[1]
Askari, S.; Halladj, R.; Azarhoosh, M.J. Modeling and optimization of catalytic performance of SAPO-34 nanocatalysts synthesized sonochemically using a new hybrid of non-dominated sorting genetic algorithm-II based artificial neural networks (NSGA-II-ANNs). RSC Adv, 2015, 5, 52788.
[2]
Azarhoosh, M.J.; Halladj, R.; Askari, S. Application of evolutionary algorithms for modeling and optimisation of ultrasound-related parameters on synthesised SAPO-34 catalysts: crystallinity and particle size. Prog. React. Kinet. Mech. Catal., 2019, 128(2), 1043-1063.
[3]
Azarhoosh, M.J.; Halladj, R.; Askari, S. A dynamic kinetic model for methanol to light olefins reactions over a nanohierarchical SAPO-34 catalyst: catalyst synthesis, model presentation, and validation at the bench scale. Int. J. Chem. Kinet., 2018, 50(3), 149-163.
[4]
Azarhoosh, M.J.; Halladj, R.; Askari, S. Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir–Hinshelwood Hougen–Watson mechanism. J. Phys. Condens. Matter, 2017, 29(42)425202
[5]
Azarhoosh, M.J.; Halladj, R.; Askari, S. Sonochemical synthesis of SAPO-34 catalyst with hierarchical structure using CNTs as mesopore template. Res. Chem. Intermed., 2017, 43(5), 3265-3282.
[6]
Azarhoosh, M.J.; Halladj, R.; Askari, S.; Aghaeinejad-Meybodi, A. Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods. Ultrason. Sonochem., 2019, 58104646
[7]
Roohollahi, H.; Halladj, R.; Askari, S. Catalytic longevity of hierarchical SAPO-34/AlMCM-41 nanocomposite molecular sieve in methanol-to-olefins process. Combinatorial. Chem. High Throughput Screening., 2021, 24(4), 519-531.
[8]
Yazdanpanah, R.; Moradiyan, E.; Halladj, R. Askari. Life time improvement of hierarchically structured SAPO-34 nanocatalyst in MTO reaction via applying clinoptilolite: investigating of composite design via RSM. Combinatorial. Chem. High Throughput Screening., 2021, 24(4), 532-543.
[9]
Rimaz, S.; Katal, R. Positive role of synthesis method and hard template on the catalytic performance of SAPO-34 in methanol to olefin reaction. Combinatorial. Chem. High Throughput Screening., 2021, 24(4), 484-487.
[10]
Kianina, M.; Abdoli, S.M. Efficient production of light olefin based on methanol dehydration: simulation and design improvement. Combinatorial. Chem. High Throughput Screening., 2021, 24(4), 580-586.
[11]
Aghaeinejad-Meybodi, A.; Mousavi, S.M.; Shahabi, A.A.; Rostampour Kakroudi, M. CFD MODELING OF METHANOL TO LIGHT OLEFINS IN A SODALITE MEMBRANE REACTOR using SAPO-34 catalyst with in situ steam removal. Combinatorial. Chem. High Throughput Screening., 2021, 24(4), 558-568.
[12]
Safaei, E.; Taghizadeh, M. Effects of desilication in NaOH/Piperidine medium and phosphorus modification on the catalytic activity of HZSM-5 catalyst in methanol to propylene conversion. Combinatorial. Chem. High Throughput Screening., 2021, 24(4), 544-557.
[13]
Sadeghpour, P.; Haghighi, M.; Esmaeili, M. Structural/texture evolution during facile substitution of Ni into ZSM-5 nanostructure vs. its impregnation dispersion used in selective transformation of methanol to ethylene and propylene. Combinatorial. Chem. High Throughput Screening., 2021, 24(4), 488-506.
[14]
Aghamohammadi, S.; Haghighi, M.; Sadeghpour, P.; Souri, T. Comparative synthesis and characterization of nanostructured SAPO-34 using TEA and morpholine: effect of mono vs. dual template on catalytic properties and performance toward methanol to light olefins. Combinatorial Chem. High Throughput Screening., 2021, 24(4), 507-518.