Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Advancements on Benzimidazole: A Versatile Scaffold in Medicinal Chemistry

Author(s): Zohor Mohammad Mahdi Alzhrani, Mohammad Mahboob Alam and Syed Nazreen*

Volume 22, Issue 2, 2022

Published on: 31 March, 2021

Page: [365 - 386] Pages: 22

DOI: 10.2174/1389557521666210331163810

Price: $65

Abstract

Abstract: Benzimidazole is a nitrogen-containing fused heterocycle which has been extensively explored in medicinal chemistry. Benzimidizole nucleus has been found to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, antiviral, antitubercular and antidiabetic. A number of benzimidazoles such as bendamustine, pantoprazole have been approved for the treatment of various illnesses, whereas galeterone and GSK461364 are in clinical trials. The present review article gives an overview of the different biological activities exhibited by the benzimidazole derivatives as well as different methods used for the synthesis of benzimidazole derivatives in the past ten years.

Keywords: Benzimidazole, anticancer, antimicrobial, anti-inflammatory, antitubercular, synthesis.

Graphical Abstract

[1]
Alam, M.M.; Almalki, A.S.A.; Neamatallah, T.; Ali, N.M.; Malebari, A.M.; Nazreen, S. Synthesis of new 1, 3, 4-oxadiazole-incorporated 1, 2,3-triazole moieties as potential anticancer agents targeting thymidylate synthase and their docking studies. Pharmaceuticals (Basel), 2020, 13(11), 390-404.
[http://dx.doi.org/10.3390/ph13110390] [PMID: 33202652]
[2]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56, 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[3]
Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compounds. Arab. J. Chem., 2017, 10, S157-S173.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.017]
[4]
Pajtler, K.W.; Sadowski, N.; Ackermann, S.; Althoff, K.; Schönbeck, K.; Batzke, K.; Schäfers, S.; Odersky, A.; Heukamp, L.; Astrahantseff, K.; Künkele, A.; Deubzer, H.E.; Schramm, A.; Sprüssel, A.; Thor, T.; Lindner, S.; Eggert, A.; Fischer, M.; Schulte, J.H. The GSK461364 PLK1 inhibitor exhibits strong antitumoral activity in preclinical neuroblastoma models. Oncotarget, 2017, 8(4), 6730-6741.
[http://dx.doi.org/10.18632/oncotarget.14268] [PMID: 28036269]
[5]
Zhang, H.Z.; Damu, G.L.V.; Cai, G.X.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur. J. Med. Chem., 2013, 64, 329-344.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.049] [PMID: 23644216]
[6]
Parikh, K.; Joshi, D. Antibacterial and antifungal screening of newly synthesized benzimidazole-clubbed chalcone derivatives. Med. Chem. Res., 2013, 22, 3688-3697.
[http://dx.doi.org/10.1007/s00044-012-0369-3]
[7]
Bandyopadhyay, P.; Sathe, M.; Ponmariappan, S.; Sharma, A.; Sharma, P.; Srivastava, A.K.; Kaushik, M.P. Exploration of in vitro time point quantitative evaluation of newly synthesized benzimidazole and benzothiazole derivatives as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2011, 21(24), 7306-7309.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.034] [PMID: 22047695]
[8]
Kumar, K.; Awasthi, D.; Lee, S.Y.; Cummings, J.E.; Knudson, S.E.; Slayden, R.A.; Ojima, I. Benzimidazole-based antibacterial agents against Francisella tularensis. Bioorg. Med. Chem., 2013, 21(11), 3318-3326.
[http://dx.doi.org/10.1016/j.bmc.2013.02.059] [PMID: 23623254]
[9]
Gullapelli, K.; Thupurani, M.K.; Brahmeshwari, G. Synthesis and anti bacterial activity of 2-(4-aminophenyl) benzimidazole based pyramidine derivatives. Int. J. Pharma Bio Sci., 2014, 5, 682-690.
[10]
Gullapelli, K.; Brahmeshwari, G.; Ravichander, M.; Kusuma, U. Synthesis, antibacterial and molecular docking studies of new benzimidazole derivatives, Egypt. J. Basic Appl. Sci., 2017, 4, 303-309.
[11]
Morcoss, M.M.; Abdelhafez, E.S.M.N.; Ibrahem, R.A.; Abdel-Rahman, H.M.; Abdel-Aziz, M.; Abou El-Ella, D.A. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorg. Chem., 2020, 101, 103956-103996.
[http://dx.doi.org/10.1016/j.bioorg.2020.103956] [PMID: 32512267]
[12]
Sugumaran, M.; Kumar, M.Y. Synthesis and biological activity of novel 2, 5-disubstituted benzimidazole derivatives. Int. J. Curr. Pharm. Res., 2012, 4, 80-83.
[13]
Özkay, Y.; Tunalı, Y.; Karaca, H.; Işıkdağ, I. Antimicrobial activity of a new series of benzimidazole derivatives. Arch. Pharm. Res., 2011, 34(9), 1427-1435.
[http://dx.doi.org/10.1007/s12272-011-0903-8] [PMID: 21975803]
[14]
Zamani, L.; Faghih, Z.; Zomorodian, K.; Mirjalili, B.B.F.; Jalilian, A.; Khabnadideh, S. Nano-SnCl4.SiO2, an efficient catalyst for synthesis of benzimidazole drivatives as antifungal and cytotoxic agents. Res. Pharm. Sci., 2019, 14(6), 496-503.
[http://dx.doi.org/10.4103/1735-5362.272536] [PMID: 32038729]
[15]
Keller, P.; Müller, C.; Engelhardt, I.; Hiller, E.; Lemuth, K.; Eickhoff, H.; Wiesmüller, K.H.; Burger-Kentischer, A.; Bracher, F.; Rupp, S. An antifungal benzimidazole derivative inhibits ergosterol biosynthesis and reveals novel sterols. Antimicrob. Agents Chemother., 2015, 59(10), 6296-6307.
[http://dx.doi.org/10.1128/AAC.00640-15] [PMID: 26248360]
[16]
Khabnadideh, S.; Rezaei, Z.; Pakshir, K.; Zomorodian, K.; Ghafari, N. Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res. Pharm. Sci., 2012, 7(2), 65-72.
[PMID: 23181082]
[17]
Sahyon, H.A.; El-Bindary, A.A.; Shoair, A.F.; Abdellatif, A.A. Synthesis and characterization of ruthenium(III) complex containing 2-aminomethyl benzimidazole, and its anticancer activity in vitro and in vivo models. J. Mol. Liq., 2018, 255, 122-134.
[http://dx.doi.org/10.1016/j.molliq.2018.01.140]
[18]
Kumar, V.K.; Puli, V.S.; Babu, A.V.; Ruddarraju, R.R.; Prasad, K.R.S. Synthesis, anticancer evaluation, and molecular docking studies of benzoxazole linked combretastatin analogues. Med. Chem. Res., 2020, 29, 528-537.
[http://dx.doi.org/10.1007/s00044-020-02504-9]
[19]
Karadayi, F.Z.; Yaman, M.; Kisla, M.M.; Keskus, A.G.; Konu, O.; Ates-Alagoz, Z. Design, synthesis and anticancer/antiestrogenic activities of novel indole-benzimidazoles. Bioorg. Chem., 2020, 100, 103929-103948.
[http://dx.doi.org/10.1016/j.bioorg.2020.103929] [PMID: 32464404]
[20]
Husain, A.; Rashid, M.; Mishra, R.; Parveen, S.; Shin, D.S.; Kumar, D. Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: design and synthesis as anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(17), 5438-5444.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.038] [PMID: 22840417]
[21]
Refaat, H.M. Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(7), 2949-2956.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.022] [PMID: 20399544]
[22]
Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: synthetic approaches and structure–activity relationship. Arch. Pharm. (Weinheim), 2017, 350(6), e1700040-e1700120.
[http://dx.doi.org/10.1002/ardp.201700040] [PMID: 28544162]
[23]
Surineni, G.; Gao, Y.; Hussain, M.; Liu, Z.; Lu, Z.; Chhotaray, C.; Islam, M.M.; Hameed, H.M.A.; Zhang, T. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors of Mycobacterium tuberculosis. MedChemComm, 2018, 10(1), 49-60.
[http://dx.doi.org/10.1039/C8MD00389K] [PMID: 30774854]
[24]
Awasthi, D.; Kumar, K.; Knudson, S.E.; Slayden, R.A.; Ojima, I. SAR studies on trisubstituted benzimidazoles as inhibitors of Mtb FtsZ for the development of novel antitubercular agents. J. Med. Chem., 2013, 56(23), 9756-9770.
[http://dx.doi.org/10.1021/jm401468w] [PMID: 24266862]
[25]
Noor, A.; Qazi, N.G.; Nadeem, H.; Khan, A.U.; Paracha, R.Z.; Ali, F.; Saeed, A. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. Chem. Cent. J., 2017, 11(1), 85-98.
[http://dx.doi.org/10.1186/s13065-017-0314-0] [PMID: 29086868]
[26]
Radhamanalan, R.; Alagumuthu, M.; Nagaraju, N. Synthesis and drug efficacy validations of racemic-substituted benzimidazoles as antiulcer/antigastric secretion agents. Future Med. Chem., 2018, 10(15), 1805-1820.
[http://dx.doi.org/10.4155/fmc-2017-0214] [PMID: 30019937]
[27]
Rajesh, R.; Manikandan, A.; Sivakumar, A.; Ramasubbu, C.; Nagaraju, N. Substituted methoxybenzyl-sulfonyl-1H-benzo[d]imidazoles evaluated as effective H+/K+-ATPase inhibitors and anti-ulcer therapeutics. Eur. J. Med. Chem., 2017, 139, 454-460.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.001] [PMID: 28818769]
[28]
Kanwal, A.; Ahmad, M.; Aslam, S.; Naqvi, S.A.R.; Saif, M.J. Recent advances in antiviral benzimidazole derivatives: A Mini Review. Pharm. Chem. J., 2019, 53, 179-187.
[http://dx.doi.org/10.1007/s11094-019-01976-3]
[29]
Tonelli, M.; Novelli, F.; Tasso, B.; Vazzana, I.; Sparatore, A.; Boido, V.; Sparatore, F.; La Colla, P.; Sanna, G.; Giliberti, G.; Busonera, B.; Farci, P.; Ibba, C.; Loddo, R. Antiviral activity of benzimidazole derivatives. III. Novel anti-CVB-5, anti-RSV and anti-Sb-1 agents. Bioorg. Med. Chem., 2014, 22(17), 4893-4909.
[http://dx.doi.org/10.1016/j.bmc.2014.06.043] [PMID: 25082514]
[30]
Vausselin, T.; Séron, K.; Lavie, M.; Mesalam, A.A.; Lemasson, M.; Belouzard, S.; Fénéant, L.; Danneels, A.; Rouillé, Y.; Cocquerel, L.; Foquet, L.; Rosenberg, A.R.; Wychowski, C.; Meuleman, P.; Melnyk, P.; Dubuisson, J. Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J. Virol., 2016, 90(19), 8422-8434.
[http://dx.doi.org/10.1128/JVI.00404-16] [PMID: 27412600]
[31]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[32]
Abraham, R.; Prakash, P.; Mahendran, K.; Ramanathan, M. A novel series of N-acyl substituted indole-linked benzimidazoles and naphthoimidazoles as potential anti inflammatory, anti biofilm and anti microbial agents. Microb. Pathog., 2018, 114, 409-413.
[http://dx.doi.org/10.1016/j.micpath.2017.12.021] [PMID: 29233780]
[33]
Bukhari, S.N.A.; Lauro, G.; Jantan, I.; Fei Chee, C.; Amjad, M.W.; Bifulco, G.; Sher, H.; Abdullah, I.; Rahman, N.A. Anti-inflammatory trends of new benzimidazole derivatives. Future Med. Chem., 2016, 8(16), 1953-1967.
[http://dx.doi.org/10.4155/fmc-2016-0062] [PMID: 27654499]
[34]
Özil, M.; Emirik, M.; Etlik, S.Y.; Ülker, S.; Kahveci, B. A simple and efficient synthesis of novel inhibitors of alpha-glucosidase based on benzimidazole skeleton and molecular docking studies. Bioorg. Chem., 2016, 68, 226-235.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.011] [PMID: 27572707]
[35]
Taha, M.; Rahim, F.; Zaman, K.; Selvaraj, M.; Uddin, N.; Farooq, R.K.; Nawaz, M.; Sajid, M.; Nawaz, F.; Ibrahim, M.; Khan, K.M. Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorg. Chem., 2020, 95, 103555-103563.
[http://dx.doi.org/10.1016/j.bioorg.2019.103555] [PMID: 31911306]
[36]
Namrata, S.; Annamalai, P.; Kavita, R.; Preeti, A.; Arshad, A.; Amit, K.T. Benzimidazole: A short review of their antimicrobial activity. Int. Curr. Pharm. J., 2012, 1, 119-127.
[37]
Wen, J.; Luo, Y.L.; Zhang, H.Z.; Zhao, H.H.; Zhou, C.H.; Cai, G.X. A green and convenient approach toward benzimidazole derivatives and their antimicrobial activity. Chin. Chem. Lett., 2016, 27, 391-394.
[http://dx.doi.org/10.1016/j.cclet.2015.12.014]
[38]
Deepthi, S.B.; Ramesh, P.; Trivedi, R.; Buddana, S.K.; Prakasham, R.S. Carbohydrate triazole tethered 2-pyridyl-benzimidazole ligands: Synthesis of their palladium (II) complexes and antimicrobial activities. Inorg. Chim. Acta, 2015, 435, 200-205.
[http://dx.doi.org/10.1016/j.ica.2015.06.027]
[39]
Aanandhi, M.V.; Verma, A.K.; Sujatha, R.; Raj, R.K. Synthesis and characterization of novel mannich bases of benzimidazole derivatives for antibacterial and antifungal activity. Int. J. Pharm. Pharm. Sci., 2013, 5, 295-297.
[40]
Seenaiah, D.; Reddy, P.R.; Reddy, G.M.; Padmaja, A.; Padmavathi, V.; Krishna, N.S. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur. J. Med. Chem., 2014, 77, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.050] [PMID: 24607584]
[41]
Abdel-Motaal, M.; Almohawes, K.; Tantawy, M.A. Antimicrobial evaluation and docking study of some new substituted benzimidazole-2yl derivatives. Bioorg. Chem., 2020, 101, 103972-104013.
[http://dx.doi.org/10.1016/j.bioorg.2020.103972] [PMID: 32506017]
[42]
Wang, Y.N.; Bheemanaboina, R.R.Y.; Cai, G.X.; Zhou, C.H. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant Staphylococcus aureus DNA groove. Bioorg. Med. Chem. Lett., 2018, 28(9), 1621-1628.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.046] [PMID: 29598912]
[43]
Dokla, E.M.E.; Abutaleb, N.S.; Milik, S.N.; Li, D.; El-Baz, K.; Shalaby, M.W.; Al-Karaki, R.; Nasr, M.; Klein, C.D.; Abouzid, K.A.M.; Seleem, M.N. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. Eur. J. Med. Chem., 2020, 186, 111850-111874.
[http://dx.doi.org/10.1016/j.ejmech.2019.111850] [PMID: 31735572]
[44]
Al-Mohammed, N.N.; Alias, Y.; Abdullah, Z.; Shakir, R.M.; Taha, E.M.; Hamid, A.A. Synthesis and antibacterial evaluation of some novel imidazole and benzimidazole sulfonamides. Molecules, 2013, 18(10), 11978-11995.
[http://dx.doi.org/10.3390/molecules181011978] [PMID: 24077176]
[45]
Jeyakkumar, P.; Zhang, L.; Avula, S.R.; Zhou, C.H. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents. Eur. J. Med. Chem., 2016, 122, 205-215.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.031] [PMID: 27371924]
[46]
Mavrova, A.Ts.; Yancheva, D.; Anastassova, N.; Anichina, K.; Zvezdanovic, J.; Djordjevic, A.; Markovic, D.; Smelcerovic, A. Synthesis, electronic properties, antioxidant and antibacterial activity of some new benzimidazoles. Bioorg. Med. Chem., 2015, 23(19), 6317-6326.
[http://dx.doi.org/10.1016/j.bmc.2015.08.029] [PMID: 26344590]
[47]
El-Gohary, N.S.; Shaaban, M.I. Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. Eur. J. Med. Chem., 2017, 137, 439-449.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.064] [PMID: 28623814]
[48]
Ajani, O.O.; Tolu-Bolaji, O.O.; Olorunshola, S.J.; Zhao, Y.; Aderohunmu, D.V. Structure-based design of functionalized 2-substituted and 1,2-disubstituted benzimidazole derivatives and their in vitro antibacterial efficacy. J. Adv. Res., 2017, 8(6), 703-712.
[http://dx.doi.org/10.1016/j.jare.2017.09.003] [PMID: 29188079]
[49]
Srivastava, R.; Gupta, S.K.; Naaz, F.; Singh, A.; Singh, V.K.; Verma, R.; Singh, N.; Singh, R.K. Synthesis, antibacterial activity, synergistic effect, cytotoxicity, docking and molecular dynamics of benzimidazole analogues. Comput. Biol. Chem., 2018, 76, 1-16.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.021] [PMID: 29857255]
[50]
Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254]
[51]
Zhang, S.L.; Damu, G.L.; Zhang, L.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of novel benzimidazole derivatives and their binding behavior with bovine serum albumin. Eur. J. Med. Chem., 2012, 55, 164-175.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.015] [PMID: 22863183]
[52]
Wang, X.; Chen, Y.F.; Yan, W.; Cao, L.L.; Ye, Y.H. Synthesis and biological evaluation of benzimidazole phenylhydrazone derivatives as antifungal agents against phytopathogenic fungi. Molecules, 2016, 21(11), 1574-1587.
[http://dx.doi.org/10.3390/molecules21111574] [PMID: 27879685]
[53]
Amine Khodja, I.; Boulebd, H.; Bensouici, C.; Belfaitah, A. Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz) imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. J. Mol. Struct., 2020, 1218, 128527-128537.
[http://dx.doi.org/10.1016/j.molstruc.2020.128527]
[54]
Petkar, K.; Parekh, P.; Mehta, P.; Kumari, A.; Baro, A. Synthesis and evaluation of 2-chloromethyl-1H-benzimidazole derivatives as antifungal agents. Int. J. Pharm. Pharm. Sci., 2013, 5, 115-119.
[55]
Karaburun, A.Ç.; Kaya Çavuşoğlu, B.; Acar Çevik, U.; Osmaniye, D.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Atlı, Ö.; Koparal, A.S.; Kaplancıklı, Z.A. Synthesis and antifungal potential of some novel benzimidazole-1, 3, 4-oxadiazole compounds. Molecules, 2019, 24(1), 191-103.
[http://dx.doi.org/10.3390/molecules24010191] [PMID: 30621357]
[56]
Chandrika, N.T.; Shrestha, S.K.; Ngo, H.X.; Garneau-Tsodikova, S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg. Med. Chem., 2016, 24(16), 3680-3686.
[http://dx.doi.org/10.1016/j.bmc.2016.06.010] [PMID: 27301676]
[57]
Liu, H.B.; Gao, W.W.; Tangadanchu, V.K.R.; Zhou, C.H.; Geng, R.X. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 143, 66-84.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.027] [PMID: 29172083]
[58]
Alghamdi, A.A.; Nazreen, S. Synthesis, characterization and cytotoxic study of 2-hydroxy benzothiazole incorporated 1, 3, 4-oxadiazole derivatives. Egypt. J. Chem., 2020, 63, 471-482.
[http://dx.doi.org/10.21608/ejchem.2019.17265.2059]
[59]
Alzhrani, Z.M.M.; Alam, M.M.; Neamatallah, T.; Nazreen, S. Design, synthesis and in vitro antiproliferative activity of new thiazolidinedione-1,3,4-oxadiazole hybrids as thymidylate synthase inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1116-1123.
[http://dx.doi.org/10.1080/14756366.2020.1759581] [PMID: 32354237]
[60]
Nofal, Z.M.; Soliman, E.A.; Abd El-Karim, S.S.; El Zahar, M.I.; Srour, A.M.; Sethumadhavan, S.; Maher, T.J. Novel benzimidazole derivatives as expected anticancer agents. Acta Pol. Pharm., 2011, 68(4), 519-534.
[PMID: 21796934]
[61]
Huynh, T.K.C.; Nguyen, T.H.A.; Nguyen, T.C.T.; Hoang, T.K.D. Synthesis and insight into the structure–activity relationships of 2-phenylbenzimidazoles as prospective anticancer agents. RSC Advances, 2020, 10, 20543-20551.
[http://dx.doi.org/10.1039/D0RA02282A]
[62]
Roopashree, R.; Mohan, C.D.; Swaroop, T.R.; Jagadish, S.; Raghava, B.; Balaji, K.S.; Jayarama, S. Basappa; Rangappa, K.S. Novel synthetic bisbenzimidazole that targets angiogenesis in Ehrlich ascites carcinoma bearing mice. Bioorg. Med. Chem. Lett., 2015, 25(12), 2589-2593.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.010] [PMID: 25920563]
[63]
Akhtar, M.J.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Rafi, M.; Hassan, M.Q.; Akhtar, M.S.; Siddiqui, A.A.; Partap, S.; Pasha, S.; Yar, M.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem., 2018, 78, 158-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.002] [PMID: 29571113]
[64]
Rasal, N.K.; Sonawane, R.B.; Jagtap, S.V. Potential 2,4-dimethyl-1H-pyrrole-3-carboxamide bearing benzimidazole template: Design, synthesis, in vitro anticancer and in silico ADME study. Bioorg. Chem., 2020, 97, 103660-103667.
[http://dx.doi.org/10.1016/j.bioorg.2020.103660] [PMID: 32086056]
[65]
Jian-Song, ; Gao, Q.L.; Wu, B.W.; Li, D.; Shi, L.; Zhu, T.; Lou, J.F.; Jin, C.Y.; Zhang, Y.B.; Zhang, S.Y.; Liu, H.M. Novel tertiary sulfonamide derivatives containing benzimidazole moiety as potent anti-gastric cancer agents: Design, synthesis and SAR studies. Eur. J. Med. Chem., 2019, 183, 111731-111744.
[http://dx.doi.org/10.1016/j.ejmech.2019.111731] [PMID: 31577977]
[66]
Rashid, M.; Husain, A.; Mishra, R.; Karim, S.; Khan, S.; Ahmad, M.; Al-wabel, N.; Husain, A.; Ahmad, A.; Khan, S.A. Design and synthesis of benzimidazoles containing substituted oxadiazole, thiadiazole and triazolo-thiadiazines as a source of new anticancer agents. Arab. J. Chem., 2019, 12, 3202-3224.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.019]
[67]
Akhtar, M.J.; Siddiqui, A.A.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Pasha, S.; Yar, M.S. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur. J. Med. Chem., 2017, 126, 853-869.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.014] [PMID: 27987485]
[68]
Gao, C.; Li, B.; Zhang, B.; Sun, Q.; Li, L.; Li, X.; Chen, C.; Tan, C.; Liu, H.; Jiang, Y. Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorg. Med. Chem., 2015, 23(8), 1800-1807.
[http://dx.doi.org/10.1016/j.bmc.2015.02.036] [PMID: 25778766]
[69]
Sondhi, S.M.; Rani, R.; Singh, J.; Roy, P.; Agrawal, S.K.; Saxena, A.K. Solvent free synthesis, anti-inflammatory and anticancer activity evaluation of tricyclic and tetracyclic benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(7), 2306-2310.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.147] [PMID: 20188544]
[70]
Singla, P.; Luxami, V.; Paul, K. Triazine-benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2015, 23(8), 1691-1700.
[http://dx.doi.org/10.1016/j.bmc.2015.03.012] [PMID: 25792141]
[71]
Nayak, V.L.; Nagaseshadri, B.; Vishnuvardhan, M.V.P.S.; Kamal, A. Investigation of the apoptotic pathway induced by benzimidazole-oxindole conjugates against human breast cancer cells MCF-7. Bioorg. Med. Chem. Lett., 2016, 26, 3313-3317.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.045]
[72]
Kalalbandi, V.K.A.; Seetharamappa, J.; Katrahalli, U.; Bhat, K.G. Synthesis, crystal studies, anti-tuberculosis and cytotoxic studies of 1-[(2E)-3-phenylprop-2-enoyl]-1H-benzimidazole derivatives. Eur. J. Med. Chem., 2014, 79, 194-202.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.017] [PMID: 24735645]
[73]
Bistrović, A.; Krstulović, L.; Harej, A.; Grbčić, P.; Sedić, M.; Koštrun, S.; Pavelić, S.K.; Bajić, M.; Raić-Malić, S. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem., 2018, 143, 1616-1634.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.061] [PMID: 29133046]
[74]
Boggu, P.R.; Kim, Y.; Jung, S.H. Discovery of benzimidazole analogs as a novel interleukin-5 inhibitors. Eur. J. Med. Chem., 2019, 181, 111574-111584.
[http://dx.doi.org/10.1016/j.ejmech.2019.111574] [PMID: 31400705]
[75]
Cheong, J.E.; Zaffagni, M.; Chung, I.; Xu, Y.; Wang, Y.; Jernigan, F.E.; Zetter, B.R.; Sun, L. Synthesis and anticancer activity of novel water soluble benzimidazole carbamates. Eur. J. Med. Chem., 2018, 144, 372-385.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.037] [PMID: 29288939]
[76]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells. J. Mol. Struct., 2020, 1204, 127487-127497.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[77]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α). Eur. J. Med. Chem., 2018, 146, 206-219.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.051] [PMID: 29407951]
[78]
Sharma, P.; Reddy, T.S.; Kumar, N.P.; Senwar, K.R.; Bhargava, S.K.; Shankaraiah, N. Conventional and microwave-assisted synthesis of new 1H-benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur. J. Med. Chem., 2017, 138, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.035] [PMID: 28668476]
[79]
Romero-Parra, J.; Mella-Raipán, J.; Palmieri, V.; Allarà, M.; Torres, M.J.; Pessoa-Mahana, H.; Iturriaga-Vásquez, P.; Escobar, R.; Faúndez, M.; Di Marzo, V.; Pessoa-Mahana, C.D. Synthesis, binding assays, cytotoxic activity and docking studies of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur. J. Med. Chem., 2016, 124, 17-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.005] [PMID: 27560280]
[80]
Kumar, N.P.; Sharma, P.; Kumari, S.S.; Brahma, U.; Nekkanti, S.; Shankaraiah, N.; Kamal, A. Synthesis of substituted phenanthrene-9-benzimidazole conjugates: Cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2017, 140, 128-140.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.006] [PMID: 28923381]
[81]
Bhambra, A.S.; Edgar, M.; Elsegood, M.R.; Horsburgh, L.; Kryštof, V.; Lucas, P.D.; Mojally, M.; Teat, S.J.; Warwick, T.G.; Weaver, G.W.; Zeinali, F. Novel fluorinated benzimidazole-based scaffolds and their anticancer activity in vitro. J. Fluor. Chem., 2016, 188, 99-109.
[http://dx.doi.org/10.1016/j.jfluchem.2016.06.009]
[82]
Reddy, T.S.; Kulhari, H.; Reddy, V.G.; Bansal, V.; Kamal, A.; Shukla, R. Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem., 2015, 101, 790-805.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.031] [PMID: 26231080]
[83]
Lelais, G.; Epple, R.; Marsilje, T.H.; Long, Y.O.; McNeill, M.; Chen, B.; Lu, W.; Anumolu, J.; Badiger, S.; Bursulaya, B.; DiDonato, M.; Fong, R.; Juarez, J.; Li, J.; Manuia, M.; Mason, D.E.; Gordon, P.; Groessl, T.; Johnson, K.; Jia, Y.; Kasibhatla, S.; Li, C.; Isbell, J.; Spraggon, G.; Bender, S.; Michellys, P.Y. Li. J.; Manuia, M.; Mason, D. E.; Gordon, P.; Groessl, T.; Johnson, K.; Jia, Y.; Kasibhatla, S.; Li, C.; Isbell, J.; Spraggon, G.; Bender, S.; Michellys, P.Y. Discovery of (R, E)-N-(7-Chloro-1-(1-[4-(dimethylamino) but-2-enoyl] azepan-3-yl)-1H-benzo [d] imidazol-2-yl)-2-methylisonicotinamide (EGF816), a novel, potent, and WT sparing covalent inhibitor of oncogenic (L858R, ex19del) and resistant (T790M) EGFR mutants for the treatment of EGFR mutant non-small-cell lung cancers. J. Med. Chem., 2016, 59(14), 6671-6689.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01985] [PMID: 27433829]
[84]
Nashaat, S.; Henen, M.A.; El-Messery, S.M.; Eisa, H. Synthesis, state-of-the-art NMR-binding and molecular modeling study of new benzimidazole core derivatives as Pin1 inhibitors: Targeting breast cancer. Bioorg. Med. Chem., 2020, 28(11), 115495-115509.
[http://dx.doi.org/10.1016/j.bmc.2020.115495] [PMID: 32307260]
[85]
Atmaca, H.; İlhan, S.; Batır, M.B.; Pulat, C.C.; Güner, A.; Bektaş, H. Novel benzimidazole derivatives: Synthesis, in vitro cytotoxicity, apoptosis and cell cycle studies. Chem. Biol. Interact., 2020, 327, 109163-109186.
[http://dx.doi.org/10.1016/j.cbi.2020.109163] [PMID: 32534988]
[86]
Goud, N.S.; Ghouse, S.M.; Vishnu, J.; Komal, D.; Talla, V.; Alvala, R.; Pranay, J.; Kumar, J.; Qureshi, I.A.; Alvala, M. Synthesis of 1-benzyl-1H-benzimidazoles as galectin-1 mediated anticancer agents. Bioorg. Chem., 2019, 89, 103016-103030.
[http://dx.doi.org/10.1016/j.bioorg.2019.103016] [PMID: 31185390]
[87]
He, L.J.; Yang, D.L.; Li, S.Q.; Zhang, Y.J.; Tang, Y.; Lei, J.; Frett, B.; Lin, H.K.; Li, H.Y.; Chen, Z.Z.; Xu, Z.G. Facile construction of fused benzimidazole-isoquinolinones that induce cell-cycle arrest and apoptosis in colorectal cancer cells. Bioorg. Med. Chem., 2018, 26(14), 3899-3908.
[http://dx.doi.org/10.1016/j.bmc.2018.06.010] [PMID: 29921474]
[88]
Łukowska-Chojnacka, E.; Wińska, P.; Wielechowska, M.; Poprzeczko, M.; Bretner, M. Synthesis of novel polybrominated benzimidazole derivatives-potential CK2 inhibitors with anticancer and proapoptotic activity. Bioorg. Med. Chem., 2016, 24(4), 735-741.
[http://dx.doi.org/10.1016/j.bmc.2015.12.041] [PMID: 26778657]
[89]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Shirazi, A.N.; Parang, K.; Choon, T.S. Benzimidazoles as new scaffold of sirtuin inhibitors: green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties. Eur. J. Med. Chem., 2014, 83, 448-454.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.060] [PMID: 24992072]
[90]
Singla, P.; Luxami, V.; Paul, K. Quinazolinone-benzimidazole conjugates: Synthesis, characterization, dihydrofolate reductase inhibition, DNA and protein binding properties. J. Photochem. Photobiol. B, 2017, 168, 156-164.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.009] [PMID: 28222362]
[91]
Keri, R.S.; Rajappa, C.K.; Patil, S.A.; Nagaraja, B.M. Benzimidazole-core as an antimycobacterial agent. Pharmacol. Rep., 2016, 68, 1254-1265.
[http://dx.doi.org/10.1016/j.pharep.2016.08.002]
[92]
Sabale, P.; Bhagwat, D.; Sabale, V. Synthesis and anti-tubercular activity of substituted phenylpyrazole having benzimidazole ring. Research J. Pharm. Tech., 2018, 11, 3599-3608.
[http://dx.doi.org/10.5958/0974-360X.2018.00662.5]
[93]
Desai, N.C.; Shihory, N.R.; Kotadiya, G.M.; Desai, P. Synthesis, antibacterial and antitubercular activities of benzimidazole bearing substituted 2-pyridone motifs. Eur. J. Med. Chem., 2014, 82, 480-489.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.004] [PMID: 24934572]
[94]
Gobis, K.; Foks, H.; Serocki, M.; Augustynowicz-Kopeć, E.; Napiórkowska, A. Synthesis and evaluation of in vitro antimycobacterial activity of novel 1H-benzo[d]imidazole derivatives and analogues. Eur. J. Med. Chem., 2015, 89, 13-20.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.031] [PMID: 25462221]
[95]
Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Ismail, R. Synthesis and evaluation of antimycobacterial activity of new benzimidazole aminoesters. Eur. J. Med. Chem., 2015, 93, 614-624.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.025] [PMID: 24996257]
[96]
Park, B.; Awasthi, D.; Chowdhury, S.R.; Melief, E.H.; Kumar, K.; Knudson, S.E.; Slayden, R.A.; Ojima, I. Design, synthesis and evaluation of novel 2,5,6-trisubstituted benzimidazoles targeting FtsZ as antitubercular agents. Bioorg. Med. Chem., 2014, 22(9), 2602-2612.
[http://dx.doi.org/10.1016/j.bmc.2014.03.035] [PMID: 24726304]
[97]
Sirim, M.M.; Krishna, V.S.; Sriram, D.; Unsal Tan, O. Novel benzimidazole-acrylonitrile hybrids and their derivatives: Design, synthesis and antimycobacterial activity. Eur. J. Med. Chem., 2020, 188, 112010-112017.
[http://dx.doi.org/10.1016/j.ejmech.2019.112010] [PMID: 31893548]
[98]
Mohanty, S.K.; Khuntia, A.; Yellasubbaiah, N.; Ayyanna, C.; Naga Sudha, B.; Harika, M.S. Design, synthesis of novel azo derivatives of benzimidazole as potent antibacterial and anti tubercular agents. Beni-Suef Univ. J. Basic Appl. Sci., 2018, 7, 646-651.
[99]
Gong, Y.; Somersan Karakaya, S.; Guo, X.; Zheng, P.; Gold, B.; Ma, Y.; Little, D.; Roberts, J.; Warrier, T.; Jiang, X.; Pingle, M.; Nathan, C.F.; Liu, G. Benzimidazole-based compounds kill Mycobacterium tuberculosis. Eur. J. Med. Chem., 2014, 75, 336-353.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.039] [PMID: 24556148]
[100]
Francesconi, V.; Cichero, E.; Schenone, S.; Naesens, L.; Tonelli, M. Synthesis and biological evaluation of novel (thio) semicarbazone-based benzimidazoles as antiviral agents against human respiratory viruses. Molecules, 2020, 25(7), 1487-1507.
[http://dx.doi.org/10.3390/molecules25071487] [PMID: 32218301]
[101]
Ding, K.; Wang, A.; Boerneke, M.A.; Dibrov, S.M.; Hermann, T. Aryl-substituted aminobenzimidazoles targeting the hepatitis C virus internal ribosome entry site. Bioorg. Med. Chem. Lett., 2014, 24(14), 3113-3117.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.009] [PMID: 24856063]
[102]
Monforte, A.M.; Ferro, S.; De Luca, L.; Lo Surdo, G.; Morreale, F.; Pannecouque, C.; Balzarini, J.; Chimirri, A. Design and synthesis of N1-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem., 2014, 22(4), 1459-1467.
[http://dx.doi.org/10.1016/j.bmc.2013.12.045] [PMID: 24457088]
[103]
Tremblay, M.; Bonneau, P.; Bousquet, Y.; DeRoy, P.; Duan, J.; Duplessis, M.; Gagnon, A.; Garneau, M.; Goudreau, N.; Guse, I.; Hucke, O.; Kawai, S.H.; Lemke, C.T.; Mason, S.W.; Simoneau, B.; Surprenant, S.; Titolo, S.; Yoakim, C. Inhibition of HIV-1 capsid assembly: optimization of the antiviral potency by site selective modifications at N1, C2 and C16 of a 5-(5-furan-2-yl-pyrazol-1-yl)-1H-benzimidazole scaffold. Bioorg. Med. Chem. Lett., 2012, 22(24), 7512-7517.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.034] [PMID: 23122820]
[104]
Zhao, Y.; Liu, Y.; Chen, D.; Wei, Z.; Liu, W.; Gong, P. Synthesis and biological evaluation of 1H-benzimidazol-5-ols as potent HBV inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(24), 7230-7233.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.099] [PMID: 21074429]
[105]
Renard, J.F.; Lecomte, F.; Hubert, P.; de Leval, X.; Pirotte, B.N. -(3-Arylaminopyridin-4-yl)alkanesulfonamides as pyridine analogs of nimesulide: cyclooxygenases inhibition, anti-inflammatory studies and insight on metabolism. Eur. J. Med. Chem., 2014, 74, 12-22.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.033] [PMID: 24440378]
[106]
Banerjee, A.G.; Das, N.; Shengule, S.A.; Srivastava, R.S.; Shrivastava, S.K. Synthesis, characterization, evaluation and molecular dynamics studies of 5, 6-diphenyl-1,2,4-triazin-3(2H)-one derivatives bearing 5-substituted 1,3,4-oxadiazole as potential anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2015, 101, 81-95.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.020] [PMID: 26117820]
[107]
Maghraby, M.T.E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem., 2020, 28(7), 115403-115421.
[http://dx.doi.org/10.1016/j.bmc.2020.115403] [PMID: 32127262]
[108]
Khanapur, M.; Pinna, N.K.; Badiger, J. Synthesis and anti-inflammatory in vitro, in silico, and in vivo studies of flavone analogues. Med. Chem. Res., 2015, 24, 2656-2669.
[http://dx.doi.org/10.1007/s00044-015-1317-9]
[109]
Kankala, S.; Kankala, R.K.; Gundepaka, P.; Thota, N.; Nerella, S.; Gangula, M.R.; Guguloth, H.; Kagga, M.; Vadde, R.; Vasam, C.S. Regioselective synthesis of isoxazole-mercaptobenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies. Bioorg. Med. Chem. Lett., 2013, 23(5), 1306-1309.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.101] [PMID: 23357631]
[110]
Rathore, A.; Sudhakar, R.; Ahsan, M.J.; Ali, A.; Subbarao, N.; Jadav, S.S.; Umar, S.; Yar, M.S. In vivo anti-inflammatory activity and docking study of newly synthesized benzimidazole derivatives bearing oxadiazole and morpholine rings. Bioorg. Chem., 2017, 70, 107-117.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.014] [PMID: 27923497]
[111]
Kaur, G.; Silakari, O. Benzimidazole scaffold based hybrid molecules for various inflammatory targets: Synthesis and evaluation. Bioorg. Chem., 2018, 80, 24-35.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.014] [PMID: 29864685]
[112]
Arora, R.K.; Kaur, N.; Bansal, Y.; Bansal, G. Novel coumarin-benzimidazole derivatives as antioxidants and safer anti-inflammatory agents. Acta Pharm. Sin. B, 2014, 4(5), 368-375.
[http://dx.doi.org/10.1016/j.apsb.2014.07.001] [PMID: 26579406]
[113]
Gaba, M.; Gaba, P.; Uppal, D.; Dhingra, N.; Bahia, M.S.; Silakari, O.; Mohan, C. Benzimidazole derivatives: search for GI-friendly anti-inflammatory analgesic agents. Acta Pharm. Sin. B, 2015, 5(4), 337-342.
[http://dx.doi.org/10.1016/j.apsb.2015.05.003] [PMID: 26579464]
[114]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Shafi, S.; Dhulap, A.; Alam, P.; Pasha, M.A.Q.; Bano, S.; Alam, M.M.; Haider, S.; Ali, Y.; Kharbanda, C.; Pillai, K.K. Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists. Eur. J. Med. Chem., 2014, 87, 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.010] [PMID: 25255433]
[115]
Adegboye, A.A.; Khan, K.M.; Salar, U.; Aboaba, S.A. Kanwal; Chigurupati, S.; Fatima, I.; Taha, M.; Wadood, A.; Mohammad, J.I.; Khan, H.; Perveen, S. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study. Eur. J. Med. Chem., 2018, 150, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.011] [PMID: 29533872]
[116]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F. Synthesis, molecular docking studies of hybrid benzimidazole as α-glucosidase inhibitor. Bioorg. Chem., 2017, 70, 184-191.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.009] [PMID: 28043716]
[117]
Zaman, K.; Rahim, F.; Taha, M.; Ullah, H.; Wadood, A.; Nawaz, M.; Khan, F.; Wahab, Z.; Shah, S.A.A.; Rehman, A.U.; Kawde, A.N.; Gollapalli, M. Synthesis, in vitro urease inhibitory potential and molecular docking study of Benzimidazole analogues. Bioorg. Chem., 2019, 89, 103024-103033.
[http://dx.doi.org/10.1016/j.bioorg.2019.103024] [PMID: 31176853]
[118]
Özil, M.; Parlak, C.; Baltaş, N. A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity. Bioorg. Chem., 2018, 76, 468-477.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.019] [PMID: 29287256]
[119]
Tomovic, K.; Ilic, B.S.; Smelcerovic, Z.; Miljkovic, M.; Yancheva, D.; Kojic, M.; Mavrova, A.T.; Kocic, G.; Smelcerovic, A. Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors. Chem. Biol. Interact., 2020, 315, 108873-1088907.
[http://dx.doi.org/10.1016/j.cbi.2019.108873] [PMID: 31669219]
[120]
Rahim, F.; Zaman, K.; Taha, M.; Ullah, H.; Ghufran, M.; Wadood, A.; Rehman, W.; Uddin, N.; Shah, S.A.A.; Sajid, M.; Nawaz, F.; Khan, K.M. Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorg. Chem., 2020, 94, 103394-103418.
[http://dx.doi.org/10.1016/j.bioorg.2019.103394] [PMID: 31699396]
[121]
Asemanipoor, N.; Mohammadi-Khanaposhtani, M.; Moradi, S.; Vahidi, M.; Asadi, M.; Faramarzi, M.A.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 95, 103482-103510.
[http://dx.doi.org/10.1016/j.bioorg.2019.103482] [PMID: 31838286]
[122]
Yan, L.; Lui, H.; Sun, J.; Gao, L.; Lu, X.; Li, X.; Chen, H. Synthesis of tricyclic benzimidazole-iminosugars as potential glycosidase inhibitors via a Mitsunobu reaction. Carbohydr. Res., 2019, 485, 107807-107815.
[http://dx.doi.org/10.1016/j.carres.2019.107807] [PMID: 31520817]
[123]
Menteşe, E.; Emirik, M.; Sökmen, B.B. Design, molecular docking and synthesis of novel 5,6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors. Bioorg. Chem., 2019, 86, 151-158.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.061] [PMID: 30710848]
[124]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Wadood, A.; Ismail, N.H.; Rahim, F.; Azam, S.S.; Abdullah, N. Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies. Bioorg. Chem., 2016, 64, 29-36.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.006] [PMID: 26637946]
[125]
Arshad, T.; Khan, K.M.; Rasool, N.; Salar, U.; Hussain, S.; Asghar, H.; Ashraf, M.; Wadood, A.; Riaz, M.; Perveen, S.; Taha, M.; Ismail, N.H. 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α-glucosidase and urease enzymes. Bioorg. Chem., 2017, 72, 21-31.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.007] [PMID: 28346872]
[126]
Alaqeel, S.I. Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review. J. Saudi Chem. Soc., 2017, 21, 229-237.
[http://dx.doi.org/10.1016/j.jscs.2016.08.001]
[127]
Xia, Y.; Lin, L.; Chang, F.; Liao, Y.; Liu, X.; Feng, X. Asymmetric ring opening/cyclization/Retro‐Mannich reaction of cyclopropyl ketones with aryl 1, 2‐diamines for the synthesis of benzimidazole derivatives. Angew. Chem. Int. Ed. Engl., 2016, 55(40), 12228-12232.
[http://dx.doi.org/10.1002/anie.201604735] [PMID: 27376785]
[128]
Azarifar, D.; Pirhayati, M.; Maleki, B.; Sanginabadi, M.; Yami, N.R. Acetic acid-promoted condensation of o-phenylenediamine with aldehydes into 2-aryl-1-(arylmethyl)-1H-benzimidazoles under microwave irradiation. J. Serb. Chem. Soc., 2010, 75, 1181-1189.
[http://dx.doi.org/10.2298/JSC090901096A]
[129]
Wang, J.; Liao, J.; Yang, L.; Zhang, S.; Huang, X.; Ji, J. Highly compatible acid–base blend membranes based on sulfonated poly (ether ether ketone) and poly (ether ether ketone-alt-benzimidazole) for fuel cells application. J. Membr. Sci., 2012, 415, 644-653.
[http://dx.doi.org/10.1016/j.memsci.2012.05.045]
[130]
Chugunova, E.; Samsonov, V.; Akylbekov, N.; Mazhukin, D. Synthesis of 2H-benzimidazole 1, 3-dioxides, separase inhibitors, by reaction of o-benzoquinone dioximes with ketones. Tetrahedron, 2017, 73, 3986-3992.
[http://dx.doi.org/10.1016/j.tet.2017.05.078]
[131]
Poor Heravi, M.R.; Ashori, M. Boric acid catalyzed convenient synthesis of benzimidazoles in aqueous media. J. Chem., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/496413]
[132]
Wang, X.X.; Yu, B.; Van Hecke, K.; Cui, G.H. Four cobalt (II) coordination polymers with diverse topologies derived from flexible bis (benzimidazole) and aromatic dicarboxylic acids: syntheses, crystal structures and catalytic properties. RSC Advances, 2014, 4, 61281-61289.
[http://dx.doi.org/10.1039/C4RA08138B]
[133]
Karami, B.; Nikoseresht, S.; Khodabakhshi, S. Novel approach to benzimidazoles using Fe3O4 nanoparticles as a magnetically recoverable catalyst. Chin. J. Catal., 2012, 33, 298-301.
[http://dx.doi.org/10.1016/S1872-2067(11)60329-X]
[134]
Shitole, N.V.; Niralwad, K.S.; Shingate, B.B.; Shingare, M.S. Synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles using chlorosulfonic acid at room temperature. Arab. J. Chem., 2016, 9, S858-S860.
[http://dx.doi.org/10.1016/j.arabjc.2011.09.015]
[135]
Teimouri, A.; Chermahini, A.N.; Salavati, H.; Ghorbanian, L. An efficient and one-pot synthesis of benzimidazoles, benzoxazoles, benzothiazoles and quinoxalines catalyzed via nano-solid acid catalysts. J. Mol. Catal. Chem., 2013, 373, 38-45.
[http://dx.doi.org/10.1016/j.molcata.2013.02.030]
[136]
Wen, X.; El Bakali, J.; Deprez-Poulain, R.; Deprez, B. Efficient propylphosphonic anhydride (® T3P) mediated synthesis of benzothiazoles, benzoxazoles and benzimidazoles. Tetrahedron Lett., 2012, 53, 2440-2443.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.007]
[137]
Yao, C.; Lei, S.; Wang, C.; Li, T.; Yu, C.; Wang, X.; Tu, S.T. Three component synthesis of 4‐aryl‐1H‐pyrimido [1, 2-a] benzimidazole derivatives in ionic liquid. J. Het. Chem., 2010, 47, 26-32.
[http://dx.doi.org/10.1002/chin.201024160]
[138]
Kore, R.; Srivastava, R. Synthesis and applications of novel imidazole and benzimidazole based sulfonic acid group functionalized Bronsted acidic ionic liquid catalysts. J. Mol. Catal. Chem., 2011, 345, 117-126.
[http://dx.doi.org/10.1016/j.molcata.2011.06.003]
[139]
Wang, F.; Tran-Dube, M.; Scales, S.; Johnson, S.; McAlpine, I.; Ninkovic, S. A simple and convenient two-step, one-pot synthesis of hetero-imidazoles from nitroaminoaryls catalyzed by Ytterbium triflate. Tetrahedron Lett., 2013, 54, 4054-4057.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.092]
[140]
Naresh, G.; Kant, R.; Narender, T. Molecular iodine promoted divergent synthesis of benzimidazoles, benzothiazoles, and 2-benzyl-3-phenyl-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazines. J. Org. Chem., 2014, 79(9), 3821-3829.
[http://dx.doi.org/10.1021/jo5000797] [PMID: 24689356]
[141]
Saberi, A. Efficient synthesis of Benzimidazoles using zeolite, alumina and silica gel under microwave irradiation. Iran. J. Sci. Tech., 2015, 39, 7-10.
[142]
Swami, M.B.; Jadhav, A.H.; Mathpati, S.R.; Ghuge, H.G.; Patil, S.G. Eco-friendly highly efficient solvent free synthesis of benzimidazole derivatives over sulfonic acid functionalized graphene oxide in ambient condition. Res. Chem. Intermed., 2017, 43, 2033-2053.
[http://dx.doi.org/10.1007/s11164-016-2745-y]
[143]
Biswas, I.H.; Biswas, S.; Islam, M.S.; Riyajuddin, S.; Sarkar, P.; Ghosh, K.; Islam, S.M. Catalytic synthesis of benzimidazoles and organic carbamates using a polymer supported zinc catalyst through CO2 fixation. New J. Chem., 2019, 43, 14643-14652.
[http://dx.doi.org/10.1039/C9NJ03015H]
[144]
Song, G.T.; Li, S.Q.; Yang, Z.W.; Yuan, J.H.; Wang, M.S.; Zhu, J.; Chenc, Z.Z.; Xu, Z.G. Microwave-assisted synthesis of fused piperazine-benzimidazoles via a facile, one-pot procedure. Tetrahedron Lett., 2015, 56, 4616-4618.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.035]
[145]
Mao, Z.; Wang, Z.; Li, J.; Song, X.; Luo, Y. Rapid and cheap synthesis of benzimidazoles via intermittent microwave promotion: a simple and potential industrial application of air as oxidant. Synth. Commun., 2010, 40, 1963-1977.
[http://dx.doi.org/10.1080/00397910903219328]
[146]
Nannapaneni, D.; Gupta, A.V.; Reddy, M.; Sarva, R.Ch. Synthesis, characterization, and biological evaluation of benzimidazole derivatives as potential anxiolytics. J. Young Pharm., 2010, 2(3), 273-279.
[http://dx.doi.org/10.4103/0975-1483.66809] [PMID: 21042485]
[147]
Saha, P.; Brishty, S.R.; Rahman, S.A. Synthesis and evaluation of disubstituted benzimidazole derivatives as potential analgesic and antidiarrheal agents. Indian J. Pharm. Sci., 2020, 82, 222-229.
[148]
Bahrami, K.; Khodaei, M.M.; Naali, F. TiO2 nanoparticles catalysed synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles using hydrogen peroxide under ambient light. J. Exp. Nanosci., 2016, 11, 148-160.
[http://dx.doi.org/10.1080/17458080.2015.1038659]
[149]
Shyam, K.B.; Soumen, P.; Arijit, S.; Subhash, B. Efficient room temperature synthesis of 2-aryl benzimidazoles using ZnO nanoparticles as reusable catalyst. Org. Med. Chem., 2017, 1, 555568-555573.
[150]
Herrera Cano, N.; Uranga, J.G.; Nardi, M.; Procopio, A.; Wunderlin, D.A.; Santiago, A.N. Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf)3 catalyst in the reaction selectivity. Beilstein J. Org. Chem., 2016, 12, 2410-2419.
[http://dx.doi.org/10.3762/bjoc.12.235] [PMID: 28144309]
[151]
Aniket, P.; Shantanu, D.S.; Anagha, O.B.; Ajinkya, P.S. Iodine catalyzed convenient synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles in aqueous media. Int. J. Chemtech Res., 2015, 8, 496-500.
[152]
Asatkar, A.; Lambat, T.L.; Mahmood, S.; Mondal, A.; Singh, M.; Banerjee, S. Facile protocol for the synthesis of benzothiazole, benzoxazole and N-benzimidazole derivatives using rice husk derived chemically activated carbon. Mater. Today, 2020, 29, 738-742.
[153]
Kim, Y.; Kumar, M.R.; Park, N.; Heo, Y.; Lee, S. Copper-catalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C-N bond formation. J. Org. Chem., 2011, 76(23), 9577-9583.
[http://dx.doi.org/10.1021/jo2019416] [PMID: 22034860]
[154]
Pardeshi, S.D.; Thore, S.N. Mild and efficient synthesis of 2-aryl benzimidazoles in water using SDS. Int. J. Chem. Phys. Sci., 2015, 4, 300-307.
[155]
Sravanthi, K.; Ayodhya, D.; Swamy, P.Y. Green synthesis, characterization and catalytic activity of 4-nitrophenol reduction and formation of benzimidazoles using bentonite supported zero valent iron nanoparticles. Mat. Sci. Energy Tech., 2019, 2, 298-307.
[http://dx.doi.org/10.1016/j.mset.2019.02.003]
[156]
Khunt, M.D.; Kotadiya, V.C.; Viradiya, D.J.; Baria, B.H.; Bhoya, U.C. Easy, simplistic and green synthesis of various benzimidazole and benzoxazole derivatives using PEG400 as a green solvent. Int. Lett. Chem. Phys. Astron., 2014, 25, 61-68.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.25.61]
[157]
Phatake, V.V.; Bhanage, B.M. Cu@UgC3N4 catalyzed cyclization of o-phenylenediamines for the synthesis of benzimidazoles by using CO2 and dimethylamine borane as a hydrogen source. Catal. Lett., 2019, 149, 347-359.
[http://dx.doi.org/10.1007/s10562-018-2608-9]
[158]
Rithe, S.R.; Jagtap, R.S.; Ubarhande, S.S. One pot synthesis of substituted benzimidazole derivatives and their characterization. Rasayan J. Chem., 2015, 8, 213-217.
[159]
Rathod, C.P.; Rajurkar, R.M.; Thonte, S.S. Benzimidazole synthesis and biological evaluation: A review. Indo Am. J. Pharm.Res, 2013, 3, 2323-2329.
[160]
Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. Chem. Commun. (Camb.), 2014, 50(46), 6145-6148.
[http://dx.doi.org/10.1039/c4cc01822b] [PMID: 24776805]
[161]
Yu, H.; Wada, K.; Fukutake, T.; Feng, Q.; Uemura, S.; Isoda, K.; Iwamoto, S. Effect of phosphorus-modification of titania supports on the iridium-catalyzed synthesis of benzimidazoles. Catal. Today, 2020 In press
[http://dx.doi.org/10.1016/j.cattod.2020.02.014]
[162]
Fukutake, T.; Wada, K.; Yu, H.; Hosokawa, S.; Feng, Q. Development of titania-supported iridium catalysts with excellent low-temperature activities for the synthesis of benzimidazoles via hydrogen transfer. Mol. Catal., 2019, 477, 110550-110557.
[http://dx.doi.org/10.1016/j.mcat.2019.110550]
[163]
Qu, Y.; Pan, L.; Wu, Z.; Zhou, X. Synthesis of benzimidazoles by Cu2O-catalyzed cascade reactions between o-haloaniline and amidine hydrochloride. Tetrahedron, 2013, 69, 1717-1719.
[http://dx.doi.org/10.1016/j.tet.2012.12.039]
[164]
Duan, Z.; Zhang, L.; Zhang, W.; Lu, L.; Zeng, L.; Shi, R.; Lei, A. Palladium-catalyzed electro-oxidative C–H amination toward the synthesis of pyrido [1, 2-a] benzimidazoles with hydrogen evolution. ACS Catal., 2020, 10, 3828-3831.
[http://dx.doi.org/10.1021/acscatal.0c00103]
[165]
Rasal, K.B.; Yadav, G.D. One-pot synthesis of benzimidazole using DMF as a multitasking reagent in presence CuFe2O4 as catalyst. Catal. Today, 2018, 309, 51-60.
[http://dx.doi.org/10.1016/j.cattod.2017.10.014]
[166]
Xiang, S.K.; Tan, W.; Zhang, D.X.; Tian, X.L.; Feng, C.; Wang, B.Q.; Zhao, K.Q.; Hu, P.; Yang, H. Synthesis of benzimidazoles by potassium tert-butoxide-promoted intermolecular cyclization reaction of 2-iodoanilines with nitriles. Org. Biomol. Chem., 2013, 11(42), 7271-7275.
[http://dx.doi.org/10.1039/c3ob41479e] [PMID: 24081201]
[167]
Gan, Z.; Tian, Q.; Shang, S.; Luo, W.; Dai, Z.; Wang, H.; Li, D.; Wang, X.; Yuan, J. Imidazolium chloride-catalyzed synthesis of benzimidazoles and 2-substituted benzimidazoles from o-phenylenediamines and DMF derivatives. Tetrahedron, 2018, 74, 7450-7456.
[http://dx.doi.org/10.1016/j.tet.2018.11.014]
[168]
Achar, K.C.; Hosamani, K.M.; Seetharamareddy, H.R. In vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(5), 2048-2054.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.029] [PMID: 20133024]
[169]
Kattimani, P.P.; Kamble, R.R.; Meti, G.Y. Expedient synthesis of benzimidazoles using amides. RSC Advances, 2015, 5, 29447-29455.
[http://dx.doi.org/10.1039/C5RA00021A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy