Review Article

Hutchinson-Gilford Progeria Syndrome: An Overview of the Molecular Mechanism, Pathophysiology and Therapeutic Approach

Author(s): Md. Mominur Rahman, Kazi Sayma Ferdous, Muniruddin Ahmed, Mohammad Touhidul Islam, Md. Robin Khan, Asma Perveen, Ghulam Md. Ashraf and Md. Sahab Uddin*

Volume 21, Issue 3, 2021

Published on: 03 March, 2021

Page: [216 - 229] Pages: 14

DOI: 10.2174/1566523221666210303100805

Price: $65

Abstract

Lamin A/C encoded by the LMNA gene is an essential component for maintaining the nuclear structure. Mutation in the lamin A/C leads to a group of inherited disorders is known as laminopathies. In the human body, there are several mutations in the LMNA gene that have been identified. It can affect diverse organs or tissues or can be systemic, causing different diseases. In this review, we mainly focused on one of the most severe laminopathies, Hutchinson-Gilford progeria syndrome (HGPS). HGPS is an immensely uncommon, deadly, metameric ill-timed laminopathies caused by the abnormal splicing of the LMNA gene and production of an aberrant protein known as progerin. Here, we also presented the currently available data on the molecular mechanism, pathophysiology, available treatment, and future approaches to this deadly disease. Due to the production of progerin, an abnormal protein leads to an abnormality in nuclear structure, defects in DNA repair, shortening of telomere, and impairment in gene regulation which ultimately results in aging in the early stage of life. Now some treatment options are available for this disease, but a proper understanding of the molecular mechanism of this disease will help to develop a more appropriate treatment which makes it an emerging area of research.

Keywords: Progeria, progerin, Hutchinson-Gilford progeria syndrome, Lamin A/C, LMNA, gene regulation.

Graphical Abstract

[1]
Sarkar PK, Shinton RA. Hutchinson-Guilford progeria syndrome. Postgrad Med J 2001; 77(907): 312-7.
[http://dx.doi.org/10.1136/pmj.77.907.312] [PMID: 11320273]
[2]
Ramírez CL, Cadiñanos J, Varela I, Freije JM, López-Otín C. Human progeroid syndromes, aging and cancer: new genetic and epigenetic insights into old questions. Cell Mol Life Sci 2007; 64(2): 155-70.
[http://dx.doi.org/10.1007/s00018-006-6349-3] [PMID: 17131053]
[3]
Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Lévy N. An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus 2018; 9(1): 246-57.
[http://dx.doi.org/10.1080/19491034.2018.1460045] [PMID: 29619863]
[4]
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. Geroscience 2020; 42(2): 467-94.
[http://dx.doi.org/10.1007/s11357-020-00167-3] [PMID: 32048129]
[5]
Kg AL. Progeria-The rapid aging disease. Int J Biol Res 2017; 2(2): 04-6.
[6]
Dorado B, Pløen GG, Barettino A, et al. Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome. Cell Discov 2019; 5(1): 16.
[http://dx.doi.org/10.1038/s41421-019-0084-z] [PMID: 30911407]
[7]
Xu S, Jin Z-G. Hutchinson-Gilford Progeria Syndrome: Cardiovascular Pathologies and Potential Therapies. Trends Biochem Sci 2019; 44(7): 561-4.
[http://dx.doi.org/10.1016/j.tibs.2019.03.010] [PMID: 31036409]
[8]
Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing Res Rev 2017; 33: 18-29.
[http://dx.doi.org/10.1016/j.arr.2016.06.007] [PMID: 27374873]
[9]
Aveleira CA, Ferreira-Marques M, Cortes L, et al. Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells. J Gerontol Ser A Oxford Academic 2020; 75(6): 1073-8.
[http://dx.doi.org/10.1093/gerona/glz280] [PMID: 32012215]
[10]
Pitrez PR, Estronca L, Monteiro LM, et al. Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nat Commun 2020; 11(1): 4110.
[http://dx.doi.org/10.1038/s41467-020-17901-2] [PMID: 32807790]
[11]
Evangelisti C, Paganelli F, Giuntini G, et al. Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells. Cells 2020; 9(3): E774.
[http://dx.doi.org/10.3390/cells9030774] [PMID: 32235738]
[12]
Babatz TD, Spear ED, Xu W, et al. Site specificity determinants for prelamin A cleavage by the zinc metalloprotease ZMPSTE24. J Biol Chem 2020; 296: 100165.
[http://dx.doi.org/10.1074/jbc.RA120.015792] [PMID: 33293369]
[13]
Gargiuli C, Schena E, Mattioli E, et al. Lamins and bone disorders: current understanding and perspectives. Oncotarget 2018; 9(32): 22817-31.
[http://dx.doi.org/10.18632/oncotarget.25071] [PMID: 29854317]
[14]
Kreienkamp R, Gonzalo S. Metabolic Dysfunction in Hutchinson-Gilford Progeria Syndrome. Cells 2020; 9(2): E395.
[http://dx.doi.org/10.3390/cells9020395] [PMID: 32046343]
[15]
Schmidt E, Nilsson O, Koskela A, et al. Expression of the Hutchinson-Gilford progeria mutation during osteoblast development results in loss of osteocytes, irregular mineralization, and poor biomechanical properties. J Biol Chem 2012; 287(40): 33512-22.
[http://dx.doi.org/10.1074/jbc.M112.366450] [PMID: 22893709]
[16]
Wang M, Wang L, Qian M, et al. PML2-mediated thread-like nuclear bodies mark late senescence in Hutchinson-Gilford progeria syndrome. Aging Cell 2020; 19(6): e13147.
[http://dx.doi.org/10.1111/acel.13147] [PMID: 32351002]
[17]
Ashapkin VV, Kutueva LI, Kurchashova SY, et al. Are There Common Mechanisms Between the Hutchinson–Gilford Progeria Syndrome and Natural Aging? Front Genet Frontiers 2019; 10: 455.
[http://dx.doi.org/10.3389/fgene.2019.00455]
[18]
Domingo DL, Trujillo MI, Council SE, et al. Hutchinson-Gilford progeria syndrome: oral and craniofacial phenotypes. Oral Dis 2009; 15(3): 187-95.
[http://dx.doi.org/10.1111/j.1601-0825.2009.01521.x] [PMID: 19236595]
[19]
Liu S, Mahairaki V, Bai H, et al. Highly Purified Human Extracellular Vesicles Produced by Stem Cells Alleviate Aging Cellular Phenotypes of Senescent Human Cells. Stem Cells 2019; 37(6): 779-90.
[http://dx.doi.org/10.1002/stem.2996] [PMID: 30811771]
[20]
Davies BSJ, Fong LG, Yang SH, Coffinier C, Young SG. The posttranslational processing of prelamin A and disease. Annu Rev Genomics Hum Genet 2009; 10: 153-74.
[http://dx.doi.org/10.1146/annurev-genom-082908-150150] [PMID: 19453251]
[21]
Chen J-H, Hales CN, Ozanne SE. DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 2007; 35(22): 7417-28.
[http://dx.doi.org/10.1093/nar/gkm681] [PMID: 17913751]
[22]
Gonzalo S, Kreienkamp R. DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Curr Opin Cell Biol 2015; 34: 75-83.
[http://dx.doi.org/10.1016/j.ceb.2015.05.007] [PMID: 26079711]
[23]
Chen Z, Chang WY, Etheridge A, et al. Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape. Aging Cell 2017; 16(4): 870-87.
[http://dx.doi.org/10.1111/acel.12621] [PMID: 28597562]
[24]
Viteri G, Chung YW, Stadtman ER. Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech Ageing Dev 2010; 131(1): 2-8.
[http://dx.doi.org/10.1016/j.mad.2009.11.006] [PMID: 19958786]
[25]
Boros J, Arnoult N, Stroobant V, Collet JF, Decottignies A. Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1α at chromatin. Mol Cell Biol 2014; 34(19): 3662-74.
[http://dx.doi.org/10.1128/MCB.00205-14] [PMID: 25047840]
[26]
McCord RP, Nazario-Toole A, Zhang H, et al. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 2013; 23(2): 260-9.
[http://dx.doi.org/10.1101/gr.138032.112] [PMID: 23152449]
[27]
Liu Y, Wang Y, Rusinol AE, et al. Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J 2008; 22(2): 603-11.
[http://dx.doi.org/10.1096/fj.07-8598com] [PMID: 17848622]
[28]
Ghosh S, Zhou Z. Genetics of aging, progeria and lamin disorders. Curr Opin Genet Dev 2014; 26: 41-6.
[http://dx.doi.org/10.1016/j.gde.2014.05.003] [PMID: 25005744]
[29]
Vidak S, Foisner R. Molecular insights into the premature aging disease progeria. Histochem Cell Biol 2016; 145(4): 401-17.
[http://dx.doi.org/10.1007/s00418-016-1411-1] [PMID: 26847180]
[30]
Chojnowski A, Ong PF, Wong ESM, et al. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. eLife 2015; 4: 4.
[http://dx.doi.org/10.7554/eLife.07759] [PMID: 26312502]
[31]
Cao K, Blair CD, Faddah DA, et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 2011; 121(7): 2833-44.
[http://dx.doi.org/10.1172/JCI43578] [PMID: 21670498]
[32]
Cao H, Hegele RA. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet 2003; 48(5): 271-4.
[http://dx.doi.org/10.1007/s10038-003-0025-3] [PMID: 12768443]
[33]
Yang SH, Bergo MO, Toth JI, et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci USA 2005; 102(29): 10291-6.
[http://dx.doi.org/10.1073/pnas.0504641102] [PMID: 16014412]
[34]
Denecke J, Brune T, Feldhaus T, et al. A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson-Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS. Hum Mutat 2006; 27(6): 524-31.
[http://dx.doi.org/10.1002/humu.20315] [PMID: 16671095]
[35]
Yang SH, Qiao X, Farber E, Chang SY, Fong LG, Young SG. Eliminating the synthesis of mature lamin A reduces disease phenotypes in mice carrying a Hutchinson-Gilford progeria syndrome allele. J Biol Chem 2008; 283(11): 7094-9.
[http://dx.doi.org/10.1074/jbc.M708138200] [PMID: 18178963]
[36]
Glynn MW, Glover TW. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet 2005; 14(20): 2959-69.
[http://dx.doi.org/10.1093/hmg/ddi326] [PMID: 16126733]
[37]
Kind J, van Steensel B. Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 2010; 22(3): 320-5.
[http://dx.doi.org/10.1016/j.ceb.2010.04.002] [PMID: 20444586]
[38]
P T, K P, T S, et al. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci U S A 2009; 106(49): 20788-93.
[http://dx.doi.org/10.1073/pnas.0911895106]
[39]
Jung H-J, Coffinier C, Choe Y, et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci USA 2012; 109(7): E423-31.
[http://dx.doi.org/10.1073/pnas.1111780109] [PMID: 22308344]
[40]
Davies BSJ, Coffinier C, Yang SH, et al. Investigating the purpose of prelamin A processing. Nucleus 2011; 2(1): 4-9.
[http://dx.doi.org/10.4161/nucl.13723] [PMID: 21647293]
[41]
Kubben N, Voncken JW, Demmers J, et al. Identification of differential protein interactors of lamin A and progerin. Nucleus 2010; 1(6): 513-25.
[http://dx.doi.org/10.4161/nucl.1.6.13512] [PMID: 21327095]
[42]
Rodriguez S, Coppedè F, Sagelius H, Eriksson M. Increased expression of the Hutchinson-Gilford progeria syndrome truncated lamin A transcript during cell aging. Eur J Hum Genet 2009; 17(7): 928-37.
[http://dx.doi.org/10.1038/ejhg.2008.270] [PMID: 19172989]
[43]
Liu B, Wang J, Chan KM, et al. Genomic instability in laminopathy-based premature aging. Nat Med 2005; 11(7): 780-5.
[http://dx.doi.org/10.1038/nm1266] [PMID: 15980864]
[44]
Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome. AJNR Am J Neuroradiol 2013; 34(5): 1091-7.
[http://dx.doi.org/10.3174/ajnr.A3341] [PMID: 23179651]
[45]
Manju K, Muralikrishna B, Parnaik VK. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J Cell Sci 2006; 119(Pt 13): 2704-14.
[http://dx.doi.org/10.1242/jcs.03009] [PMID: 16772334]
[46]
Pak J, Lee JH, Jeon JH, Kim YB, Jeong BC, Lee SH. Potential Benefits of Allogeneic Haploidentical Adipose Tissue-Derived Stromal Vascular Fraction in a Hutchinson-Gilford Progeria Syndrome Patient. Front Bioeng Biotechnol 2020; 8: 574010.
[http://dx.doi.org/10.3389/fbioe.2020.574010] [PMID: 33195136]
[47]
Raffaele Di Barletta M, Ricci E, Galluzzi G, et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet 2000; 66(4): 1407-12.
[http://dx.doi.org/10.1086/302869] [PMID: 10739764]
[48]
Sagelius H, Rosengardten Y, Hanif M, et al. Targeted transgenic expression of the mutation causing Hutchinson-Gilford progeria syndrome leads to proliferative and degenerative epidermal disease. J Cell Sci 2008; 121(Pt 7): 969-78.
[http://dx.doi.org/10.1242/jcs.022913] [PMID: 18334552]
[49]
Rosengardten Y, McKenna T, Grochová D, Eriksson M. Stem cell depletion in Hutchinson-Gilford progeria syndrome. Aging Cell 2011; 10(6): 1011-20.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00743.x] [PMID: 21902803]
[50]
Csoka AB, Cao H, Sammak PJ, Constantinescu D, Schatten GP, Hegele RA. Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 2004; 41(4): 304-8.
[http://dx.doi.org/10.1136/jmg.2003.015651] [PMID: 15060110]
[51]
Haque F, Mazzeo D, Patel JT, et al. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 2010; 285(5): 3487-98.
[http://dx.doi.org/10.1074/jbc.M109.071910] [PMID: 19933576]
[52]
Kubben N, Voncken JW, Misteli T. Mapping of protein- and chromatin-interactions at the nuclear lamina. Nucleus 2010; 1(6): 460-71.
[http://dx.doi.org/10.4161/nucl.1.6.13513] [PMID: 21327087]
[53]
Ullrich NJ, Gordon LB. Hutchinson-Gilford progeria syndrome. Handb Clin Neurol 2015; 132: 249-64.
[http://dx.doi.org/10.1016/B978-0-444-62702-5.00018-4] [PMID: 26564085]
[54]
Ullrich NJ, Kieran MW, Miller DT, et al. Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment. Neurology 2013; 81(5): 427-30.
[http://dx.doi.org/10.1212/WNL.0b013e31829d85c0] [PMID: 23897869]
[55]
Ullrich NJ, Silvera VM, Campbell SE, Gordon LB. Craniofacial abnormalities in Hutchinson-Gilford progeria syndrome. AJNR Am J Neuroradiol 2012; 33(8): 1512-8.
[http://dx.doi.org/10.3174/ajnr.A3088] [PMID: 22460337]
[56]
Baek J-H, Schmidt E, Viceconte N, et al. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum Mol Genet 2015; 24(5): 1305-21.
[http://dx.doi.org/10.1093/hmg/ddu541] [PMID: 25343989]
[57]
Koncicka M, Cervenka J, Jahn D, et al. Expression of lamin C2 in mammalian oocytes. PLoS One 2020; 15(4): e0229781.
[http://dx.doi.org/10.1371/journal.pone.0229781] [PMID: 32343699]
[58]
D J, S S, M S, et al. A truncated lamin A in the Lmna -/- mouse line: implications for the understanding of laminopathies. Nucleus (Austin, Tex) 2012. Available from: https://pubmed.ncbi.nlm.nih.gov/22895093/
[59]
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin Genet 2020; 99(1): 03-28.
[http://dx.doi.org/10.1111/cge.13837] [PMID: 32860237]
[60]
Kreienkamp R, Gonzalo S. Hutchinson-Gilford Progeria Syndrome: Challenges at Bench and Bedside. Subcell Biochem 2019; 91: 435-51.
[http://dx.doi.org/10.1007/978-981-13-3681-2_15] [PMID: 30888661]
[61]
Cubria MB, Suarez S, Masoudi A, et al. Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups. Proc Natl Acad Sci USA 2020; 117(22): 12029-40.
[http://dx.doi.org/10.1073/pnas.1906713117] [PMID: 32404427]
[62]
Tsai A, Johnston PR, Gordon LB, Walters M, Kleinman M, Laor T. Skeletal maturation and long-bone growth patterns of patients with progeria: a retrospective study. Lancet Child Adolesc Health 2020; 4(4): 281-9.
[http://dx.doi.org/10.1016/S2352-4642(20)30023-7] [PMID: 32119840]
[63]
Yu WS, Chan KY, Yu FW, et al. Bone structural and mechanical indices in Adolescent Idiopathic Scoliosis evaluated by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bone 2014; 61: 109-15.
[http://dx.doi.org/10.1016/j.bone.2013.12.033] [PMID: 24412702]
[64]
Cleveland RH, Gordon LB, Kleinman ME, et al. A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome. Pediatr Radiol 2012; 42(9): 1089-98.
[http://dx.doi.org/10.1007/s00247-012-2423-1] [PMID: 22752073]
[65]
Piekarowicz K, Machowska M, Dzianisava V, Rzepecki R. Hutchinson-Gilford Progeria Syndrome-Current Status and Prospects for Gene Therapy Treatment. Cells 2019; 8(2): E88.
[http://dx.doi.org/10.3390/cells8020088] [PMID: 30691039]
[66]
Hamczyk MR, del Campo L, Andrés V. Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome. Annu Rev Physiol 2018; 80: 27-48.
[http://dx.doi.org/10.1146/annurev-physiol-021317-121454] [PMID: 28934587]
[67]
Pachajoa H, Claros-Hulbert A, García-Quintero X, Perafan L, Ramirez A, Zea-Vera AF. Hutchinson-Gilford Progeria Syndrome: Clinical and Molecular Characterization. Appl Clin Genet 2020; 13: 159-64.
[http://dx.doi.org/10.2147/TACG.S238715] [PMID: 32943904]
[68]
Lopez-Mejia IC, Vautrot V, De Toledo M, et al. A conserved splicing mechanism of the LMNA gene controls premature aging. Hum Mol Genet 2011; 20(23): 4540-55.
[http://dx.doi.org/10.1093/hmg/ddr385] [PMID: 21875900]
[69]
Ahmed B, Basheer R, Irfan M, Hamid Akash MS, Muhammad SA, Qadir MI. Mini-Review: molecular elucidations of hutchinson-gilford progeria syndrome: A hope for managing horrors of premature aging in children. Pak J Pharm Sci 2020; 33(3): 1179-82.
[PMID: 33191246]
[70]
Varga R, Eriksson M, Erdos MR, et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2006; 103(9): 3250-5.
[http://dx.doi.org/10.1073/pnas.0600012103] [PMID: 16492728]
[71]
Horvath S, Garagnani P, Bacalini MG, et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 2015; 14(3): 491-5.
[http://dx.doi.org/10.1111/acel.12325] [PMID: 25678027]
[72]
Osorio FG, Navarro CL, Cadiñanos J, et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 2011; 3(106): 106ra107.
[http://dx.doi.org/10.1126/scitranslmed.3002847] [PMID: 22030750]
[73]
Del Campo L, Sánchez-López A, González-Gómez C, Andrés-Manzano MJ, Dorado B, Andrés V. Vascular Smooth Muscle Cell-Specific Progerin Expression Provokes Contractile Impairment in a Mouse Model of Hutchinson-Gilford Progeria Syndrome that Is Ameliorated by Nitrite Treatment. Cells 2020; 9(3): E656.
[http://dx.doi.org/10.3390/cells9030656] [PMID: 32182706]
[74]
Bergo MO, Gavino B, Ross J, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci USA 2002; 99(20): 13049-54.
[http://dx.doi.org/10.1073/pnas.192460799] [PMID: 12235369]
[75]
Fong LG, Frost D, Meta M, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 2006; 311(5767): 1621-3.
[http://dx.doi.org/10.1126/science.1124875] [PMID: 16484451]
[76]
Davies BS, Barnes RH II, Tu Y, et al. An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria. Hum Mol Genet 2010; 19(13): 2682-94.
[http://dx.doi.org/10.1093/hmg/ddq158] [PMID: 20421363]
[77]
Yang SH, Andres DA, Spielmann HP, Young SG, Fong LG. Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J Clin Invest 2008; 118(10): 3291-300.
[http://dx.doi.org/10.1172/JCI35876] [PMID: 18769635]
[78]
Yang SH, Chang SY, Ren S, et al. Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum Mol Genet 2011; 20(3): 436-44.
[http://dx.doi.org/10.1093/hmg/ddq490] [PMID: 21088111]
[79]
Li H, Yang M, Shen H, Wang S, Cai H. Severe metabolic disorders coexisting with Werner syndrome: a case report. Endocr J 2020; 68(3): 261-7.
[http://dx.doi.org/10.1507/endocrj.EJ20-0448] [PMID: 33087645]
[80]
Walker RF, Liu JS, Peters BA, et al. Epigenetic age analysis of children who seem to evade aging. Aging (Albany NY) 2015; 7(5): 334-9.
[http://dx.doi.org/10.18632/aging.100744] [PMID: 25991677]
[81]
Merideth MA, Gordon LB, Clauss S, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 2008; 358(6): 592-604.
[http://dx.doi.org/10.1056/NEJMoa0706898] [PMID: 18256394]
[82]
Horvath S, Oshima J, Martin GM, et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging (Albany NY) 2018; 10(7): 1758-75.
[http://dx.doi.org/10.18632/aging.101508] [PMID: 30048243]
[83]
Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25(7): 778-85.
[http://dx.doi.org/10.1038/nbt1319] [PMID: 17603475]
[84]
Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186(2): 757-61.
[http://dx.doi.org/10.1534/genetics.110.120717] [PMID: 20660643]
[85]
Westra ER, Dowling AJ, Broniewski JM, et al. Evolution and Ecology of CRISPR. Annu Rev Ecol Evol Syst 2016; 47(1): 307-31.
[http://dx.doi.org/10.1146/annurev-ecolsys-121415-032428]
[86]
Komor AC, Badran AH, Liu DR. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 2017; 168(1-2): 20-36.
[http://dx.doi.org/10.1016/j.cell.2016.10.044] [PMID: 27866654]
[87]
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018; 172(6): 1239-59.
[http://dx.doi.org/10.1016/j.cell.2017.11.032] [PMID: 29522745]
[88]
Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 2010; 64: 475-93.
[http://dx.doi.org/10.1146/annurev.micro.112408.134123] [PMID: 20528693]
[89]
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327(5962): 167-70.
[http://dx.doi.org/10.1126/science.1179555] [PMID: 20056882]
[90]
Carte J, Christopher RT, Smith JT, et al. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol Microbiol 2014; 93(1): 98-112.
[http://dx.doi.org/10.1111/mmi.12644] [PMID: 24811454]
[91]
Santiago-Fernández O, Osorio FG, Quesada V, et al. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat Med 2019; 25(3): 423-6.
[http://dx.doi.org/10.1038/s41591-018-0338-6] [PMID: 30778239]
[92]
Beyret E, Liao H-K, Yamamoto M, et al. Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med 2019; 25(3): 419-22.
[http://dx.doi.org/10.1038/s41591-019-0343-4] [PMID: 30778240]
[93]
Suzuki K, Yamamoto M, Hernandez-Benitez R, et al. Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Res 2019; 29(10): 804-19.
[http://dx.doi.org/10.1038/s41422-019-0213-0] [PMID: 31444470]
[94]
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18: 2401-15.
[http://dx.doi.org/10.1016/j.csbj.2020.08.031] [PMID: 33005303]
[95]
Wang F, Zhang W, Yang Q, et al. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein Cell 2020; 11(11): 809-24.
[http://dx.doi.org/10.1007/s13238-020-00740-8] [PMID: 32729022]
[96]
Kang Y, Chu C, Wang F, Niu Y. CRISPR/Cas9-mediated genome editing in nonhuman primates. Dis Model Mech 2019; 12(10): dmm039982.
[http://dx.doi.org/10.1242/dmm.039982] [PMID: 31636095]
[97]
Fong LG, Ng JK, Lammerding J, et al. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J Clin Invest 2006; 116(3): 743-52.
[http://dx.doi.org/10.1172/JCI27125] [PMID: 16511604]
[98]
Mallampalli MP, Huyer G, Bendale P, Gelb MH, Michaelis S. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2005; 102(40): 14416-21.
[http://dx.doi.org/10.1073/pnas.0503712102] [PMID: 16186497]
[99]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[100]
Blondel S, Egesipe A-L, Picardi P, et al. Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation. Cell Death Dis 2016; 7(2): e2105-5.
[http://dx.doi.org/10.1038/cddis.2015.374] [PMID: 26890144]
[101]
Graziotto JJ, Cao K, Collins FS, Krainc D. Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders. Autophagy 2012; 8(1): 147-51.
[http://dx.doi.org/10.4161/auto.8.1.18331] [PMID: 22170152]
[102]
Ramos FJ, Chen SC, Garelick MG, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C–deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med American Association for the Advancement of Science 2012; 4(144): 144ra103.
[http://dx.doi.org/10.1126/scitranslmed.3003802] [PMID: 22837538]
[103]
Liao C-Y, Anderson SS, Chicoine NH, et al. Rapamycin Reverses Metabolic Deficits in Lamin A/C-Deficient Mice. Cell Rep 2016; 17(10): 2542-52.
[http://dx.doi.org/10.1016/j.celrep.2016.10.040] [PMID: 27926859]
[104]
Gabriel D, Shafry DD, Gordon LB, Djabali K. Intermittent treatment with farnesyltransferase inhibitor and sulforaphane improves cellular homeostasis in Hutchinson-Gilford progeria fibroblasts. Oncotarget 2017; 8(39): 64809-26.
[http://dx.doi.org/10.18632/oncotarget.19363] [PMID: 29029393]
[105]
Harhouri K, Navarro C, Depetris D, et al. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med 2017; 9(9): 1294-313.
[http://dx.doi.org/10.15252/emmm.201607315] [PMID: 28674081]
[106]
Lee JM, Nobumori C, Tu Y, et al. Modulation of LMNA splicing as a strategy to treat prelamin A diseases. J Clin Invest 2016; 126(4): 1592-602.
[http://dx.doi.org/10.1172/JCI85908] [PMID: 26999604]
[107]
Harhouri K, Navarro C, Baquerre C, et al. Antisense-Based Progerin Downregulation in HGPS-Like Patients’ Cells. Cells 2016; 5(3): E31.
[http://dx.doi.org/10.3390/cells5030031] [PMID: 27409638]
[108]
Larsson O, Morita M, Topisirovic I, et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci USA 2012; 109(23): 8977-82.
[http://dx.doi.org/10.1073/pnas.1201689109] [PMID: 22611195]
[109]
Egesipe A-L, Blondel S, Lo Cicero A, et al. Metformin decreases progerin expression and alleviates pathological defects of Hutchinson-Gilford progeria syndrome cells. NPJ Aging Mech Dis 2016; 2(1): 16026.
[http://dx.doi.org/10.1038/npjamd.2016.26] [PMID: 28721276]
[110]
Park S-K, Shin OS. Metformin alleviates ageing cellular phenotypes in Hutchinson-Gilford progeria syndrome dermal fibroblasts. Exp Dermatol 2017; 26(10): 889-95.
[http://dx.doi.org/10.1111/exd.13323] [PMID: 28192606]
[111]
Zebrower M, Kieras FJ, Brown WT. Urinary hyaluronic acid elevation in Hutchinson-Gilford progeria syndrome. Mech Ageing Dev 1986; 35(1): 39-46.
[http://dx.doi.org/10.1016/0047-6374(86)90064-3] [PMID: 3736130]
[112]
Kieras FJ, Brown WT, Houck GE Jr, Zebrower M. Elevation of urinary hyaluronic acid in Werner’s syndrome and progeria. Biochem Med Metab Biol 1986; 36(3): 276-82.
[http://dx.doi.org/10.1016/0885-4505(86)90136-2] [PMID: 3801210]
[113]
Gordon LB, Harten IA, Calabro A, et al. Hyaluronan is not elevated in urine or serum in Hutchinson-Gilford Progeria Syndrome. Hum Genet 2003; 113(2): 178-87.
[http://dx.doi.org/10.1007/s00439-003-0958-9] [PMID: 12728312]
[114]
Holzenberger M. The GH/IGF-I axis and longevity. Eur J Endocrinol European Society of Endocrinology 2004; 151(Suppl_1): S23-7.
[http://dx.doi.org/10.1530/eje.0.151s023] [PMID: 15339240]
[115]
Niedernhofer LJ, Garinis GA, Raams A, et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 2006; 444(7122): 1038-43.
[http://dx.doi.org/10.1038/nature05456] [PMID: 17183314]
[116]
Capell BC, Tlougan BE, Orlow SJ. From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging. J Invest Dermatol 2009; 129(10): 2340-50.
[http://dx.doi.org/10.1038/jid.2009.103] [PMID: 19387478]
[117]
Sinha JK, Ghosh S, Swain U, Giridharan NV, Raghunath M. Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. Neuroscience 2014; 269: 256-64.
[http://dx.doi.org/10.1016/j.neuroscience.2014.03.040] [PMID: 24709042]
[118]
Bandaru P, Rajkumar H, Nappanveettil G. Altered or impaired immune response upon vaccination in WNIN/Ob rats. Vaccine 2011; 29(16): 3038-42.
[http://dx.doi.org/10.1016/j.vaccine.2011.01.107] [PMID: 21320543]
[119]
Harishankar N, Vajreswari A, Giridharan NV. WNIN/GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain. Indian J Med Res 2011; 134(3): 320-9.
[PMID: 21985815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy