Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Water Mapping and Scoring Approaches to Predict the Role of Hydration Sites in the Binding Affinity of PAK1 Inhibitors

Author(s): Jayashree Biswal, Prajisha Jayaprakash, Suresh Kumar Rayala, Ganesh Venkatraman, Raghu Rangasamy, Saritha Poopandi and Jeyaraman Jeyakanthan*

Volume 25, Issue 4, 2022

Published on: 08 March, 2021

Page: [660 - 676] Pages: 17

DOI: 10.2174/1386207324666210308110646

Price: $65

Abstract

Aim: This study aims to develop and establish a computational model that can identify potent molecules for p21-activating kinase 1 (PAK1)

Background: PAK1 is a well-established drug target that has been explored for various therapeutic interventions. Control of this protein requires an indispensable inhibitor to curb the structural changes and subsequent activation of signalling effectors responsible for the progression of diseases, such as cancer, inflammatory, viral, and neurological disorders.

Objective: The study aims to establish a computational model that could identify active molecules which will further provide a platform for developing potential PAK1 inhibitors.

Methods: A congeneric series of 27 compounds were considered for this study, with Ki (nm) covering a minimum of 3 log range. The compounds were developed based on a previously reported Group-I PAK inhibitor, namely G-5555. The 27 compounds were subjected to the SP and XP mode of docking to understand the binding mode, its conformation and interaction patterns. To understand the relevance of biological activity from computational approaches, the compounds were scored against generated water maps to obtain WM/MM ΔG binding energy. Moreover, molecular dynamics analysis was performed for the highly active compound to understand the conformational variability and stability of the complex. We then evaluated the predictable binding pose obtained from the docking studies.

Results: From the SP and XP modes of docking, the common interaction pattern with the amino acid residues Arg299 (cation-π), Glu345 (Aromatic hydrogen bond), hinge region Leu347, salt bridges Asp393 and Asp407 was observed, among the congeneric compounds. The interaction pattern was compared with the co-crystal inhibitor FRAX597 of the PAK1 crystal structure (PDB id: 4EQC). The correlation with different docking parameters in the SP and XP modes was insignificant and thereby revealed that the SP and XP’s scoring functions could not predict the active compounds. This was due to the limitations in the docking methodology that neglected the receptor flexibility and desolvation parameters. Hence, to recognise the desolvation and explicit solvent effects, as well as to study the Structure-Activity Relationships (SARs) extensively, WaterMap (WM) calculations were performed on the congeneric compounds. Based on displaceable unfavourable hydration sites (HS) and their associated thermodynamic properties, the WM calculations facilitated in understanding the significance of correlation in the folds of activity of highly active (19 and 17), moderately active (16 and 21) and less active (26 and 25) compounds. Furthermore, the scoring function from WaterMap, namely WM/MM, led to a significant R2 value of 0.72 due to a coupled conjunction with MM treatment and displaced unfavourable waters at the binding site. To check the “optimal binding conformation”, molecular dynamics simulation was carried out with the highly active compound 19 to explain the binding mode, stability, interactions, solvent-accessible area, etc., which could support the predicted conformation with bioactive conformation.

Conclusion: This study determined the best scoring function, established SARs and predicted active molecules through a computational model. This will contribute to the development of the most potent PAK1 inhibitors.

Keywords: PAK1, SP and XP docking, WaterMap, WM/MM scoring, SARs, MDS.

Graphical Abstract

[1]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[2]
Manser, E.; Leung, T.; Salihuddin, H.; Zhao, Z.S.; Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 1994, 367(6458), 40-46.
[http://dx.doi.org/10.1038/367040a0] [PMID: 8107774]
[3]
Radu, M.; Semenova, G.; Kosoff, R.; Chernoff, J. PAK signalling during the development and progression of cancer. Nat. Rev. Cancer, 2014, 14(1), 13-25.
[http://dx.doi.org/10.1038/nrc3645] [PMID: 24505617]
[4]
Martin, G.A.; Bollag, G.; McCormick, F.; Abo, A. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J., 1995, 14(17), 4385.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb00113.x] [PMID: 7556080]
[5]
Knaus, U.G.; Morris, S.; Dong, H.J.; Chernoff, J.; Bokoch, G.M. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors. Science, 1995, 269(5221), 221-223.
[http://dx.doi.org/10.1126/science.7618083] [PMID: 7618083]
[6]
Bagrodia, S.; Taylor, S.J.; Creasy, C.L.; Chernoff, J.; Cerione, R.A. Identification of a mouse p21Cdc42/Rac activated kinase. J. Biol. Chem., 1995, 270(39), 22731-22737.
[http://dx.doi.org/10.1074/jbc.270.39.22731] [PMID: 7559398]
[7]
Eswaran, J.; Li, D.Q.; Shah, A.; Kumar, R. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer--opportunities, challenges, and limitations. Clin. Cancer Res., 2012, 18(14), 3743-3749.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1952] [PMID: 22595609]
[8]
He, H.; Levitzki, A.; Zhu, H.J.; Walker, F.; Burgess, A.; Maruta, H. Platelet-derived growth factor requires epidermal growth factor receptor to activate p21-activated kinase family kinases. J. Biol. Chem., 2001, 276(29), 26741-26744.
[http://dx.doi.org/10.1074/jbc.C100229200] [PMID: 11356824]
[9]
Royal, I.; Lamarche-Vane, N.; Lamorte, L.; Kaibuchi, K.; Park, M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol. Biol. Cell, 2000, 11(5), 1709-1725.
[http://dx.doi.org/10.1091/mbc.11.5.1709] [PMID: 10793146]
[10]
Somanath, P.R.; Vijai, J.; Kichina, J.V.; Byzova, T.; Kandel, E.S. The role of PAK-1 in activation of MAP kinase cascade and oncogenic transformation by Akt. Oncogene, 2009, 28(25), 2365-2369.
[http://dx.doi.org/10.1038/onc.2009.114] [PMID: 19421139]
[11]
Marlin, J.W.; Eaton, A.; Montano, G.T.; Chang, Y.W.; Jakobi, R. Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death. Neoplasia, 2009, 11(3), 286-297.
[http://dx.doi.org/10.1593/neo.81446] [PMID: 19242610]
[12]
Maroto, B.; Ye, M.B.; von Lohneysen, K.; Schnelzer, A.; Knaus, U.G. P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene, 2008, 27(36), 4900-4908.
[http://dx.doi.org/10.1038/onc.2008.131] [PMID: 18427546]
[13]
Bokoch, G.M. Biology of the p21-activated kinases. Annu. Rev. Biochem., 2003, 72, 743-781.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161742] [PMID: 12676796]
[14]
Beeser, A.; Jaffer, Z.M.; Hofmann, C.; Chernoff, J. Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J. Biol. Chem., 2005, 280(44), 36609-36615.
[http://dx.doi.org/10.1074/jbc.M502306200] [PMID: 16129686]
[15]
Maruta, H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother. Res., 2014, 28(5), 656-672.
[http://dx.doi.org/10.1002/ptr.5054] [PMID: 23943274]
[16]
Jagadeeshan, S.; Subramanian, A.; Tentu, S.; Beesetti, S.; Singhal, M.; Raghavan, S.; Surabhi, R.P.; Mavuluri, J.; Bhoopalan, H.; Biswal, J.; Pitani, R.S.; Chidambaram, S.; Sundaram, S.; Malathi, R.; Jeyaraman, J.; Nair, A.S.; Venkatraman, G.; Rayala, S.K. P21-activated kinase 1 (Pak1) signaling influences therapeutic outcome in pancreatic cancer. Ann. Oncol., 2016, 27(8), 1546-1556.
[http://dx.doi.org/10.1093/annonc/mdw184] [PMID: 27117533]
[17]
Adam, L.; Vadlamudi, R.; Kondapaka, S.B.; Chernoff, J.; Mendelsohn, J.; Kumar, R. Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J. Biol. Chem., 1998, 273(43), 28238-28246.
[http://dx.doi.org/10.1074/jbc.273.43.28238] [PMID: 9774445]
[18]
Dummler, B.; Ohshiro, K.; Kumar, R.; Field, J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev., 2009, 28(1-2), 51-63.
[http://dx.doi.org/10.1007/s10555-008-9168-1] [PMID: 19165420]
[19]
Van den Broeke, C.; Radu, M.; Chernoff, J.; Favoreel, H.W. An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol., 2010, 20(3), 160-169.
[http://dx.doi.org/10.1016/j.tcb.2009.12.005] [PMID: 20071173]
[20]
Ma, Q.L.; Yang, F.; Frautschy, S.A.; Cole, G.M. PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. Cell. Logist., 2012, 2(2), 117-125.
[http://dx.doi.org/10.4161/cl.21602] [PMID: 23162743]
[21]
Jaffer, Z.M.; Chernoff, J. p21-activated kinases: three more join the Pak. Int. J. Biochem. Cell Biol., 2002, 34(7), 713-717.
[http://dx.doi.org/10.1016/S1357-2725(01)00158-3] [PMID: 11950587]
[22]
Kumar, R.; Gururaj, A.E.; Barnes, C.J. p21-activated kinases in cancer. Nat. Rev. Cancer, 2006, 6(6), 459-471.
[http://dx.doi.org/10.1038/nrc1892] [PMID: 16723992]
[23]
Zhao, Z.S.; Manser, E.; Chen, X.Q.; Chong, C.; Leung, T.; Lim, L. A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol., 1998, 18(4), 2153-2163.
[http://dx.doi.org/10.1128/MCB.18.4.2153] [PMID: 9528787]
[24]
Lei, M.; Lu, W.; Meng, W.; Parrini, M.C.; Eck, M.J.; Mayer, B.J.; Harrison, S.C. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell, 2000, 102(3), 387-397.
[http://dx.doi.org/10.1016/S0092-8674(00)00043-X] [PMID: 10975528]
[25]
Gatti, A.; Huang, Z.; Tuazon, P.T.; Traugh, J.A. Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J. Biol. Chem., 1999, 274(12), 8022-8028.
[http://dx.doi.org/10.1074/jbc.274.12.8022] [PMID: 10075701]
[26]
King, C.C.; Gardiner, E.M.; Zenke, F.T.; Bohl, B.P.; Newton, A.C.; Hemmings, B.A.; Bokoch, G.M. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem., 2000, 275(52), 41201-41209.
[http://dx.doi.org/10.1074/jbc.M006553200] [PMID: 10995762]
[27]
Chong, C.; Tan, L.; Lim, L.; Manser, E. The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem., 2001, 276(20), 17347-17353.
[http://dx.doi.org/10.1074/jbc.M009316200] [PMID: 11278486]
[28]
Abo, A.; Qu, J.; Cammarano, M.S.; Dan, C.; Fritsch, A.; Baud, V.; Belisle, B.; Minden, A. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J., 1998, 17(22), 6527-6540.
[http://dx.doi.org/10.1093/emboj/17.22.6527] [PMID: 9822598]
[29]
Dan, C.; Nath, N.; Liberto, M.; Minden, A. PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol. Cell. Biol., 2002, 22(2), 567-577.
[http://dx.doi.org/10.1128/MCB.22.2.567-577.2002] [PMID: 11756552]
[30]
Balasenthil, S.; Sahin, A.A.; Barnes, C.J.; Wang, R.A.; Pestell, R.G.; Vadlamudi, R.K.; Kumar, R. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J. Biol. Chem., 2004, 279(2), 1422-1428.
[http://dx.doi.org/10.1074/jbc.M309937200] [PMID: 14530270]
[31]
Holm, C.; Rayala, S.; Jirström, K.; Stål, O.; Kumar, R.; Landberg, G. Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J. Natl. Cancer Inst., 2006, 98(10), 671-680.
[http://dx.doi.org/10.1093/jnci/djj185] [PMID: 16705121]
[32]
Ching, Y.P.; Leong, V.Y.; Lee, M.F.; Xu, H.T.; Jin, D.Y.; Ng, I.O. P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res., 2007, 67(8), 3601-3608.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3994] [PMID: 17440071]
[33]
O’Sullivan, G.C.; Tangney, M.; Casey, G.; Ambrose, M.; Houston, A.; Barry, O.P. Modulation of p21-activated kinase 1 alters the behavior of renal cell carcinoma. Int. J. Cancer, 2007, 121(9), 1930-1940.
[http://dx.doi.org/10.1002/ijc.22893] [PMID: 17621631]
[34]
Ong, C.C.; Jubb, A.M.; Haverty, P.M.; Zhou, W.; Tran, V.; Truong, T.; Turley, H.; O’Brien, T.; Vucic, D.; Harris, A.L.; Belvin, M.; Friedman, L.S.; Blackwood, E.M.; Koeppen, H.; Hoeflich, K.P. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2011, 108(17), 7177-7182.
[http://dx.doi.org/10.1073/pnas.1103350108] [PMID: 21482786]
[35]
Brown, L.A.; Kalloger, S.E.; Miller, M.A.; Shih, IeM.; McKinney, S.E.; Santos, J.L.; Swenerton, K.; Spellman, P.T.; Gray, J.; Gilks, C.B.; Huntsman, D.G. Amplification of 11q13 in ovarian carcinoma. Genes Chromosomes Cancer, 2008, 47(6), 481-489.
[http://dx.doi.org/10.1002/gcc.20549] [PMID: 18314909]
[36]
Schraml, P.; Schwerdtfeger, G.; Burkhalter, F.; Raggi, A.; Schmidt, D.; Ruffalo, T.; King, W.; Wilber, K.; Mihatsch, M.J.; Moch, H. Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. Am. J. Pathol., 2003, 163(3), 985-992.
[http://dx.doi.org/10.1016/S0002-9440(10)63458-X] [PMID: 12937139]
[37]
Davidson, B.; Shih, IeM.; Wang, T.L. Different clinical roles for p21-activated kinase-1 in primary and recurrent ovarian carcinoma. Hum. Pathol., 2008, 39(11), 1630-1636.
[http://dx.doi.org/10.1016/j.humpath.2008.03.009] [PMID: 18656238]
[38]
Siu, M.K.; Wong, E.S.; Chan, H.Y.; Kong, D.S.; Woo, N.W.; Tam, K.F.; Ngan, H.Y.; Chan, Q.K.; Chan, D.C.; Chan, K.Y.; Cheung, A.N. Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on prognosis and cell invasion. Int. J. Cancer, 2010, 127(1), 21-31.
[http://dx.doi.org/10.1002/ijc.25005] [PMID: 19876919]
[39]
Siu, M.K.; Chan, H.Y.; Kong, D.S.H.; Wong, E.S.Y.; Wong, O.G.W.; Ngan, H.Y.S.; Tam, K.F.; Zhang, H.; Li, Z.; Chan, Q.K.; Tsao, S.W.; Strömblad, S.; Cheung, A.N. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18622-18627.
[http://dx.doi.org/10.1073/pnas.0907481107] [PMID: 20926745]
[40]
Carter, J.H.; Douglass, L.E.; Deddens, J.A.; Colligan, B.M.; Bhatt, T.R.; Pemberton, J.O.; Konicek, S.; Hom, J.; Marshall, M.; Graff, J.R. Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin. Cancer Res., 2004, 10(10), 3448-3456.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0210] [PMID: 15161701]
[41]
Lu, W.; Qu, J.J.; Li, B.L.; Lu, C.; Yan, Q.; Wu, X.M.; Chen, X.Y.; Wan, X.P. Overexpression of p21-activated kinase 1 promotes endometrial cancer progression. Oncol. Rep., 2013, 29(4), 1547-1555.
[http://dx.doi.org/10.3892/or.2013.2237] [PMID: 23338047]
[42]
Wu, Y.J.; Tang, Y.; Li, Z.F.; Li, Z.; Zhao, Y.; Wu, Z.J.; Su, Q. Expression and significance of Rac1, Pak1 and Rock1 in gastric carcinoma. Asia Pac. J. Clin. Oncol., 2014, 10(2), e33-e39.
[http://dx.doi.org/10.1111/ajco.12052] [PMID: 23298303]
[43]
Aoki, H.; Yokoyama, T.; Fujiwara, K.; Tari, A.M.; Sawaya, R.; Suki, D.; Hess, K.R.; Aldape, K.D.; Kondo, S.; Kumar, R.; Kondo, Y. Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clin. Cancer Res., 2007, 13(22 Pt 1), 6603-6609.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0145] [PMID: 18006760]
[44]
Murray, B.W.; Guo, C.; Piraino, J.; Westwick, J.K.; Zhang, C.; Lamerdin, J.; Dagostino, E.; Knighton, D.; Loi, C.M.; Zager, M.; Kraynov, E.; Popoff, I.; Christensen, J.G.; Martinez, R.; Kephart, S.E.; Marakovits, J.; Karlicek, S.; Bergqvist, S.; Smeal, T. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc. Natl. Acad. Sci. USA, 2010, 107(20), 9446-9451.
[http://dx.doi.org/10.1073/pnas.0911863107] [PMID: 20439741]
[45]
Lu, H.; Lei, M.; Schulze-Gahmen, U. PDB ID 2HY8: crystal structure of the complex between human PAK1-kinase and 3-hydroxystaurosporine.
[http://dx.doi.org/10.2210/pdb2hy8/pdb]
[46]
Karaman, M.W.; Herrgard, S.; Treiber, D.K.; Gallant, P.; Atteridge, C.E.; Campbell, B.T.; Chan, K.W.; Ciceri, P.; Davis, M.I.; Edeen, P.T.; Faraoni, R.; Floyd, M.; Hunt, J.P.; Lockhart, D.J.; Milanov, Z.V.; Morrison, M.J.; Pallares, G.; Patel, H.K.; Pritchard, S.; Wodicka, L.M.; Zarrinkar, P.P. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol., 2008, 26(1), 127-132.
[http://dx.doi.org/10.1038/nbt1358] [PMID: 18183025]
[47]
Nheu, T.V.; He, H.; Hirokawa, Y.; Tamaki, K.; Florin, L.; Schmitz, M.L.; Suzuki-Takahashi, I.; Jorissen, R.N.; Burgess, A.W.; Nishimura, S.; Wood, J.; Maruta, H. The K252a derivatives, inhibitors for the PAK/MLK kinase family selectively block the growth of RAS transformants. Cancer J., 2002, 8(4), 328-336.
[http://dx.doi.org/10.1097/00130404-200207000-00009] [PMID: 12184411]
[48]
Porchia, L.M. 2-Amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phe nyl} Acet-amide (OSU-03012), a Celecoxib Derivative, Directly Targets p21-Activated Kinase. Mol. Pharmacol., 2007, 72(5), 1124-1131.
[http://dx.doi.org/10.1124/mol.107.037556] [PMID: 17673571]
[49]
Dolan, B.M.; Duron, S.G.; Campbell, D.A.; Vollrath, B.; Shankaranarayana Rao, B.S.; Ko, H.Y.; Lin, G.G.; Govindarajan, A.; Choi, S.Y.; Tonegawa, S. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl. Acad. Sci. USA, 2013, 110(14), 5671-5676.
[http://dx.doi.org/10.1073/pnas.1219383110] [PMID: 23509247]
[50]
Chow, H.Y.; Jubb, A.M.; Koch, J.N.; Jaffer, Z.M.; Stepanova, D.; Campbell, D.A.; Duron, S.G.; O’Farrell, M.; Cai, K.Q.; Klein-Szanto, A.J.; Gutkind, J.S.; Hoeflich, K.P.; Chernoff, J. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res., 2012, 72(22), 5966-5975.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2246] [PMID: 22983922]
[51]
McCoull, W.; Hennessy, E.J.; Blades, K.; Box, M.R.; Chuaqui, C.; Dowling, J.E.; Davies, C.D.; Ferguson, A.D.; Goldberg, F.W.; Howe, N.J.; Kemmitt, P.D.; Lamont, G.M.; Madden, K.; McWhirter, C.; Varnes, J.G.; Ward, R.A.; Williams, J.D.; Yang, B. Identification and optimisation of 7-azaindole PAK1 inhibitors with improved potency and kinase selectivity. MedChemComm, 2014, 5(10), 1533-1539.
[http://dx.doi.org/10.1039/C4MD00280F]
[52]
Rudolph, J.; Murray, L.J.; Ndubaku, C.O.; O’Brien, T.; Blackwood, E.; Wang, W.; Aliagas, I.; Gazzard, L.; Crawford, J.J.; Drobnick, J.; Lee, W.; Zhao, X.; Hoeflich, K.P.; Favor, D.A.; Dong, P.; Zhang, H.; Heise, C.E.; Oh, A.; Ong, C.C.; La, H.; Chakravarty, P.; Chan, C.; Jakubiak, D.; Epler, J.; Ramaswamy, S.; Vega, R.; Cain, G.; Diaz, D.; Zhong, Y. Chemically diverse Group-I p21-activated kinase (PAK) inhibitors impart acute cardiovascular toxicity with a narrow therapeutic window. J. Med. Chem., 2016, 59(11), 5520-5541.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00638] [PMID: 27167326]
[53]
Licciulli, S.; Maksimoska, J.; Zhou, C.; Troutman, S.; Kota, S.; Liu, Q.; Duron, S.; Campbell, D.; Chernoff, J.; Field, J.; Marmorstein, R.; Kissil, J.L. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J. Biol. Chem., 2013, 288(40), 29105-29114.
[http://dx.doi.org/10.1074/jbc.M113.510933] [PMID: 23960073]
[54]
Ndubaku, C.O.; Crawford, J.J.; Drobnick, J.; Aliagas, I.; Campbell, D.; Dong, P.; Dornan, L.M.; Duron, S.; Epler, J.; Gazzard, L.; Heise, C.E.; Hoeflich, K.P.; Jakubiak, D.; La, H.; Lee, W.; Lin, B.; Lyssikatos, J.P.; Maksimoska, J.; Marmorstein, R.; Murray, L.J.; O’Brien, T.; Oh, A.; Ramaswamy, S.; Wang, W.; Zhao, X.; Zhong, Y.; Blackwood, E.; Rudolph, J. Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-pK a Polar Moiety. ACS Med. Chem. Lett., 2015, 6(12), 1241-1246.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00398] [PMID: 26713112]
[55]
Schrödinger Release 2019-2: Schrödinger Suite 2019-2 Protein Preparation WizardEpik, Schrödinger, LLC; New York, NY, 2019. Impact, Schrödinger, LLC; New York, NY, 2019; Prime, Schrödinger, LLC: New York, NY, 2019.
[56]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[57]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296.
[http://dx.doi.org/10.1021/acs.jctc.5b00864] [PMID: 26584231]
[58]
Schrödinger Release 2019-2LigPrep; Schrödinger, LLC: New York, NY, 2019.
[59]
Biswal, J.; Jayaprakash, P.; Suresh Kumar, R.; Venkatraman, G.; Poopandi, S.; Rangasamy, R.; Jeyaraman, J. Identification of Pak1 inhibitors using water thermodynamic analysis. J. Biomol. Struct. Dyn., 2020, 38(1), 13-31.
[http://dx.doi.org/10.1080/07391102.2019.1567393] [PMID: 30661460]
[60]
Schrödinger Release 2019-2Glide; Schrödinger, LLC: New York, NY, 2019.
[61]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[62]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[63]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[64]
Higgs, C.; Beuming, T.; Sherman, W. Hydration Site Thermodynamics Explain SARs for Triazolylpurines Analogues Binding to the A2A Receptor. ACS Med. Chem. Lett., 2010, 1(4), 160-164.
[http://dx.doi.org/10.1021/ml100008s] [PMID: 24900189]
[65]
Beuming, T.; Farid, R.; Sherman, W. High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci., 2009, 18(8), 1609-1619.
[http://dx.doi.org/10.1002/pro.177] [PMID: 19569188]
[66]
Robinson, D.D.; Sherman, W.; Farid, R. Understanding kinase selectivity through energetic analysis of binding site waters. ChemMedChem, 2010, 5(4), 618-627.
[http://dx.doi.org/10.1002/cmdc.200900501] [PMID: 20183853]
[67]
Pellicciari, R.; Camaioni, E.; Gilbert, A.M.; Macchiarulo, A.; Bikker, J.A.; Shah, F.; Bard, J.; Costantino, G.; Gioiello, A.; Robertson, G.M.; Sabbatini, P.; Venturoni, F.; Liscio, P.; Carotti, A.; Bellocchi, D.; Cozzi, A.; Wood, A.; Gonzales, C.; Zaleska, M.M.; Ellingboe, J.W.; Moroni, F. Discovery and Characterization of novel potent PARP-1 inhibitors endowed with neuroprotective properties: From TIQ-A to HYDAMTIQ. J. Med. Chem. Commun, 2011, 2, 559-565.
[http://dx.doi.org/10.1039/c1md00021g]
[68]
Beuming, T.; Che, Y.; Abel, R.; Kim, B.; Shanmugasundaram, V.; Sherman, W. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization. Proteins, 2012, 80(3), 871-883.
[http://dx.doi.org/10.1002/prot.23244] [PMID: 22223256]
[69]
Abel, R.; Salam, N.K.; Shelley, J.; Farid, R.; Friesner, R.A.; Sherman, W. Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. ChemMedChem, 2011, 6(6), 1049-1066.
[http://dx.doi.org/10.1002/cmdc.201000533] [PMID: 21506273]
[70]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[71]
Shah, F.; Gut, J.; Legac, J.; Shivakumar, D.; Sherman, W.; Rosenthal, P.J.; Avery, M.A. Computer-aided drug design of falcipain inhibitors: virtual screening, structure-activity relationships, hydration site thermodynamics, and reactivity analysis. J. Chem. Inf. Model., 2012, 52(3), 696-710.
[http://dx.doi.org/10.1021/ci2005516] [PMID: 22332946]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy