lazdunski, M. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J., 1996, 15(24), 6854-6862.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb01077.x] [PMID: 9003761]
[57]
Duprat, F.; Lesage, F.; Fink, M.; Reyes, R.; Heurteaux, C.; Lazdunski, M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J., 1997, 16(17), 5464-5471.
[http://dx.doi.org/10.1093/emboj/16.17.5464] [PMID: 9312005]
[58]
Rajan, S.; Wischmeyer, E.; Karschin, C.; Preisig-Müller, R.; Grzeschik, K.H.; Daut, J.; Karschin, A.; Derst, C. THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J. Biol. Chem., 2001, 276(10), 7302-7311.
[http://dx.doi.org/10.1074/jbc.M008985200] [PMID: 11060316]
[59]
Sano, Y.; Inamura, K.; Miyake, A.; Mochizuki, S.; Kitada, C.; Yokoi, H.; Nozawa, K.; Okada, H.; Matsushime, H.; Furuichi, K. A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord. J. Biol. Chem., 2003, 278(30), 27406-27412.
[http://dx.doi.org/10.1074/jbc.M206810200] [PMID: 12754259]
[60]
Lesage, F.; Terrenoire, C.; Romey, G.; Lazdunski, M. Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J. Biol. Chem., 2000, 275(37), 28398-28405.
[http://dx.doi.org/10.1074/jbc.M002822200] [PMID: 10880510]
[61]
Levitz, J.; Royal, P.; Comoglio, Y.; Wdziekonski, B.; Schaub, S.; Clemens, D.M.; Isacoff, E.Y.; Sandoz, G. Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 4194-4199.
[http://dx.doi.org/10.1073/pnas.1522459113] [PMID: 27035963]
[62]
Schewe, M.; Nematian-Ardestani, E.; Sun, H.; Musinszki, M.; Cordeiro, S.; Bucci, G.; de Groot, B.L.; Tucker, S.J.; Rapedius, M.; Baukrowitz, T. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. Cell, 2016, 164(5), 937-949.
[http://dx.doi.org/10.1016/j.cell.2016.02.002] [PMID: 26919430]
[63]
Rajan, S.; Wischmeyer, E.; Xin Liu, G.; Preisig-Müller, R.; Daut, J.; Karschin, A.; Derst, C. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J. Biol. Chem., 2000, 275(22), 16650-16657.
[http://dx.doi.org/10.1074/jbc.M000030200] [PMID: 10747866]
[64]
Enyedi, P.; Czirják, G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev., 2010, 90(2), 559-605.
[http://dx.doi.org/10.1152/physrev.00029.2009] [PMID: 20393194]
[65]
Miller, A.N.; Long, S.B. Crystal structure of the human two-pore domain potassium channel K2P1. Science, 2012, 335(6067), 432-436.
[http://dx.doi.org/10.1126/science.1213274] [PMID: 22282804]
[66]
Brohawn, S.G.; del Mármol, J.; MacKinnon, R. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science, 2012, 335(6067), 436-441.
[http://dx.doi.org/10.1126/science.1213808] [PMID: 22282805]
[67]
Dong, Y.Y.; Pike, A.C.; Mackenzie, A.; McClenaghan, C.; Aryal, P.; Dong, L.; Quigley, A.; Grieben, M.; Goubin, S.; Mukhopadhyay, S.; Ruda, G.F.; Clausen, M.V.; Cao, L.; Brennan, P.E.; Burgess-Brown, N.A.; Sansom, M.S.; Tucker, S.J.; Carpenter, E.P. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science, 2015, 347(6227), 1256-1259.
[http://dx.doi.org/10.1126/science.1261512] [PMID: 25766236]
[68]
Bagriantsev, S.N.; Ang, K.H.; Gallardo-Godoy, A.; Clark, K.A.; Arkin, M.R.; Renslo, A.R.; Minor, D.L. Jr A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem. Biol., 2013, 8(8), 1841-1851.
[http://dx.doi.org/10.1021/cb400289x] [PMID: 23738709]
[69]
Veale, E.L.; Al-Moubarak, E.; Bajaria, N.; Omoto, K.; Cao, L.; Tucker, S.J.; Stevens, E.B.; Mathie, A. Influence of the N terminus on the biophysical properties and pharmacology of TREK1 potassium channels. Mol. Pharmacol., 2014, 85(5), 671-681.
[http://dx.doi.org/10.1124/mol.113.091199] [PMID: 24509840]
[70]
Liao, P.; Qiu, Y.; Mo, Y.; Fu, J.; Song, Z.; Huang, L.; Bai, S.; Wang, Y.; Zhu, J.J.; Tian, F.; Chen, Z.; Pan, N.; Sun, E.Y.; Yang, L.; Lan, X.; Chen, Y.; Huang, D.; Sun, P.; Zhao, L.; Yang, D.; Lu, W.; Yang, T.; Xiao, J.; Li, W.G.; Gao, Z.; Shen, B.; Zhang, Q.; Liu, J.; Jiang, H.; Jiang, R.; Yang, H. Selective activation of TWIK-related acid-sensitive K+ 3 subunit-containing channels is analgesic in rodent models. Sci. Transl. Med., 2019, 11(519)eaaw8434
[http://dx.doi.org/10.1126/scitranslmed.aaw8434] [PMID: 31748231]
[71]
Busserolles, J.; Ben Soussia, I.; Pouchol, L.; Marie, N.; Meleine, M.; Devilliers, M.; Judon, C.; Schopp, J.; Clémenceau, L.; Poupon, L.; Chapuy, E.; Richard, S.; Noble, F.; Lesage, F.; Ducki, S.; Eschalier, A.; Lolignier, S. TREK1 channel activation as a new analgesic strategy devoid of opioid adverse effects. Br. J. Pharmacol., 2020, 177(20), 4782-4795.
[http://dx.doi.org/10.1111/bph.15243] [PMID: 32851651]
[72]
Schewe, M.; Sun, H.; Mert, Ü.; Mackenzie, A.; Pike, A.C.W.; Schulz, F.; Constantin, C.; Vowinkel, K.S.; Conrad, L.J.; Kiper, A.K.; Gonzalez, W.; Musinszki, M.; Tegtmeier, M.; Pryde, D.C.; Belabed, H.; Nazare, M.; de Groot, B.L.; Decher, N.; Fakler, B.; Carpenter, E.P.; Tucker, S.J.; Baukrowitz, T. A pharmacological master key mechanism that unlocks the selectivity filter gate in K+ channels. Science, 2019, 363(6429), 875-880.
[http://dx.doi.org/10.1126/science.aav0569] [PMID: 30792303]
[73]
Iwaki, Y.; Yashiro, K.; Kokubo, M.; Mori, T.; Wieting, J.M.; McGowan, K.M.; Bridges, T.M.; Engers, D.W.; Denton, J.S.; Kurata, H.; Lindsley, C.W. Towards a TREK-1/2 (TWIK-Related K+ Channel 1 and 2) dual activator tool compound: Multi-dimensional optimization of BL-1249. Bioorg. Med. Chem. Lett., 2019, 29(13), 1601-1604.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.048] [PMID: 31072652]
[74]
Guinamard, R.; Simard, C.; Del Negro, C. Flufenamic acid as an ion channel modulator. Pharmacol. Ther., 2013, 138(2), 272-284.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.012] [PMID: 23356979]
[75]
Lolicato, M.; Arrigoni, C.; Mori, T.; Sekioka, Y.; Bryant, C.; Clark, K.A.; Minor, D.L., Jr K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature, 2017, 547(7663), 364-368.
[http://dx.doi.org/10.1038/nature22988] [PMID: 28693035]
[76]
Qiu, Y.; Huang, L.; Fu, J.; Han, C.; Fang, J.; Liao, P.; Chen, Z.; Mo, Y.; Sun, P.; Liao, D.; Yang, L.; Wang, J.; Zhang, Q.; Liu, J.; Liu, F.; Liu, T.; Huang, W.; Yang, H.; Jiang, R. TREK channel family activator with a well-defined structure-activation relationship for pain and neurogenic inflammation. J. Med. Chem., 2020, 63(7), 3665-3677.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02163] [PMID: 32162512]
[77]
Vivier, D.; Soussia, I.B.; Rodrigues, N.; Lolignier, S.; Devilliers, M.; Chatelain, F.C.; Prival, L.; Chapuy, E.; Bourdier, G.; Bennis, K.; Lesage, F.; Eschalier, A.; Busserolles, J.; Ducki, S. Development of the first two-pore domain potassium channel TWIK-related K+ channel 1-selective agonist possessing in vivo antinociceptive activity. J. Med. Chem., 2017, 60(3), 1076-1088.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01285] [PMID: 28051863]
[78]
Loucif, A.J.C.; Saintot, P.P.; Liu, J.; Antonio, B.M.; Zellmer, S.G.; Yoger, K.; Veale, E.L.; Wilbrey, A.; Omoto, K.; Cao, L.; Gutteridge, A.; Castle, N.A.; Stevens, E.B.; Mathie, A. GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K2P) channel opener, reduces rat dorsal root ganglion neuron excitability. Br. J. Pharmacol., 2018, 175(12), 2272-2283.
[http://dx.doi.org/10.1111/bph.14098] [PMID: 29150838]
[79]
Kanda, H.; Ling, J.; Tonomura, S.; Noguchi, K.; Matalon, S.; Gu, J.G. TREK-1 and TRAAK Are Principal K+ channels at the nodes of ranvier for rapid action potential conduction on mammalian myelinated afferent nerves. Neuron, 2019, 104(5), 960-971.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.08.042] [PMID: 31630908]
[80]
Royal, P.; Andres-Bilbe, A.; Ávalos Prado, P.; Verkest, C.; Wdziekonski, B.; Schaub, S.; Baron, A.; Lesage, F.; Gasull, X.; Levitz, J.; Sandoz, G. Migraine-Associated TRESK mutations increase neuronal excitability through alternative translation initiation and inhibition of TREK. Neuron, 2019, 101(2), 232-245.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.11.039] [PMID: 30573346]
[81]
Bang, H.; Kim, Y.; Kim, D. TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J. Biol. Chem., 2000, 275(23), 17412-17419.
[http://dx.doi.org/10.1074/jbc.M000445200] [PMID: 10747911]
[82]
Fink, M.; Lesage, F.; Duprat, F.; Heurteaux, C.; Reyes, R.; Fosset, M.; Lazdunski, M. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J., 1998, 17(12), 3297-3308.
[http://dx.doi.org/10.1093/emboj/17.12.3297] [PMID: 9628867]
[83]
Schmidt, C.; Wiedmann, F.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Inhibition of cardiac two-pore-domain K+ (K2P) channels--an emerging antiarrhythmic concept. Eur. J. Pharmacol., 2014, 738, 250-255.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.056] [PMID: 24927994]
[84]
Lugenbiel, P.; Wenz, F.; Syren, P.; Geschwill, P.; Govorov, K.; Seyler, C.; Frank, D.; Schweizer, P.A.; Franke, J.; Weis, T.; Bruehl, C.; Schmack, B.; Ruhparwar, A.; Karck, M.; Frey, N.; Katus, H.A.; Thomas, D. TREK-1 (K2P2.1) K+ channels are suppressed in patients with atrial fibrillation and heart failure and provide therapeutic targets for rhythm control. Basic Res. Cardiol., 2017, 112(1), 8.
[http://dx.doi.org/10.1007/s00395-016-0597-7] [PMID: 28005193]
[85]
Abraham, D.M.; Lee, T.E.; Watson, L.J.; Mao, L.; Chandok, G.; Wang, H.G.; Frangakis, S.; Pitt, G.S.; Shah, S.H.; Wolf, M.J.; Rockman, H.A. The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. J. Clin. Invest., 2018, 128(11), 4843-4855.
[http://dx.doi.org/10.1172/JCI95945] [PMID: 30153110]
[86]
Radat, F.; Margot-Duclot, A.; Attal, N. Psychiatric co-morbidities in patients with chronic peripheral neuropathic pain: a multicentre cohort study. Eur. J. Pain, 2013, 17(10), 1547-1557.
[http://dx.doi.org/10.1002/j.1532-2149.2013.00334.x] [PMID: 23720357]
[87]
Heurteaux, C.; Lucas, G.; Guy, N.; El Yacoubi, M.; Thümmler, S.; Peng, X.D.; Noble, F.; Blondeau, N.; Widmann, C.; Borsotto, M.; Gobbi, G.; Vaugeois, J.M.; Debonnel, G.; Lazdunski, M. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat. Neurosci., 2006, 9(9), 1134-1141.
[http://dx.doi.org/10.1038/nn1749] [PMID: 16906152]
[88]
Luo, Q.; Chen, L.; Cheng, X.; Ma, Y.; Li, X.; Zhang, B.; Li, L.; Zhang, S.; Guo, F.; Li, Y.; Yang, H. An allosteric ligand-binding site in the extracellular cap of K2P channels. Nat. Commun., 2017, 8(1), 378.
[http://dx.doi.org/10.1038/s41467-017-00499-3] [PMID: 28851868]
[89]
Czirják, G.; Tóth, Z.E.; Enyedi, P. The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J. Biol. Chem., 2004, 279(18), 18550-18558.
[http://dx.doi.org/10.1074/jbc.M312229200] [PMID: 14981085]
[90]
Bruner, J.K.; Zou, B.; Zhang, H.; Zhang, Y.; Schmidt, K.; Li, M. Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur. J. Pharmacol., 2014, 740, 603-610.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.021] [PMID: 24972239]
[91]
Wright, P.D.; Weir, G.; Cartland, J.; Tickle, D.; Kettleborough, C.; Cader, M.Z.; Jerman, J. Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochem. Biophys. Res. Commun., 2013, 441(2), 463-468.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.090] [PMID: 24383077]
[92]
Kang, D.; Kim, D. TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am. J. Physiol. Cell Physiol., 2006, 291(1), C138-C146.
[http://dx.doi.org/10.1152/ajpcell.00629.2005] [PMID: 16495368]
[93]
Lafrenière, R.G.; Cader, M.Z.; Poulin, J.F.; Andres-Enguix, I.; Simoneau, M.; Gupta, N.; Boisvert, K.; Lafrenière, F.; McLaughlan, S.; Dubé, M.P.; Marcinkiewicz, M.M.; Ramagopalan, S.; Ansorge, O.; Brais, B.; Sequeiros, J.; Pereira-Monteiro, J.M.; Griffiths, L.R.; Tucker, S.J.; Ebers, G.; Rouleau, G.A. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat. Med., 2010, 16(10), 1157-1160.
[http://dx.doi.org/10.1038/nm.2216] [PMID: 20871611]
[94]
Dobler, T.; Springauf, A.; Tovornik, S.; Weber, M.; Schmitt, A.; Sedlmeier, R.; Wischmeyer, E.; Döring, F. TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J. Physiol., 2007, 585(Pt 3), 867-879.
[http://dx.doi.org/10.1113/jphysiol.2007.145649] [PMID: 17962323]
[95]
Yang, Y.; Li, S.; Jin, Z.R.; Jing, H.B.; Zhao, H.Y.; Liu, B.H.; Liang, Y.J.; Liu, L.Y.; Cai, J.; Wan, Y.; Xing, G.G. Decreased abundance of TRESK two-pore domain potassium channels in sensory neurons underlies the pain associated with bone metastasis. Sci. Signal., 2018, 11(552)eaao5150
[http://dx.doi.org/10.1126/scisignal.aao5150] [PMID: 30327410]
[96]
Kim, D.; Gnatenco, C. TASK-5, a new member of the tandem-pore K(+) channel family. Biochem. Biophys. Res. Commun., 2001, 284(4), 923-930.
[http://dx.doi.org/10.1006/bbrc.2001.5064] [PMID: 11409881]
[97]
Mathie, A. Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J. Physiol., 2007, 578(Pt 2), 377-385.
[http://dx.doi.org/10.1113/jphysiol.2006.121582] [PMID: 17068099]
[98]
Czirják, G.; Enyedi, P. Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem., 2002, 277(7), 5426-5432.
[http://dx.doi.org/10.1074/jbc.M107138200] [PMID: 11733509]
[99]
Morenilla-Palao, C.; Luis, E.; Fernández-Peña, C.; Quintero, E.; Weaver, J.L.; Bayliss, D.A.; Viana, F. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep., 2014, 8(5), 1571-1582.
[http://dx.doi.org/10.1016/j.celrep.2014.08.003] [PMID: 25199828]
[100]
García, G.; Noriega-Navarro, R.; Martínez-Rojas, V.A.; Gutiérrez-Lara, E.J.; Oviedo, N.; Murbartián, J. Spinal TASK-1 and TASK-3 modulate inflammatory and neuropathic pain. Eur. J. Pharmacol., 2019, 862172631
[http://dx.doi.org/10.1016/j.ejphar.2019.172631] [PMID: 31472119]
[101]
Linden, A.M.; Aller, M.I.; Leppä, E.; Vekovischeva, O.; Aitta-Aho, T.; Veale, E.L.; Mathie, A.; Rosenberg, P.; Wisden, W.; Korpi, E.R. The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists. J. Pharmacol. Exp. Ther., 2006, 317(2), 615-626.
[http://dx.doi.org/10.1124/jpet.105.098525] [PMID: 16397088]
[102]
Wright, P.D.; Veale, E.L.; McCoull, D.; Tickle, D.C.; Large, J.M.; Ococks, E.; Gothard, G.; Kettleborough, C.; Mathie, A.; Jerman, J. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochem. Biophys. Res. Commun., 2017, 493(1), 444-450.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.002] [PMID: 28882594]
[103]
Gotter, A.L.; Santarelli, V.P.; Doran, S.M.; Tannenbaum, P.L.; Kraus, R.L.; Rosahl, T.W.; Meziane, H.; Montial, M.; Reiss, D.R.; Wessner, K.; McCampbell, A.; Stevens, J.; Brunner, J.I.; Fox, S.V.; Uebele, V.N.; Bayliss, D.A.; Winrow, C.J.; Renger, J.J. TASK-3 as a potential antidepressant target. Brain Res., 2011, 1416, 69-79.
[http://dx.doi.org/10.1016/j.brainres.2011.08.021] [PMID: 21885038]
[104]
Kang, D.; Hogan, J.O.; Kim, D. THIK-1 (K2P13.1) is a small-conductance background K(+) channel in rat trigeminal ganglion neurons. Pflugers Arch., 2014, 466(7), 1289-1300.
[http://dx.doi.org/10.1007/s00424-013-1358-1] [PMID: 24081450]
[105]
Madry, C.; Kyrargyri, V.; Arancibia-Cárcamo, I.L.; Jolivet, R.; Kohsaka, S.; Bryan, R.M.; Attwell, D. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron, 2018, 97(2), 299-312.e6.
[http://dx.doi.org/10.1016/j.neuron.2017.12.002] [PMID: 29290552]
[106]
Ji, R.R.; Chamessian, A.; Zhang, Y.Q. Pain regulation by non-neuronal cells and inflammation. Science, 2016, 354(6312), 572-577.
[http://dx.doi.org/10.1126/science.aaf8924] [PMID: 27811267]
[107]
Seifert, G.; Henneberger, C.; Steinhäuser, C. Diversity of astrocyte potassium channels: An update. Brain Res. Bull., 2018, 136, 26-36.
[http://dx.doi.org/10.1016/j.brainresbull.2016.12.002] [PMID: 27965079]
[108]
Navratilova, E.; Morimura, K.; Xie, J.Y.; Atcherley, C.W.; Ossipov, M.H.; Porreca, F. Positive emotions and brain reward circuits in chronic pain. J. Comp. Neurol., 2016, 524(8), 1646-1652.
[http://dx.doi.org/10.1002/cne.23968] [PMID: 26788716]
[109]
Navratilova, E.; Porreca, F. Reward and motivation in pain and pain relief. Nat. Neurosci., 2014, 17(10), 1304-1312.
[http://dx.doi.org/10.1038/nn.3811] [PMID: 25254980]
[110]
Pope, L.; Arrigoni, C.; Lou, H.; Bryant, C.; Gallardo-Godoy, A.; Renslo, A.R.; Minor, D.L., Jr Protein and chemical determinants of BL-1249 action and selectivity for K2P channels. ACS Chem. Neurosci., 2018, 9(12), 3153-3165.
[http://dx.doi.org/10.1021/acschemneuro.8b00337] [PMID: 30089357]
[111]
Tertyshnikova, S.; Knox, R.J.; Plym, M.J.; Thalody, G.; Griffin, C.; Neelands, T.; Harden, D.G.; Signor, L.; Weaver, D.; Myers, R.A.; Lodge, N.J. BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine]: a putative potassium channel opener with bladder-relaxant properties. J. Pharmacol. Exp. Ther., 2005, 313(1), 250-259.
[http://dx.doi.org/10.1124/jpet.104.078592] [PMID: 15608074]
[112]
Danthi, S.; Enyeart, J.A.; Enyeart, J.J. Caffeic acid esters activate TREK-1 potassium channels and inhibit depolarization-dependent secretion. Mol. Pharmacol., 2004, 65(3), 599-610.
[http://dx.doi.org/10.1124/mol.65.3.599] [PMID: 14978238]
[113]
Rodrigues, N.; Bennis, K.; Vivier, D.; Pereira, V.C.; Chatelain, F.; Chapuy, E.; Deokar, H.; Busserolles, J.; Lesage, F.; Eschalier, A.; Ducki, S. Synthesis and structure-activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. Eur. J. Med. Chem., 2014, 75, 391-402.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.049] [PMID: 24561669]
[114]
Beltrán, L.; Beltrán, M.; Aguado, A.; Gisselmann, G.; Hatt, H. 2-Aminoethoxydiphenyl borate activates the mechanically gated human KCNK channels KCNK 2 (TREK-1), KCNK 4 (TRAAK), and KCNK 10 (TREK-2). Front. Pharmacol., 2013, 4, 63.
[http://dx.doi.org/10.3389/fphar.2013.00063] [PMID: 23720627]
[115]
Zhuo, R.G.; Liu, X.Y.; Zhang, S.Z.; Wei, X.L.; Zheng, J.Q.; Xu, J.P.; Ma, X.Y. Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel. Neuroscience, 2015, 300, 85-93.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.012] [PMID: 25982558]
[116]
Zhuo, R.G.; Peng, P.; Liu, X.Y.; Yan, H.T.; Xu, J.P.; Zheng, J.Q.; Wei, X.L.; Ma, X.Y. Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci. Rep., 2016, 6, 21248.
[http://dx.doi.org/10.1038/srep21248] [PMID: 26879043]
[117]
Zhuo, R.G.; Peng, P.; Zheng, J.Q.; Zhang, Y.L.; Wen, L.; Wei, X.L.; Ma, X.Y. The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels. Biochem. Biophys. Res. Commun., 2017, 490(3), 1125-1131.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.200] [PMID: 28676394]
[118]
Dadi, P.K.; Vierra, N.C.; Days, E.; Dickerson, M.T.; Vinson, P.N.; Weaver, C.D.; Jacobson, D.A. Selective Small Molecule Activators of TREK-2 channels stimulate dorsal root ganglion c-fiber nociceptor two-pore-domain potassium channel currents and Limit calcium influx. ACS Chem. Neurosci., 2017, 8(3), 558-568.
[http://dx.doi.org/10.1021/acschemneuro.6b00301] [PMID: 27805811]
[119]
Minieri, L.; Pivonkova, H.; Caprini, M.; Harantova, L.; Anderova, M.; Ferroni, S. The inhibitor of volume-regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes. Br. J. Pharmacol., 2013, 168(5), 1240-1254.
[http://dx.doi.org/10.1111/bph.12011] [PMID: 23072356]
[120]
Tian, F.; Qiu, Y.; Lan, X.; Li, M.; Yang, H.; Gao, Z. A small-molecule compound selectively activates K2P Channel TASK-3 by acting at two distant clusters of residues. Mol. Pharmacol., 2019, 96(1), 26-35.
[http://dx.doi.org/10.1124/mol.118.115303] [PMID: 31015283]
[121]
Lengyel, M.; Czirják, G.; Enyedi, P. Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits. J. Biol. Chem., 2016, 291(26), 13649-13661.
[http://dx.doi.org/10.1074/jbc.M116.719039] [PMID: 27129242]
[122]
Blin, S.; Ben Soussia, I.; Kim, E.J.; Brau, F.; Kang, D.; Lesage, F.; Bichet, D. Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 4200-4205.
[http://dx.doi.org/10.1073/pnas.1522748113] [PMID: 27035965]
[123]
Zhou, M.; Xu, G.; Xie, M.; Zhang, X.; Schools, G.P.; Ma, L.; Kimelberg, H.K.; Chen, H. TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J. Neurosci., 2009, 29(26), 8551-8564.
[http://dx.doi.org/10.1523/JNEUROSCI.5784-08.2009] [PMID: 19571146]
[124]
Hwang, E.M.; Kim, E.; Yarishkin, O.; Woo, D.H.; Han, K.S.; Park, N.; Bae, Y.; Woo, J.; Kim, D.; Park, M.; Lee, C.J.; Park, J.Y. A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat. Commun., 2014, 5, 3227.
[http://dx.doi.org/10.1038/ncomms4227] [PMID: 24496152]
[125]
Berg, A.P.; Talley, E.M.; Manger, J.P.; Bayliss, D.A. Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J. Neurosci., 2004, 24(30), 6693-6702.
[http://dx.doi.org/10.1523/JNEUROSCI.1408-04.2004] [PMID: 15282272]
[126]
Barel, O.; Shalev, S.A.; Ofir, R.; Cohen, A.; Zlotogora, J.; Shorer, Z.; Mazor, G.; Finer, G.; Khateeb, S.; Zilberberg, N.; Birk, O.S. Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am. J. Hum. Genet., 2008, 83(2), 193-199.
[http://dx.doi.org/10.1016/j.ajhg.2008.07.010] [PMID: 18678320]
[127]
Plant, L.D.; Zuniga, L.; Araki, D.; Marks, J.D.; Goldstein, S.A. SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci. Signal., 2012, 5(251), ra84.
[http://dx.doi.org/10.1126/scisignal.2003431] [PMID: 23169818]
[128]
Suzuki, Y.; Tsutsumi, K.; Miyamoto, T.; Yamamura, H.; Imaizumi, Y. Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems. PLoS One, 2017, 12(10)e0186252
[http://dx.doi.org/10.1371/journal.pone.0186252] [PMID: 29016681]
[129]
Blin, S.; Chatelain, F.C.; Feliciangeli, S.; Kang, D.; Lesage, F.; Bichet, D. Tandem pore domain halothane-inhibited K+ channel subunits THIK1 and THIK2 assemble and form active channels. J. Biol. Chem., 2014, 289(41), 28202-28212.
[http://dx.doi.org/10.1074/jbc.M114.600437] [PMID: 25148687]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy