Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Investigations on Synergistic and Antioxidant Actions of Medicinal Plant- Based Biosynthesis of Zinc Oxide Nanoparticles Against E.coli and K. pneumonia Bacteria

Author(s): Farzana Rashid, Iqra Pervaiz, Husna Malik, Zakia Kanwal, Muhammad Rafique* and Syed Sajid Ali Gillani

Volume 25, Issue 7, 2022

Published on: 02 March, 2021

Page: [1200 - 1206] Pages: 7

DOI: 10.2174/1386207324666210302102111

Price: $65

Abstract

Introduction: Bacterial resistance to multiple drugs is increasing at an alarming rate in the current era and nanotechnology is one of the effective and novel approaches to overcome drug resistance.

Methods: Zinc Oxide Nanoparticles (ZnO NPs) have stronger antibacterial activity and are regarded as bio-safe nanomaterial. The aim of the present study is to synthesize the ZnO NPs using Aloe vera leaves extract and to investigate the synergistic effects and antioxidant actions of biosynthesized ZnO NPs against gram-negative bacteria E.coli and K. pneumoniae. The synergistic effect of β-lactam antibiotics (meropenem and ciprofloxacin) was tested along with ZnO NPs using Kirby’s disc diffusion assay. The antioxidant activity was investigated by α, α-diphenyl-β- picrylhydrazyl (DPPH) method.

Results: Results of the study revealed that the antibacterial activity of the selected antibiotics was much enhanced by ZnO NPs than the antibiotics alone. The resistant antibiotic (ciprofloxacin) became sensitive when combined with ZnO NPs. The antioxidant activity reveals that biosynthesized ZnO NPs possess significantly higher (p<0.05) antioxidant activity (77%).

Conclusion: The findings reveal that biosynthesized ZnO NPs have a much more eco-friendly approach. It can act as a strong potentiator of β-lactam antibiotics and put forward the possibility to use them effectively in targeted drug delivery, pharmaceuticals and biomedical fields.

Keywords: ZnO NPs, green synthesis, antibacterial activity, antioxidant activity, gram negative bacteria, medicinal plant leaves extract.

Graphical Abstract

[1]
Berman, J.; Sudbery, P.E. Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet., 2002, 3(12), 918-930.
[http://dx.doi.org/10.1038/nrg948] [PMID: 12459722]
[2]
Casadevall, A. Fungal diseases in the 21st Century: the near and far horizons. Pathog. Immun., 2018, 3(2), 183-196.
[http://dx.doi.org/10.20411/pai.v3i2.249] [PMID: 30465032]
[3]
Capeletti, L.B.; de Oliveira, L.F. Gonçalves, Kde.A.; de Oliveira, J.F.; Saito, Â.; Kobarg, J.; dos Santos, J.H.; Cardoso, M.B. Tailored silica-antibiotic nanoparticles: overcoming bacterial resistance with low cytotoxicity. Langmuir, 2014, 30(25), 7456-7464.
[http://dx.doi.org/10.1021/la4046435] [PMID: 24902085]
[4]
Paterson, D.L. Resistance in gram-negative bacteria. Enterobacteriaceae. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S20-S28.
[http://dx.doi.org/10.1016/j.ajic.2006.05.238] [PMID: 16813978]
[5]
Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 2001, 14(4), 933-951.
[http://dx.doi.org/10.1128/CMR.14.4.933-951.2001] [PMID: 11585791]
[6]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[7]
Lara, H.H.; Ayala-Núñez, N.V.; Turrent Ld, C.I.; Padilla, C.R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol., 2010, 26(4), 615-621.
[http://dx.doi.org/10.1007/s11274-009-0211-3]
[8]
Gleiter, H. Nanostructured materials: basic concepts and microstructure. Acta Mater., 2000, 48(1), 1-29.
[http://dx.doi.org/10.1016/S1359-6454(99)00285-2]
[9]
Rafique, M.; Tahir, R.; Gillani, S.; Tahir, M.B.; Shakil, M.; Iqbal, T.; Abdellahi, M. Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium Cumini for seed germination and wastewater purification. Int. J. Environ. Anal. Chem., 2020, 1-16.
[http://dx.doi.org/10.1080/03067319.2020.1715379]
[10]
Ghule, K.; Ghule, A.V.; Chen, B-J.; Ling, Y-C. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem., 2006, 8(12), 1034-1041.
[http://dx.doi.org/10.1039/b605623g]
[11]
Das, D.; Nath, B.C.; Phukon, P.; Kalita, A.; Dolui, S.K. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf. B Biointerfaces, 2013, 111, 556-560.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.041] [PMID: 23891844]
[12]
Khan, M.I.; Fatima, N.; Shakil, M.; Tahir, M.B.; Riaz, K.N.; Rafique, M.; Iqbal, T.; Mahmood, K. Investigation of in-vitro antibacterial and seed germination properties of green synthesized pure and nickel doped ZnO nanoparticles. Physica B, 601, 412563.
[http://dx.doi.org/10.1016/j.physb.2020.412563]
[13]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[14]
Rafique, M.; Mubashar, R.; Irshad, M.; Gillani, S.S.A.; Tahir, M.B.; Khalid, N.R. Shehzad, M. A. (2020) A comprehensive study on methods and materials for Photocatalytic water splitting and hydrogen production as a renewable energy resource. J. Inorg. Organomet. Polym. Mater., 2020, (30), 3837-3861.
[15]
Rafique, M.; Shafiq, F.; Gillani, S.S.A.; Shakil, M.; Tahir, M.B.; Sadaf, I. Eco-friendly green and biosynthesis of copper oxide nanoparticles using citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of rhodamin b dye form textile wastewater. Optik (Stuttg.), 2019, 164053.
[http://dx.doi.org/10.1016/j.ijleo.2019.164053]
[16]
Kahramanolu, .; Chen, C.; Chen, J.; Wan, C. Chemical constituents, antimicrobial activity, and food preservative characteristics of aloe vera gel. Agronomy (Basel), 2019, 9(12), 831.
[http://dx.doi.org/10.3390/agronomy9120831]
[17]
Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707]
[18]
Moghaddam, A.B.; Moniri, M.; Azizi, S.; Rahim, R.A.; Ariff, A.B.; Saad, W.Z.; Namvar, F.; Navaderi, M.; Mohamad, R. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules, 2017, 22(6), 872.
[http://dx.doi.org/10.3390/molecules22060872] [PMID: 28538674]
[19]
Rafique, M.; Sadaf, I.; Tahir, M.B.; Rafique, M.S.; Nabi, G.; Iqbal, T.; Sughra, K. Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater. Sci. Eng. C, 2019, 99, 1313-1324.
[http://dx.doi.org/10.1016/j.msec.2019.02.059] [PMID: 30889666]
[20]
Luo, P.; Tzeng, T.; Shah, R.; Stutzenberger, F. Nanomaterials for antimicrobial applications and pathogen detection. Curr. Trends Microbiol., 2007, 3, 111-128.
[21]
Weir, E.; Lawlor, A.; Whelan, A.; Regan, F. The use of nanoparticles in anti-microbial materials and their characterization. Analyst (Lond.), 2008, 133(7), 835-845.
[http://dx.doi.org/10.1039/b715532h] [PMID: 18575632]
[22]
Dhage, S.; Pasricha, R.; Ravi, V. Synthesis of fine particles of ZnO at 100 C. Mater. Lett., 2005, 59(7), 779-781.
[http://dx.doi.org/10.1016/j.matlet.2004.11.019]
[23]
Ayeshamariam, A.; Kashif, M.; Vidhya, V.; Sankaracharyulu, M.; Swaminathan, V.; Bououdina, M.; Jayachandran, M. Biosynthesis of (ZnO-Aloe vera) Nanocomposites and Antibacterial/Antifungal Studies. International Journal of Nanoelectronics & Materials, 2016, 9(1)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy