Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Letter Article

The Rhodamine B-encrypted Vipericidin Peptide, RhoB-Ctn[1-9], Displays In vitro Antimicrobial Activity Against Opportunistic Bacteria and Yeasts

Author(s): Hilania Valeria Doudou Lima, Thales Márcio Cabral dos Santos, Mirelly Mirna Alves de Sousa Silva, João Victor da Silva Albuquerque, Luciana Magalhães Melo, Vicente José de Figueirêdo Freitas* and Gandhi Rádis-Baptista*

Volume 23, Issue 2, 2022

Published on: 22 March, 2021

Page: [172 - 179] Pages: 8

DOI: 10.2174/1389201022666210322123903

Price: $65

Abstract

Background: Crotalicidin (Ctn), a snake venom cathelicidin-related antimicrobial peptide, is a 34-residue-long linear lysine-rich vipericidin obtained from the South American rattlesnake, Crotalus durissus terrificus. Ctn contains tandem repeats of nine amino acid residues (1KRFKKFFKK9 and 16KRLKKIFKK24; consensus: 1KRhKKhFKK9, h = hydrophobic amino acid) as an integral part of its structure.

Objectives: The aim of this study was to evaluate the antimicrobial activity of the encrypted vipericidin nonapeptide KRFKKFFKK, designated as Ctn[1-9], and its structural analogue, rhodamine- B‒conjugated Ctn[1-9], designated as RhoB-Ctn[1-9].

Methods: The susceptibility of representative pathogenic bacteria and yeasts to antimicrobial agents was determined using the broth microdilution minimum inhibitory concentration (MIC) method. Cytotoxicity was estimated using a hemolytic assay. The accumulation of RhoB-Ctn[1-9] in microbial cells was observed by fluorescence microscopy. The antimicrobial synergism of RhoB-Ctn[1-9] with antimicrobials was evaluated using a checkerboard analysis.

Results: RhoB-conjugated Ctn[1-9] displayed selective antimicrobial activity against infectious gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and pathogenic species of Candida with low hemolytic effects on human erythrocytes which were not observed with unconjugated Ctn[1-9]. RhoB-Ctn[1-9] could permeate cell membranes and accumulate intracellularly in microbial cells. RhoB-Ctn[1-9] exhibits synergistic effects when used with antibiotics or antifungal agents and reduced the MICs of the peptide and antimicrobials.

Conclusion: These findings indicate the potential of crotalicidin-related short peptides as structural motifs for the diversification of biological functionalities. Further, they set the stage to investigate the molecular mechanisms by which chemically modified vipericidin repeats modulate cell fate.

Keywords: Crotalicidin, crotalicidin-derived peptide, encrypted peptide, vipericidin, dye-conjugated peptide, anti-infective peptide.

Graphical Abstract

[1]
Falcao, C.B.; de La Torre, B.G.; Pérez-Peinado, C.; Barron, A.E.; Andreu, D.; Rádis-Baptista, G. Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids, 2014, 46(11), 2561-2571.
[http://dx.doi.org/10.1007/s00726-014-1801-4] [PMID: 25100358]
[2]
Falcao, C.B.; Radis-Baptista, G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides, 2020, 126170234
[http://dx.doi.org/10.1016/j.peptides.2019.170234] [PMID: 31857106]
[3]
Pérez-Peinado, C.; Defaus, S.; Andreu, D. Hitchhiking with nature: snake venom peptides to fight cancer and superbugs. Toxins (Basel), 2020, 12(4), 12.
[http://dx.doi.org/10.3390/toxins12040255] [PMID: 32326531]
[4]
Falcao, C.B.; Pérez-Peinado, C.; de la Torre, B.G.; Mayol, X.; Zamora-Carreras, H.; Jiménez, M.Á.; Rádis-Baptista, G.; Andreu, D. Structural dissection of crotalicidin, a rattlesnake venom cathelicidin, retrieves a fragment with antimicrobial and antitumor activity. J. Med. Chem., 2015, 58(21), 8553-8563.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01142] [PMID: 26465972]
[5]
Huang, Y.; Huang, J.; Chen, Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell, 2010, 1(2), 143-152.
[http://dx.doi.org/10.1007/s13238-010-0004-3] [PMID: 21203984]
[6]
Schmidt, N.; Mishra, A.; Lai, G.H.; Wong, G.C.L. Arginine-rich cell-penetrating peptides. FEBS Lett., 2010, 584(9), 1806-1813.
[http://dx.doi.org/10.1016/j.febslet.2009.11.046] [PMID: 19925791]
[7]
Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem., 2001, 276(8), 5836-5840.
[http://dx.doi.org/10.1074/jbc.M007540200] [PMID: 11084031]
[8]
Cultrara, C.N.; Shah, S.; Antuono, G.; Heller, C.J.; Ramos, J.A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Size matters: arginine-derived peptides targeting the PSMA receptor can efficiently complex but not transfect siRNA. Mol. Ther. Nucleic Acids, 2019, 18, 863-870.
[http://dx.doi.org/10.1016/j.omtn.2019.10.013] [PMID: 31739211]
[9]
Wang, L.; Chan, J.Y.; Rêgo, J.V.; Chong, C.M.; Ai, N.; Falcão, C.B.; Rádis-Baptista, G.; Lee, S.M. Rhodamine B-conjugated encrypted vipericidin nonapeptide is a potent toxin to zebrafish and associated with in vitro cytotoxicity. Biochim. Biophys. Acta, 2015, 1850(6), 1253-1260.
[http://dx.doi.org/10.1016/j.bbagen.2015.02.013] [PMID: 25731980]
[10]
Di, Y.P.; Lin, Q.; Chen, C.; Montelaro, R.C.; Doi, Y.; Deslouches, B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci. Adv., 2020, 6(18)eaay6817
[http://dx.doi.org/10.1126/sciadv.aay6817] [PMID: 32426473]
[11]
Levy, D.E.; Trammel, J.; Wasiewski, W.W. Ancrod Stroke Program (ASP) Study Team. Ancrod for acute ischemic stroke: a new dosing regimen derived from analysis of prior ancrod stroke studies. J. Stroke Cerebrovasc. Dis., 2009, 18(1), 23-27.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2008.07.009] [PMID: 19110140]
[12]
Kerkis, I.; Hayashi, M.A.; Prieto da Silva, A.R.; Pereira, A.; De Sá Júnior, P.L.; Zaharenko, A.J.; Rádis-Baptista, G.; Kerkis, A.; Yamane, T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BioMed Res. Int., 2014, 2014675985
[http://dx.doi.org/10.1155/2014/675985] [PMID: 24551848]
[13]
Ojeda, P.G.; Wang, C.K.; Craik, D.J. Chlorotoxin: Structure, activity, and potential uses in cancer therapy. Biopolymers, 2016, 106(1), 25-36.
[http://dx.doi.org/10.1002/bip.22748] [PMID: 26418522]
[14]
CLSI Methods for Diluition Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically.11th ed. CLSI standard M07; Clinical and Laboratory Standards Institute.: Wayne, PA, USA,; , 2018.
[15]
CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard – Third edition.CLSI document M27-A3; Clinical and Laboratory Standards Institute.: Wayne, PA, USA,; , 2008.
[16]
Taylor, P.C.; Schoenknecht, F.D.; Sherris, J.C.; Linner, E.C. Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: influence and significance of technical factors. Antimicrob. Agents Chemother., 1983, 23(1), 142-150.
[http://dx.doi.org/10.1128/AAC.23.1.142] [PMID: 6830204]
[17]
Shanholtzer, C.J.; Peterson, L.R.; Mohn, M.L.; Moody, J.A.; Gerding, D.N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob. Agents Chemother., 1984, 26(2), 214-219.
[http://dx.doi.org/10.1128/AAC.26.2.214] [PMID: 6486764]
[18]
Lorian, V. Evaluation of new antimicrobials in vitro and in experimental animal infections. Antibiotics in laboratory medicine; Lippincott Williams & Wilkins: Philadelphia, 2005.
[19]
EUCAST Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect., 2003, 9, ix-xv.
[http://dx.doi.org/10.1046/j.1469-0691.2003.00790.x]
[20]
Shin, S.; Lim, S. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J. Appl. Microbiol., 2004, 97(6), 1289-1296.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02417.x] [PMID: 15546420]
[21]
van Hoek, M.L. Antimicrobial peptides in reptiles. Pharmaceuticals (Basel), 2014, 7(6), 723-753.
[http://dx.doi.org/10.3390/ph7060723] [PMID: 24918867]
[22]
Radis-Baptista, G. Vipericidins, Snake venom cathelicidin-related peptides, in the milieu of reptilian antimicrobial polypeptides., 2015, pp. 1-25.,
[23]
Vila-Perelló, M.; Sánchez-Vallet, A.; García-Olmedo, F.; Molina, A.; Andreu, D. Structural dissection of a highly knotted peptide reveals minimal motif with antimicrobial activity. J. Biol. Chem., 2005, 280(2), 1661-1668.
[http://dx.doi.org/10.1074/jbc.M410577200] [PMID: 15494403]
[24]
Lee, W.; Lee, D.G. Fungicidal mechanisms of the antimicrobial peptide Bac8c. Biochimica et Biophysica Acta (BBA) -. Biomembranes, 2015, 1848, 673-679.
[http://dx.doi.org/10.1016/j.bbamem.2014.11.024]
[25]
Faust, J.E.; Yang, P-Y.; Huang, H.W. Action of antimicrobial peptides on bacterial and lipid membranes: a direct comparison. Biophys. J., 2017, 112(8), 1663-1672.
[http://dx.doi.org/10.1016/j.bpj.2017.03.003] [PMID: 28445757]
[26]
Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules, 2020, 25(12), 2850.
[http://dx.doi.org/10.3390/molecules25122850] [PMID: 32575664]
[27]
Pacios, O.; Blasco, L.; Bleriot, I.; Fernandez-Garcia, L.; González Bardanca, M.; Ambroa, A.; López, M.; Bou, G.; Tomás, M. Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics (Basel), 2020, 9(2), 9.
[http://dx.doi.org/10.3390/antibiotics9020065] [PMID: 32041137]
[28]
Dodou Lima, H.V.; de Paula Cavalcante, C.S.; Rádis-Baptista, G. Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant Dinoponera quadriceps and synergistic effects with antimycotic drugs. Antibiotics (Basel), 2020, 9(6), 9.
[http://dx.doi.org/10.3390/antibiotics9060354] [PMID: 32585881]
[29]
Dodou Lima, H.V.; Sidrim de Paula Cavalcante, C.; Rádis-Baptista, G. Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant Dinoponera quadriceps venom, against carbapenem-resistant bacteria. Toxicon, 2020, 187, 19-28.
[http://dx.doi.org/10.1016/j.toxicon.2020.08.015] [PMID: 32861765]
[30]
Bucki, R.; Pastore, J.J.; Randhawa, P.; Vegners, R.; Weiner, D.J.; Janmey, P.A. Antibacterial activities of rhodamine B-conjugated gelsolin-derived peptides compared to those of the antimicrobial peptides cathelicidin LL37, magainin II, and melittin. Antimicrob. Agents Chemother., 2004, 48(5), 1526-1533.
[http://dx.doi.org/10.1128/AAC.48.5.1526-1533.2004] [PMID: 15105101]
[31]
Wang, W.; Zheng, Y.; Jia, J.; Li, C.; Duan, Q.; Li, R.; Wang, X.; Shao, Y.; Chen, C.; Yan, H. Antimicrobial peptide LL-37 promotes the viability and invasion of skin squamous cell carcinoma by upregulating YB-1. Exp. Ther. Med., 2017, 14(1), 499-506.
[http://dx.doi.org/10.3892/etm.2017.4546] [PMID: 28672959]
[32]
Birch, D.; Christensen, M.V.; Staerk, D.; Franzyk, H.; Nielsen, H.M. Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. Biochim. Biophys. Acta Biomembr., 2017, 1859(12), 2483-2494.
[http://dx.doi.org/10.1016/j.bbamem.2017.09.015] [PMID: 28919344]
[33]
Hedegaard, S.F.; Derbas, M.S.; Lind, T.K.; Kasimova, M.R.; Christensen, M.V.; Michaelsen, M.H.; Campbell, R.A.; Jorgensen, L.; Franzyk, H.; Cárdenas, M.; Nielsen, H.M. Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Sci. Rep., 2018, 8(1), 6327.
[http://dx.doi.org/10.1038/s41598-018-24154-z] [PMID: 29679078]
[34]
Oh, Y.J.; Gamble, T.C.; Leonhardt, D.; Chung, C.H.; Brueck, S.R.; Ivory, C.F.; Lopez, G.P.; Petsev, D.N.; Han, S.M. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide. Lab Chip, 2008, 8(2), 251-258.
[http://dx.doi.org/10.1039/B711682A] [PMID: 18231663]
[35]
Birtalan, E.; Rudat, B.; Kölmel, D.K.; Fritz, D.; Vollrath, S.B.L.; Schepers, U.; Bräse, S. Investigating rhodamine B-labeled peptoids: scopes and limitations of its applications. Biopolymers, 2011, 96(5), 694-701.
[http://dx.doi.org/10.1002/bip.21617] [PMID: 22180914]
[36]
Bessalle, R.; Haas, H.; Goria, A.; Shalit, I.; Fridkin, M. Augmentation of the antibacterial activity of magainin by positive-charge chain extension. Antimicrob. Agents Chemother., 1992, 36(2), 313-317.
[http://dx.doi.org/10.1128/AAC.36.2.313] [PMID: 1605597]
[37]
Amer, L.S.; Bishop, B.M.; van Hoek, M.L. Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem. Biophys. Res. Commun., 2010, 396(2), 246-251.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.073] [PMID: 20399752]
[38]
de Latour, F.A.; Amer, L.S.; Papanstasiou, E.A.; Bishop, B.M.; van Hoek, M.L. Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem. Biophys. Res. Commun., 2010, 396(4), 825-830.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.158] [PMID: 20438706]
[39]
Ruiz, J.; Calderon, J.; Rondón-Villarreal, P.; Torres, R. Analysis of structure and hemolytic activity relationships of antimicrobial peptides (AMPs).In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, 2014, pp. 253-258.
[40]
Oddo, A.; Hansen, P.R. Hemolytic activity of antimicrobial peptides. Methods Mol. Biol., 2017, 1548, 427-435.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_31]
[41]
Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep., 2020, 10(1), 13206.
[http://dx.doi.org/10.1038/s41598-020-69995-9] [PMID: 32764602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy