Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Uses and Applications of Docosahexaenoic Acid (DHA) in Pediatric Gastroenterology: Current Evidence and New Perspective

Author(s): David González Jiménez *, Carlos Bousoño García and Juan Jose Diaz Martín

Volume 17, Issue 4, 2021

Published on: 03 March, 2021

Page: [329 - 335] Pages: 7

DOI: 10.2174/1573396317666210303151947

Price: $65

Abstract

In this paper, we will review the dietary allowances of these fatty acids in the paediatric population, and also the indications in different pathologies within the field of pediatric gastroenterology. Finally, we will try to explain the reasons that may justify the difficulty in translating good results in experimental studies to the usual clinical practice. This “good results” may be too little to be detected or there may be other causes but misinterpreted as effects of DHA.

Keywords: DHA, Omega 3 fatty acids, Phenylketonuria, Cystic Fibrosis, Hypertriglyceridemia, Vegans.

[1]
Darios F, Davletov B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 2006; 440(7085): 813-7.
[http://dx.doi.org/10.1038/nature04598] [PMID: 16598260]
[2]
Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 2006; 83: 1.467S-76S.
[http://dx.doi.org/10.1093/ajcn/83.6.1467S]
[3]
Gil-Campos M, Dalmau Serra J. Importance of docosahexaenoic acid (DHA): Functions and recommendations for its ingestion in infants. An Pediatr (Barc) 2010; 73(3): 142.e1-8.
[http://dx.doi.org/10.1016/j.anpedi.2010.03.019] [PMID: 20570579]
[4]
Shulkin M, Pimpin L, Bellinger D, et al. n-3 Fatty acid supplementation in mothers, preterm infants, and term infants and childhood psychomotor and visual development: A systematic review and meta-analysis. J Nutr 2018; 148(3): 409-18.
[http://dx.doi.org/10.1093/jn/nxx031] [PMID: 29546296]
[5]
Din JN, Newby DE, Flapan AD. Omega 3 fatty acids and cardiovascular disease--fishing for a natural treatment. BMJ 2004; 328(7430): 30-5.
[http://dx.doi.org/10.1136/bmj.328.7430.30] [PMID: 14703544]
[6]
Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res 2010; 107(10): 1170-84.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223883] [PMID: 21071715]
[7]
Dariush M. Fish oil: Physiologic effects and administration. 2019. Available from:https://www.uptodate.com/contents/fish-oil-physiologic-effects-and-administration
[8]
Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 2011; 58(20): 2047-67.
[http://dx.doi.org/10.1016/j.jacc.2011.06.063] [PMID: 22051327]
[9]
Agostoni C. Role of long-chain polyunsaturated fatty acids in the first year of life. J Pediatr Gastroenterol Nutr 2008; 47(Suppl. 2): S41-4.
[http://dx.doi.org/10.1097/01.mpg.0000338811.52062.b2] [PMID: 18931599]
[10]
Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: A position paper by the european society for paediatric gastroenterology, hepatology, and nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr 2017; 64(1): 119-32.
[http://dx.doi.org/10.1097/MPG.0000000000001454] [PMID: 28027215]
[11]
Gómez Candela C, Bermejo López LM, Loria Kohen V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: Nutritional recommendations. Nutr Hosp 2011; 26(2): 323-9.
[PMID: 21666970]
[12]
Valenzuela A, Uauy R. GIL nutrition treatise. 2nd. Madrid: Panamerican editorial 2010; pp. 303-20.
[13]
Lien EL, Richard C, Hoffman DR. DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins Leukot Essent Fatty Acids 2018; 128: 26-40.
[http://dx.doi.org/10.1016/j.plefa.2017.09.005] [PMID: 29413359]
[14]
García Gabarra A, Dalmau Serra J. Ácido docosahexaenoico. ¿Un ácido graso omega-3 esencial? Acta Pediatr Esp 2016; 74: 101-6.
[15]
Drobnic F, Cordobilla B, Rueda F, Domingo JC. Caracterización de diferentes suplementos de ácidos omega-3 en su aplicación en las edades pediátricas. Acta Pediatr Esp 2013; 71: e353-7.
[16]
Laposata M. Fatty acid ethyl esters: Current facts and speculations. Prostaglandins Leukot Essent Fatty Acids 1999; 60(5-6): 313-5.
[http://dx.doi.org/10.1016/S0952-3278(99)80005-2] [PMID: 10471114]
[17]
Saghir M, Werner J, Laposata M. Rapid in vivo hydrolysis of fatty acid ethyl esters, toxic nonoxidative ethanol metabolites. Am J Physiol 1997; 273(1 Pt 1): G184-90.
[PMID: 9252525]
[18]
Walker RE, Jackson KH, Tintle NL, et al. Predicting the effects of supplemental EPA and DHA on the omega-3 index. Am J Clin Nutr 2019; 110(4): 1034-40.
[http://dx.doi.org/10.1093/ajcn/nqz161] [PMID: 31396625]
[19]
Dimitrow PP, Jawien M. Pleiotropic, cardioprotective effects of omega-3 polyunsaturated fatty acids. Mini Rev Med Chem 2009; 9: 1.030-9.
[http://dx.doi.org/10.2174/138955709788922638]
[20]
Wojenski CM, Silver MJ, Walker J. Eicosapentaenoic acid ethyl ester as an antithrombotic agent: Comparison to an extract of fish oil. Biochim Biophys Acta 1991; 1081(1): 33-8.
[http://dx.doi.org/10.1016/0005-2760(91)90246-E] [PMID: 1991153]
[21]
Lapillonne A, Bronsky J, Campoy C, et al. Feeding the late and moderately preterm infant: A position paper of the european society for paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr 2019; 69(2): 259-70.
[http://dx.doi.org/10.1097/MPG.0000000000002397] [PMID: 31095091]
[22]
Abrams SA. Long-chain polyunsaturated fatty acids (LCPUFA) for preterm and term infants. 2020. cited: 24 April 2020 Available from:https://www.uptodate.com/contents/long-chain-polyunsaturated-fatty-acids-lcpufa-for-preterm-and-term
[23]
Sarter B, Kelsey KS, Schwartz TA, Harris WS. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement. Clin Nutr 2015; 34(2): 212-8.
[http://dx.doi.org/10.1016/j.clnu.2014.03.003] [PMID: 24679552]
[24]
Sanders TA. DHA status of vegetarians. Prostaglandins Leukot Essent Fatty Acids 2009; 81(2-3): 137-41.
[http://dx.doi.org/10.1016/j.plefa.2009.05.013] [PMID: 19500961]
[25]
Baroni L, Goggi S, Battaglino R, et al. Vegan nutrition for mothers and children: Practical tools for healthcare providers. Nutrients 2018; 11(1): 11.
[http://dx.doi.org/10.3390/nu11010005] [PMID: 30577451]
[26]
Amit M. Vegetarian diets in children and adolescents. Paediatr Child Health 2010; 15(5): 303-14.
[PMID: 21532796]
[27]
Redecilla Ferreiro S, Morais Lopez A, Moreno Villares JM. Position paper on vegetarian diets in infants and children. Committee on nutrition and breastfeeding of the spanish paediatric association. An Pediatr (Barc) 2019; S1645(4033): 30378-9.
[28]
Valaiyapathi B, Sunil B, Ashraf AP. Approach to hypertriglyceridemia in the pediatric population. Pediatr Rev 2017; 38(9): 424-34.
[http://dx.doi.org/10.1542/pir.2016-0138] [PMID: 28864733]
[29]
Valaiyapathi B, Ashraf AP. Hospital management of severe hypertriglyceridemia in children. Curr Pediatr Rev 2017; 13(4): 225-31.
[http://dx.doi.org/10.2174/1573400514666180117092707] [PMID: 29345595]
[30]
Del-Río-Navarro BE, Miranda-Lora AL, Huang F, Hall-Mondragon MS, Leija-Martínez JJ. Effect of supplementation with omega-3 fatty acids on hypertriglyceridemia in pediatric patients with obesity. J Pediatr Endocrinol Metab 2019; 32(8): 811-9.
[http://dx.doi.org/10.1515/jpem-2018-0409] [PMID: 31271554]
[31]
Freedman SD, Blanco PG, Zaman MM, et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 2004; 350(6): 560-9.
[http://dx.doi.org/10.1056/NEJMoa021218] [PMID: 14762183]
[32]
Roulet M, Frascarolo P, Rappaz I, Pilet M. Essential fatty acid deficiency in well nourished young cystic fibrosis patients. Eur J Pediatr 1997; 156(12): 952-6.
[http://dx.doi.org/10.1007/s004310050750] [PMID: 9453380]
[33]
Andersson C, Al-Turkmani MR, Savaille JE, et al. Cell culture models demonstrate that CFTR dysfunction leads to defective fatty acid composition and metabolism. J Lipid Res 2008; 49(8): 1692-700.
[http://dx.doi.org/10.1194/jlr.M700388-JLR200] [PMID: 18441018]
[34]
Hanssens L, Thiébaut I, Lefèvre N, et al. The clinical benefits of long-term supplementation with omega-3 fatty acids in cystic fibrosis patients - A pilot study. Prostaglandins Leukot Essent Fatty Acids 2016; 108: 45-50.
[http://dx.doi.org/10.1016/j.plefa.2016.03.014] [PMID: 27154364]
[35]
Leggieri E, De Biase RV, Savi D, Zullo S, Halili I, Quattrucci S. Clinical effects of diet supplementation with DHA in pediatric patients suffering from cystic fibrosis. Minerva Pediatr 2013; 65(4): 389-98.
[PMID: 24051972]
[36]
Morin C, Cantin AM, Vézina FA, Fortin S. The efficacy of MAG-DHA for correcting AA/DHA imbalance of cystic fibrosis patients. Mar Drugs 2018; 16(6): 16.
[http://dx.doi.org/10.3390/md16060184] [PMID: 29861448]
[37]
Sanjurjo P, Perteagudo L, Rodríguez Soriano J, Vilaseca A, Campistol J. Polyunsaturated fatty acid status in patients with phenylketonuria. J Inherit Metab Dis 1994; 17(6): 704-9.
[http://dx.doi.org/10.1007/BF00712012] [PMID: 7707693]
[38]
Agostoni C, Verduci E, Massetto N, et al. Long term effects of long chain polyunsaturated fats in hyperphenylalaninemic children. Arch Dis Child 2003; 88(7): 582-3.
[http://dx.doi.org/10.1136/adc.88.7.582] [PMID: 12818902]
[39]
Giovannini M, Agostoni C, Biasucci G, et al. Fatty acid metabolism in phenylketonuria. Eur J Pediatr 1996; 155(Suppl. 1): S132-5.
[http://dx.doi.org/10.1007/PL00014230] [PMID: 8828629]
[40]
Koletzko B, Beblo S, Demmelmair H, Hanebutt FL. Omega-3 LC-PUFA supply and neurological outcomes in children with phenylketonuria (PKU). J Pediatr Gastroenterol Nutr 2009; 48(Suppl. 1): S2-7.
[http://dx.doi.org/10.1097/MPG.0b013e3181977399] [PMID: 19214054]
[41]
Pöge AP, Bäumann K, Müller E, Leichsenring M, Schmidt H, Bremer HJ. Long-chain polyunsaturated fatty acids in plasma and erythrocyte membrane lipids of children with phenylketonuria after controlled linoleic acid intake. J Inherit Metab Dis 1998; 21(4): 373-81.
[http://dx.doi.org/10.1023/A:1005350523826] [PMID: 9700594]
[42]
Demmelmair H, MacDonald A, Kotzaeridou U, et al. Determinants of plasma docosahexaenoic acid levels and their relationship to neurological and cognitive functions in pku patients: A double blind randomized supplementation study. Nutrients 2018; 10(12): 10.
[http://dx.doi.org/10.3390/nu10121944] [PMID: 30544518]
[43]
Couce ML, de Castro MJ, de Lamas C, Leis R. Effects of LC-PUFA supplementation in patients with phenylketonuria: A systematic review of controlled trials. Nutrients 2019; 11(7): 11.
[http://dx.doi.org/10.3390/nu11071537] [PMID: 31284588]
[44]
van Wegberg AMJ, MacDonald A, Ahring K, et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J Rare Dis 2017; 12(1): 162.
[http://dx.doi.org/10.1186/s13023-017-0685-2] [PMID: 29025426]
[45]
Clerc P, Mouzaki M, Goldman RD. Omega-3 for nonalcoholic fatty liver disease in children. Can Fam Physician 2019; 65(1): 34-8.
[PMID: 30674511]
[46]
Conjeevaram Selvakumar PK, Kabbany MN, Alkhouri N. Nonalcoholic fatty liver disease in children: Not a small matter. Paediatr Drugs 2018; 20(4): 315-29.
[http://dx.doi.org/10.1007/s40272-018-0292-2] [PMID: 29740791]
[47]
Spooner MH, Jump DB. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: Where do we stand? Curr Opin Clin Nutr Metab Care 2019; 22(2): 103-10.
[http://dx.doi.org/10.1097/MCO.0000000000000539] [PMID: 30601174]
[48]
Gibson PS, Lang S, Dhawan A, et al. Systematic review: Nutrition and physical activity in the management of paediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2017; 65(2): 141-9.
[http://dx.doi.org/10.1097/MPG.0000000000001624] [PMID: 28737568]
[49]
Nobili V, Bedogni G, Donati B, Alisi A, Valenti L. The I148M variant of PNPLA3 reduces the response to docosahexaenoic acid in children with non-alcoholic fatty liver disease. J Med Food 2013; 16(10): 957-60.
[http://dx.doi.org/10.1089/jmf.2013.0043] [PMID: 24074360]
[50]
Nobili V, Alisi A, Valenti L, Miele L, Feldstein AE, Alkhouri N. NAFLD in children: New genes, new diagnostic modalities and new drugs. Nat Rev Gastroenterol Hepatol 2019; 16(9): 517-30.
[http://dx.doi.org/10.1038/s41575-019-0169-z] [PMID: 31278377]
[51]
Lattka E, Illig T, Heinrich J, Koletzko B. Do FADS genotypes enhance our knowledge about fatty acid related phenotypes? Clin Nutr 2010; 29(3): 277-87.
[http://dx.doi.org/10.1016/j.clnu.2009.11.005] [PMID: 19948371]
[52]
Koletzko B, Reischl E, Tanjung C, et al. FADS1 and FADS2 polymorphisms modulate fatty acid metabolism and dietary impact on health. Annu Rev Nutr 2019; 39: 21-44.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124250] [PMID: 31433740]
[53]
Lauritzen L, Amundsen ID, Damsgaard CT, et al. FADS and PPARG2 single nucleotide polymorphisms are associated with plasma lipids in 9-mo-old infants. J Nutr 2019; 149(5): 708-15.
[http://dx.doi.org/10.1093/jn/nxy323] [PMID: 31050749]
[54]
Salas Lorenzo I, Chisaguano Tonato AM, de la Garza Puentes A, et al. The effect of an infant formula supplemented with aa and dha on fatty acid levels of infants with different fads genotypes: The cognis study. Nutrients 2019; 11(3): 11.
[http://dx.doi.org/10.3390/nu11030602] [PMID: 30871048]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy