Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Green Synthesized Silver Nanoparticles as Silver Lining in Antimicrobial Resistance: A Review

Author(s): Sonia Parashar, Manish Kumar Sharma, Chanchal Garg and Munish Garg*

Volume 19, Issue 2, 2022

Published on: 31 March, 2021

Page: [170 - 181] Pages: 12

DOI: 10.2174/1567201818666210331123022

Price: $65

Abstract

Unprincipled use of antibiotics has led to antimicrobial resistance (AMR) against mostly available compounds, and has now become a major cause of concern for the scientific community. However, in the past decade, green synthesized silver nanoparticles (AgNPs) have received greater attention for the development of newer therapies as antimicrobials by virtue of their unique physico- chemical properties. Unlike traditional antibiotics, AgNPs exert their action by acting on multiple mechanisms, which make them potential candidates against AMR. Green synthesis of AgNPs using various medicinal plants has demonstrated a broader spectrum of action against several microbes in a number of attempts. The present paper provides an insight into the scientific studies that have elucidated the positive role of plant extracts/phytochemicals during the green synthesis of AgNPs and their future perspectives. The studies conducted so far seem promising; still, a few factors like the precise mechanism of action of AgNPs, their synergistic interaction with biomolecules, and industrial scalability, need to be explored further till effective drug development using green synthesized AgNPs in healthcare systems against AMR is established.

Keywords: Antimicrobial resistance, silver nanoparticles, synergism, green synthesis, antibiotics, microbes.

Graphical Abstract

[1]
Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 300-305.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[2]
Reed, T.A.N.; Krang, S.; Miliya, T.; Townell, N.; Letchford, J.; Bun, S.; Sar, B.; Osbjer, K.; Seng, S.; Chou, M.; By, Y.; Vanchinsuren, L.; Nov, V.; Chau, D.; Phe, T.; de Lauzanne, A.; Ly, S.; Turner, P. Antimicrobial resistance in Cambodia: a review. Int. J. Infect. Dis., 2019, 85, 98-107.
[http://dx.doi.org/10.1016/j.ijid.2019.05.036] [PMID: 31176035]
[3]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[4]
Riley, M.A.; Robinson, S.M.; Roy, C.M.; Dennis, M.; Liu, V.; Dorit, R.L. Resistance is futile: the bacteriocin model for addressing the antibiotic resistance challenge. Biochem. Soc. Trans., 2012, 40(6), 1438-1442.
[http://dx.doi.org/10.1042/BST20120179] [PMID: 23176495]
[5]
Barros, C.H.N.; Fulaz, S.; Stanisic, D.; Tasic, L. Biogenic nanosilver against multidrug-resistant bacteria (MDRB). Antibiotics (Basel), 2018, 7(3), 69.
[http://dx.doi.org/10.3390/antibiotics7030069] [PMID: 30072622]
[6]
Kidd, T.J.; Canton, R.; Ekkelenkamp, M.; Johansen, H.K.; Gilligan, P.; LiPuma, J.J.; Bell, S.C.; Elborn, J.S.; Flume, P.A.; VanDevanter, D.R.; Waters, V.J. Defining antimicrobial resistance in cystic fibrosis. J. Cyst. Fibros., 2018, 17(6), 696-704.
[http://dx.doi.org/10.1016/j.jcf.2018.08.014] [PMID: 30266518]
[7]
Sherrard, L.J.; Tunney, M.M.; Elborn, J.S. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet, 2014, 384(9944), 703-713.
[http://dx.doi.org/10.1016/S0140-6736(14)61137-5] [PMID: 25152272]
[8]
Molnar, A. Antimicrobial resistance awareness and games. Trends Microbiol., 2019, 27(1), 1-3.
[http://dx.doi.org/10.1016/j.tim.2018.09.007] [PMID: 30327165]
[9]
Mundy, L.; Pendry, B.; Rahman, M. Antimicrobial resistance and synergy in herbal medicine. J. Herb. Med., 2016, 6(2), 53-58.
[http://dx.doi.org/10.1016/j.hermed.2016.03.001]
[10]
Guitor, A.K.; Wright, G.D. Antimicrobial resistance and respiratory infections. Chest, 2018, 154(5), 1202-1212.
[http://dx.doi.org/10.1016/j.chest.2018.06.019] [PMID: 29959904]
[11]
Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[12]
Chen, D.; Love, K.T.; Chen, Y.; Eltoukhy, A.A.; Kastrup, C.; Sahay, G.; Jeon, A.; Dong, Y.; Whitehead, K.A.; Anderson, D.G. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc., 2012, 134(16), 6948-6951.
[http://dx.doi.org/10.1021/ja301621z] [PMID: 22475086]
[13]
Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 2012, 40(1), 53-58.
[http://dx.doi.org/10.5941/MYCO.2012.40.1.053] [PMID: 22783135]
[14]
Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial silver nanomaterials. Coord. Chem. Rev., 2018, 357, 1-17.
[http://dx.doi.org/10.1016/j.ccr.2017.11.019]
[15]
Bocate, K.P.; Reis, G.F.; de Souza, P.C.; Oliveira Junior, A.G.; Durán, N.; Nakazato, G.; Furlaneto, M.C.; de Almeida, R.S.; Panagio, L.A. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int. J. Food Microbiol., 2019, 291, 79-86.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.11.012] [PMID: 30476736]
[16]
Saxena, A.; Tripathi, R.M.; Zafar, F.; Singh, P. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett., 2012, 67, 91-94.
[http://dx.doi.org/10.1016/j.matlet.2011.09.038]
[17]
Arumai, S.D.; Mahendiran, D.; Senthil, K.R.; Kalilur, R.A. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J. Photochem. Photobiol. B, 2018, 180, 243-252.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.014] [PMID: 29476965]
[18]
Gomaa, E.Z. Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: A green approach. J. Genet. Eng. Biotechnol., 2017, 15(1), 49-57.
[http://dx.doi.org/10.1016/j.jgeb.2016.12.002] [PMID: 30647641]
[19]
Govindappa, M.; Hemashekhar, B.; Arthikala, M.K.; Rai, V.R.; Ramachandra, Y.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys., 2018, 9, 400-408.
[http://dx.doi.org/10.1016/j.rinp.2018.02.049]
[20]
Koduru, J.R.; Kailasa, S.K.; Bhamore, J.R.; Kim, K.H.; Dutta, T.; Vellingiri, K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Adv. Colloid Interface Sci., 2018, 256, 326-339.
[http://dx.doi.org/10.1016/j.cis.2018.03.001] [PMID: 29549999]
[21]
Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today, 2015, 10(3), 339-354.
[http://dx.doi.org/10.1016/j.nantod.2015.04.002]
[22]
Ahmed, S. Saifullah, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sc., 2016, 9(1), 1-7.
[23]
Kumar, S.S.D.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int. J. Biol. Macromol., 2018, 115, 165-175.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.003] [PMID: 29627463]
[24]
Banasiuk, R.; Krychowiak, M.; Swigon, D.; Tomaszewicz, W.; Michalak, A.; Chylewska, A.; Ziabka, M.; Lapinski, M.; Koscielska, B.; Narajczyk, M.; Królicka, A. Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab. J. Chem., 2020, 13(1), 1415-1428.
[http://dx.doi.org/10.1016/j.arabjc.2017.11.013]
[25]
Behravan, M.; Hossein, P.A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol., 2019, 124, 148-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101] [PMID: 30447360]
[26]
Joerger, R.; Klaus, T.; Granqvist, C.G. Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv. Mater., 2000, 12(6), 407-409.
[http://dx.doi.org/10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O]
[27]
Feroze, N.; Arshad, B.; Younas, M.; Afridi, M.I.; Saqib, S.; Ayaz, A. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc. Res. Tech., 2020, 83(1), 72-80.
[http://dx.doi.org/10.1002/jemt.23390] [PMID: 31617656]
[28]
Hemath, N.K.S.; Kumar, G.; Karthik, L.; Bhaskara, R.K.V. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch. Appl. Sci. Res., 2010, 2(6), 161-167.
[29]
Budama, L.; Çakır, B.A.; Topel, Ö.; Hoda, N. A new strategy for producing antibacterial textile surfaces using silver nanoparticles. Chem. Eng. J., 2013, 228, 489-495.
[http://dx.doi.org/10.1016/j.cej.2013.05.018]
[30]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed., 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[31]
Sudha, A.; Jeyakanthan, J.; Srinivasan, P. Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technol., 2017, 3(4), 506-515.
[http://dx.doi.org/10.1016/j.reffit.2017.07.002]
[32]
Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci., 2018, 25(2), 361-366.
[http://dx.doi.org/10.1016/j.sjbs.2017.02.004] [PMID: 29472791]
[33]
Vijilvani, C.; Bindhu, M.R.; Frincy, F.C.; AlSalhi, M.S.; Sabitha, S.; Saravanakumar, K.; Devanesan, S.; Umadevi, M.; Aljaafreh, M.J.; Atif, M. Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves. J. Photochem. Photobiol. B, 2020, 202, 111713.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111713] [PMID: 31760373]
[34]
Perugini Biasi-Garbin, R.; Saori Otaguiri, E.; Morey, A.T.; Fernandes da Silva, M.; Belotto Morguette, A.E.; Armando Contreras Lancheros, C.; Kian, D.; Perugini, M.R.; Nakazato, G.; Durán, N.; Nakamura, C.V.; Yamauchi, L.M.; Yamada-Ogatta, S.F. Effect of eugenol against Streptococcus agalactiae and synergistic interaction with biologically produced silver nanoparticles. Evid. Based Complement. Alternat. Med., 2015, 2015, 861497.
[http://dx.doi.org/10.1155/2015/861497] [PMID: 25945115]
[35]
Krychowiak, M.; Grinholc, M.; Banasiuk, R.; Krauze-Baranowska, M.; Głód, D.; Kawiak, A.; Królicka, A. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One, 2014, 9(12), e115727.
[http://dx.doi.org/10.1371/journal.pone.0115727] [PMID: 25551660]
[36]
Scandorieiro, S.; de Camargo, L.C.; Lancheros, C.A.; Yamada-Ogatta, S.F.; Nakamura, C.V.; de Oliveira, A.G.; Andrade, C.G.; Duran, N.; Nakazato, G.; Kobayashi, R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol., 2016, 7, 760.
[http://dx.doi.org/10.3389/fmicb.2016.00760] [PMID: 27242772]
[37]
El-Rafie, H.M.; El-Rafie, M.H.; Zahran, M.K. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym., 2013, 96(2), 403-410.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.071] [PMID: 23768580]
[38]
de Barros, C.H.N.; Cruz, G.C.F.; Mayrink, W.; Tasic, L. Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol. Sci. Appl., 2018, 11, 1-14.
[http://dx.doi.org/10.2147/NSA.S156115] [PMID: 29618924]
[39]
Jorge de Souza, T.A.; Rosa Souza, L.R.; Franchi, L.P. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol. Environ. Saf., 2019, 171, 691-700.
[http://dx.doi.org/10.1016/j.ecoenv.2018.12.095] [PMID: 30658305]
[40]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[41]
Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles - A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact., 2017, 273, 219-227.
[http://dx.doi.org/10.1016/j.cbi.2017.06.019] [PMID: 28647323]
[42]
Alexander, J.W. History of the medical use of silver. Surg. Infect. (Larchmt.), 2009, 10(3), 289-292.
[http://dx.doi.org/10.1089/sur.2008.9941] [PMID: 19566416]
[43]
Klasen, H.J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 2000, 26(2), 131-138.
[http://dx.doi.org/10.1016/S0305-4179(99)00116-3] [PMID: 10716355]
[44]
Lansdown, A.B. Silver. I: Its antibacterial properties and mechanism of action. J. Wound Care, 2002, 11(4), 125-130.
[http://dx.doi.org/10.12968/jowc.2002.11.4.26389] [PMID: 11998592]
[45]
Jones, S.A.; Bowler, P.G.; Walker, M.; Parsons, D. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen., 2004, 12(3), 288-294.
[http://dx.doi.org/10.1111/j.1067-1927.2004.012304.x] [PMID: 15225207]
[46]
Rigo, C.; Ferroni, L.; Tocco, I.; Roman, M.; Munivrana, I.; Gardin, C.; Cairns, W.R.; Vindigni, V.; Azzena, B.; Barbante, C.; Zavan, B. Active silver nanoparticles for wound healing. Int. J. Mol. Sci., 2013, 14(3), 4817-4840.
[http://dx.doi.org/10.3390/ijms14034817] [PMID: 23455461]
[47]
Corrêa, J.M.; Mori, M.; Sanches, H.L.; Cruz, A.D.D.; Poiate, E.; Poiate, I.A. V.P., Silver nanoparticles in dental biomaterials. Int. J. Biomater., 2015, 2015.
[48]
Möhler, J.S.; Sim, W.; Blaskovich, M.A.T.; Cooper, M.A.; Ziora, Z.M. Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol. Adv., 2018, 36(5), 1391-1411.
[http://dx.doi.org/10.1016/j.biotechadv.2018.05.004] [PMID: 29847770]
[49]
Aher, S.; Das, A.; Muskawar, P.; Osborne, J.; Bhagat, P. In vitro antimicrobial evaluation, effects of halide concentration and hemolysis study of silver-N-heterocyclic carbene complexes. Res. Chem. Intermed., 2018, 44(3), 2099-2110.
[http://dx.doi.org/10.1007/s11164-017-3216-9]
[50]
Wohrmann, R.M.; Munstedt, H. Zur bestimmung der freisetzung von silberionen aus silbergefulltem polyurthan. Infection, 1998, 26, 49-52.
[51]
Paladini, F.; Pollini, M.; Sannino, A.; Ambrosio, L. Metal-based antibacterial substrates for biomedical applications. Biomacromolecules, 2015, 16(7), 1873-1885.
[http://dx.doi.org/10.1021/acs.biomac.5b00773] [PMID: 26082968]
[52]
Mei, L.; Lu, Z.; Zhang, X.; Li, C.; Jia, Y. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection. ACS Appl. Mater. Interfaces, 2014, 6(18), 15813-15821.
[http://dx.doi.org/10.1021/am502886m] [PMID: 25170799]
[53]
de Faria, A.F.; Perreault, F.; Shaulsky, E.; Arias Chavez, L.H.; Elimelech, M. Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl. Mater. Interfaces, 2015, 7(23), 12751-12759.
[http://dx.doi.org/10.1021/acsami.5b01639] [PMID: 25980639]
[54]
Baygar, T.; Sarac, N.; Ugur, A.; Karaca, I.R. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg. Chem., 2019, 86, 254-258.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.034] [PMID: 30716622]
[55]
Gao, A.; Chen, H.; Hou, A.; Xie, K. Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles. Mater. Sci. Eng. C, 2019, 103, 109821.
[http://dx.doi.org/10.1016/j.msec.2019.109821] [PMID: 31349531]
[56]
Chen, J.; Yang, L.; Chen, J.; Liu, W.; Zhang, D.; Xu, P.; Dai, T.; Shang, L.; Yang, Y.; Tang, S.; Zhang, Y. Composite of silver nanoparticles and photosensitizer leads to mutual enhancement of antimicrobial efficacy and promotes wound healing. Chem. Eng. J., 2019, 374, 1373-1381.
[http://dx.doi.org/10.1016/j.cej.2019.05.184]
[57]
Dutta, P.; Wang, B. Zeolite-supported silver as antimicrobial agents. Coord. Chem. Rev., 2019, 383, 1-29.
[http://dx.doi.org/10.1016/j.ccr.2018.12.014]
[58]
Nowack, B; Krug, HF; Height, M. 120 years of nanosilver history: implications for policy makers. Environ. Sci. Technol., 2011, 45(7), 3189.
[59]
Burrell, R.E. A scientific perspective on the use of topical silver preparations. Ostomy Wound Manage., 2003, 49(5A)(Suppl.), 19-24.
[PMID: 12883161]
[60]
Schneider, G. Antimicrobial silver nanoparticles–regulatory situation in the European Union. Mater Today Proc., 2017, 4, S200-S207.
[http://dx.doi.org/10.1016/j.matpr.2017.09.187]
[61]
Sarsar, V.; Selwal, K.K.; Selwal, M.K. Nanosilver: potent antimicrobial agent and its biosynthesis. Afr. J. Biotechnol., 2014, 13 (4). http://dx.doi.org/10.5897/AJB2013.13147
[62]
Garnett, M.C.; Kallinteri, P. Nanomedicines and nanotoxicology: some physiological principles. Occup. Med. (Lond.), 2006, 56(5), 307-311.
[http://dx.doi.org/10.1093/occmed/kql052] [PMID: 16868128]
[63]
Limbach, L.K.; Wick, P.; Manser, P.; Grass, R.N.; Bruinink, A.; Stark, W.J. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol., 2007, 41(11), 4158-4163.
[http://dx.doi.org/10.1021/es062629t] [PMID: 17612205]
[64]
Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym., 2008, 72(1), 43-51.
[http://dx.doi.org/10.1016/j.carbpol.2007.07.025]
[65]
Jayatilleke, K. Antimicrobial resistance: a growing problem. JCCPSL, 2020, 25 (4).
[http://dx.doi.org/10.4038/jccpsl.v25i4.8233]
[66]
Singh, R.; Shedbalkar, U.U.; Wadhwani, S.A.; Chopade, B.A. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol., 2015, 99(11), 4579-4593.
[http://dx.doi.org/10.1007/s00253-015-6622-1] [PMID: 25952110]
[67]
Tripathi, D.; Modi, A.; Narayan, G.; Rai, S.P. Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater. Sci. Eng. C, 2019, 100, 152-164.
[http://dx.doi.org/10.1016/j.msec.2019.02.113] [PMID: 30948049]
[68]
Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med., 2020, 11(1), 37-44.
[http://dx.doi.org/10.1016/j.jaim.2017.11.003] [PMID: 30120058]
[69]
Sana, S.S.; Dogiparthi, L.K. Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Mater. Lett., 2018, 226, 47-51.
[http://dx.doi.org/10.1016/j.matlet.2018.05.009]
[70]
S S, D.; M B, M.; M N, S.K.; Golla, R.; P, R.K.; S, D.; Hosamani, R. Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. Int. J. Biol. Macromol., 2019, 131, 787-797.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.222] [PMID: 30876901]
[71]
Rasheed, T.; Bilal, M.; Iqbal, H.M.N.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces, 2017, 158, 408-415.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.020] [PMID: 28719862]
[72]
Phongtongpasuk, S.; Poadang, S.; Yongvanich, N. Green synthetic approach to prepare silver nanoparticles using longan (Dimocarpus longan) peel extract and evaluation of their antibacterial activities. Mater Today Proc., 2017, 4(5), 6317-6325.
[http://dx.doi.org/10.1016/j.matpr.2017.06.133]
[73]
Benakashani, F.; Allafchian, A.R.; Jalali, S.A. Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala Intl. J. Modern Sci., 2016, 2(4), 251-258.
[http://dx.doi.org/10.1016/j.kijoms.2016.08.004]
[74]
Chowdhury, N.R.; MacGregor-Ramiasa, M.; Zilm, P.; Majewski, P.; Vasilev, K. ‘Chocolate’ silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. J. Colloid Interface Sci., 2016, 482, 151-158.
[http://dx.doi.org/10.1016/j.jcis.2016.08.003] [PMID: 27501038]
[75]
López-Miranda, J.L.; Vázquez, M.; Fletes, N.; Esparza, R.; Rosas, G. Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity. Mater. Lett., 2016, 176, 285-289.
[http://dx.doi.org/10.1016/j.matlet.2016.04.126]
[76]
Lakshmanan, G.; Sathiyaseelan, A.; Kalaichelvan, P.T.; Murugesan, K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L. Assessment of their antibacterial and anticancer activity. Karbala Intl. J. Modern Sci., 2018, 4(1), 61-68.
[http://dx.doi.org/10.1016/j.kijoms.2017.10.007]
[77]
Latha, M.; Sumathi, M.; Manikandan, R.; Arumugam, A.; Prabhu, N.M. Biocatalytic and antibacterial visualization of green synthesized silver nanoparticles using Hemidesmus indicus. Microb. Pathog., 2015, 82, 43-49.
[http://dx.doi.org/10.1016/j.micpath.2015.03.008] [PMID: 25797527]
[78]
Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C, 2015, 53, 120-127.
[http://dx.doi.org/10.1016/j.msec.2015.04.038] [PMID: 26042698]
[79]
Prathna, T.C.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces, 2011, 82(1), 152-159.
[http://dx.doi.org/10.1016/j.colsurfb.2010.08.036] [PMID: 20833002]
[80]
Singh, A.K.; Talat, M.; Singh, D.P.; Srivastava, O.N. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J. Nanopart. Res., 2010, 12(5), 1667-1675.
[http://dx.doi.org/10.1007/s11051-009-9835-3]
[81]
Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ. Sci. Technol., 2011, 45(10), 4422-4428.
[http://dx.doi.org/10.1021/es104205a] [PMID: 21513312]
[82]
Cheon, J.Y.; Kim, S.J.; Rhee, Y.H.; Kwon, O.H.; Park, W.H. Shape-dependent antimicrobial activities of silver nanoparticles. Int. J. Nanomed., 2019, 14, 2773-2780.
[http://dx.doi.org/10.2147/IJN.S196472] [PMID: 31118610]
[83]
Park, J.C.; Jeon, G.E.; Kim, C.S.; Seo, J.H. Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol. Bioprocess Eng BBE, 2017, 22(2), 210-217.
[http://dx.doi.org/10.1007/s12257-016-0641-3]
[84]
Pallela, P.N.V.K.; Ummey, S.; Ruddaraju, L.K.; Pammi, S.V.N.; Yoon, S.G. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microb. Pathog., 2018, 124, 63-69.
[http://dx.doi.org/10.1016/j.micpath.2018.08.026] [PMID: 30121359]
[85]
Hasnain, M.S.; Javed, M.N.; Alam, M.S.; Rishishwar, P.; Rishishwar, S.; Ali, S.; Nayak, A.K.; Beg, S. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater. Sci. Eng. C, 2019, 99, 1105-1114.
[http://dx.doi.org/10.1016/j.msec.2019.02.061] [PMID: 30889643]
[86]
Abdel-Aziz, M.S.; Shaheen, M.S.; El-Nekeety, A.A.; Abdel-Wahhab, M.A. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc., 2014, 18(4), 356-363.
[http://dx.doi.org/10.1016/j.jscs.2013.09.011]
[87]
Ghaffari-Moghaddam, M.; Hadi-Dabanlou, R. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J. Ind. Eng. Chem., 2014, 20(2), 739-744.
[http://dx.doi.org/10.1016/j.jiec.2013.09.005]
[88]
Sangaonkar, G.M.; Pawar, K.D. Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids Surf. B Biointerfaces, 2018, 164, 210-217.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.044] [PMID: 29413598]
[89]
Pourmortazavi, S.M.; Taghdiri, M.; Makari, V.; Rahimi-Nasrabadi, M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt C), 1249-1254.
[http://dx.doi.org/10.1016/j.saa.2014.10.010] [PMID: 25456666]
[90]
Ramaswamy, U.; Mukundan, D.; Sreekumar, A.; Mani, V. Green synthesis and characterization of silver nanoparticles using aqueous whole plant extract of Vernonia cinerea L. and its biological activities. Mater Today Proc., 2015, 2(9), 4600-4608.
[http://dx.doi.org/10.1016/j.matpr.2015.10.080]
[91]
Thirunavoukkarasu, M.; Balaji, U.; Behera, S.; Panda, P.K.; Mishra, B.K. Biosynthesis of silver nanoparticle from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 116, 424-427.
[http://dx.doi.org/10.1016/j.saa.2013.07.033] [PMID: 23973589]
[92]
Gopinath, V.; MubarakAli, D.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf. B Biointerfaces, 2012, 96, 69-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.023] [PMID: 22521683]
[93]
Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeyakumar, N.; Dhanaraj, S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc., 2011, 15(2), 113-120.
[http://dx.doi.org/10.1016/j.jscs.2010.06.004]
[94]
Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces, 2010, 76(1), 50-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[95]
Serisier, D.J. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. Lancet Respir. Med., 2013, 1(3), 262-274.
[http://dx.doi.org/10.1016/S2213-2600(13)70038-9] [PMID: 24429132]
[96]
Munita, JM; Arias, CA Mechanisms of antibiotic resistance. Virulence Mechanisms of Bacterial Pathogens. Microbial Spectr., 2016, 22, 481-511.
[http://dx.doi.org/10.1128/9781555819286.ch17]
[97]
Giedraitienė, A.; Vitkauskienė, A.; Naginienė, R.; Pavilonis, A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas), 2011, 47(3), 137-146.
[http://dx.doi.org/10.3390/medicina47030019] [PMID: 21822035]
[98]
Doi, Y.; Wachino, J.I.; Arakawa, Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect. Dis. Clin. North Am., 2016, 30(2), 523-537.
[http://dx.doi.org/10.1016/j.idc.2016.02.011] [PMID: 27208771]
[99]
Fernández, M.; Conde, S.; de la Torre, J.; Molina-Santiago, C.; Ramos, J.L.; Duque, E. Mechanisms of resistance to chloramphenicol in Pseudomonas putida KT2440. Antimicrob. Agents Chemother., 2012, 56(2), 1001-1009.
[http://dx.doi.org/10.1128/AAC.05398-11] [PMID: 22143519]
[100]
Rice, LB Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones. In: Mayo Clinic Proceedings; Elsevier, 2012. 87(2), 198-208.
[http://dx.doi.org/10.1016/j.mayocp.2011.12.003]
[101]
Kumar, S.; Varela, M.F. Molecular mechanisms of bacterial resistance to antimicrobial agents. Chemotherapy, 2013, 14, 18.
[102]
Nelson, M.L.; Levy, S.B. The history of the tetracyclines. Ann. N. Y. Acad. Sci., 2011, 1241(1), 17-32.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06354.x] [PMID: 22191524]
[103]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect Med. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[104]
Cantón, R.; Ruiz-Garbajosa, P. Co-resistance: an opportunity for the bacteria and resistance genes. Curr. Opin. Pharmacol., 2011, 11(5), 477-485.
[http://dx.doi.org/10.1016/j.coph.2011.07.007] [PMID: 21840259]
[105]
Van Duijkeren, E.; Schink, A.K.; Roberts, M.C.; Wang, Y.; Schwarz, S. Mechanisms of bacterial resistance to antimicrobial agents. Antimicrobial resistance in bacteria from livestock and companion animals. Micorbial Spectr., 2018, 1, 51-82.
[106]
Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Jimenez de Aberasturi, D.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30(10), 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[107]
Moore, N.M.; Flaws, M.L. Antimicrobial resistance mechanisms in Pseudomonas aeruginosa. Clin. Lab. Sci., 2011, 24(1), 47-51.
[http://dx.doi.org/10.29074/ascls.24.1.47] [PMID: 21404965]
[108]
Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnology, 2012, 10(1), 19.
[http://dx.doi.org/10.1186/1477-3155-10-19] [PMID: 22559747]
[109]
Liu, Y.; Tee, J.K.; Chiu, G.N. Dendrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Curr. Pharm. Des., 2015, 21(19), 2629-2642.
[http://dx.doi.org/10.2174/1381612821666150416102058] [PMID: 25876918]
[110]
Shannahan, J.H.; Bai, W.; Brown, J.M. Implications of scavenger receptors in the safe development of nanotherapeutics. Receptors Clin. Investig., 2015, 2(3), e811.
[PMID: 26005702]
[111]
Lara, H.H.; Ayala-Núñez, N.V.; Turrent, L.D.; Padilla, C.R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. J. Microbiol. Biotechnol., 2010, 26(4), 615-621.
[http://dx.doi.org/10.1007/s11274-009-0211-3]
[112]
Singh, K.; Panghal, M.; Kadyan, S.; Chaudhary, U.; Yadav, J.P. Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. JNMNT, 2014, 5(2), 1.
[http://dx.doi.org/10.4172/2157-7439.1000192]
[113]
Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B Biointerfaces, 2013, 108, 255-259.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.017] [PMID: 23563291]
[114]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[115]
Yan, X.; He, B.; Liu, L.; Qu, G.; Shi, J.; Hu, L.; Jiang, G. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics, 2018, 10(4), 557-564.
[http://dx.doi.org/10.1039/C7MT00328E] [PMID: 29637212]
[116]
Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; Chen, L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed., 2019, 14, 1469-1487.
[http://dx.doi.org/10.2147/IJN.S191340] [PMID: 30880959]
[117]
Mickymaray, S. One-step synthesis of silver nanoparticles using saudi arabian desert seasonal plant Sisymbrium irio and antibacterial activity against multidrug-resistant bacterial strains. Biomolecules, 2019, 9(11), 662.
[http://dx.doi.org/10.3390/biom9110662] [PMID: 31661912]
[118]
Cardozo, V.F.; Oliveira, A.G.; Nishio, E.K.; Perugini, M.R.; Andrade, C.G.; Silveira, W.D.; Durán, N.; Andrade, G.; Kobayashi, R.K.; Nakazato, G. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann. Clin. Microbiol. Antimicrob., 2013, 12(1), 12.
[http://dx.doi.org/10.1186/1476-0711-12-12] [PMID: 23773484]
[119]
Nagy, A.; Harrison, A.; Sabbani, S.; Munson, R.S., Jr; Dutta, P.K.; Waldman, W.J. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int. J. Nanomed., 2011, 6, 1833-1852.
[PMID: 21931480]
[120]
Chen, F.; Shi, Z.; Neoh, K.G.; Kang, E.T. Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol. Bioeng., 2009, 104(1), 30-39.
[http://dx.doi.org/10.1002/bit.22363] [PMID: 19408318]
[121]
McShan, D.; Zhang, Y.; Deng, H.; Ray, P.C.; Yu, H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev., 2015, 33(3), 369-384.
[http://dx.doi.org/10.1080/10590501.2015.1055165] [PMID: 26072671]
[122]
Patra, J.K.; Baek, K.H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front. Microbiol., 2017, 8, 167.
[http://dx.doi.org/10.3389/fmicb.2017.00167] [PMID: 28261161]
[123]
Barapatre, A.; Aadil, K.R.; Jha, H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour. Bioprocess., 2016, 3(1), 8.
[http://dx.doi.org/10.1186/s40643-016-0083-y]
[124]
Panáček, A.; Smékalová, M.; Kilianová, M.; Prucek, R.; Bogdanová, K.; Večeřová, R.; Kolář, M.; Havrdová, M.; Płaza, G.A.; Chojniak, J.; Zbořil, R.; Kvítek, L. Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules, 2015, 21(1), E26.
[http://dx.doi.org/10.3390/molecules21010026] [PMID: 26729075]
[125]
Sharifi-Rad, J.; Hoseini Alfatemi, S.; Sharifi Rad, M.; Iriti, M. Antimicrobial synergic effect of Allicin and silver nanoparticles on skin infection caused by methicillin resistant Staphylococcus aureus spp. Ann. Med. Health Sci. Res., 2014, 4(6), 863-868.
[http://dx.doi.org/10.4103/2141-9248.144883] [PMID: 25506477]
[126]
Zhang, Y.; Yang, D.; Kong, Y.; Wang, X.; Pandoli, O.; Gao, G. Synergetic antibacterial effects of silver nanoparticles@ aloe vera prepared via a green method. Nano Biomed. Eng., 2010, 2(4), 252-257.
[http://dx.doi.org/10.5101/nbe.v2i4.p252-257]
[127]
Vazquez-Muñoz, R.; Meza-Villezcas, A.; Fournier, P.G.J.; Soria- Castro, E.; Juarez-Moreno, K.; Gallego-Hernández, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Huerta-Saquero, A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One, 2019, 14(11), e0224904.
[http://dx.doi.org/10.1371/journal.pone.0224904] [PMID: 31703098]
[128]
Moteriya, P.; Padalia, H.; Chanda, S. Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract. J. Genet. Eng. Biotechnol., 2017, 15(2), 505-513.
[http://dx.doi.org/10.1016/j.jgeb.2017.06.010] [PMID: 30647693]
[129]
Deng, H.; McShan, D.; Zhang, Y.; Sinha, S.S.; Arslan, Z.; Ray, P.C.; Yu, H. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ. Sci. Technol., 2016, 50(16), 8840-8848.
[http://dx.doi.org/10.1021/acs.est.6b00998] [PMID: 27390928]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy