Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

A Review of QCA Nanotechnology as an Alternate to CMOS

Author(s): Syed Farah Naz, Sadat Riyaz and Vijay Kumar Sharma*

Volume 18, Issue 1, 2022

Published on: 01 March, 2021

Page: [18 - 30] Pages: 13

DOI: 10.2174/1573413717666210301111822

Price: $65

Abstract

Background: The human ken about esoteric phenomenon develops the period from space to the sub-atomic level. The passion to further explore the unexplored domains and dimensions boosts human advancement in a cyclic way. A significant part of such passion follows in the electronics industry. Moore’s law is reaching the practical limitations because of further scaling of metal oxide semiconductor (MOS) devices. There is a need for a more dexterous and effective technological approach. Quantum-dot cellular automata (QCA) is an emerging technology which avoids the physical limitations of the MOS device. QCA is a dynamic computational transistor paradigm that addresses device density, power, operating frequency and interconnection problems. It requires an extensive study to know the fundamentals of logic implementation.

Objective: Immense research and experiments led to the evolving nanotechnology and a feasible alternative to complementary metal-oxide semiconductor (CMOS) technology. A comprehensive study is presented in the paper to enhance the basics of QCA technology and the way of implementation of the logic circuits. Different existing circuits using QCA technology are discussed and compared for different parameters.

Methods: Scaling the devices can reduce the power consumption of the MOS device. Quantum dots are nanostructures made from semi-conductive conventional materials. It is possible to model these constructions as 3-dimensional (3D) quantum energy wells. Logical operations and data movement are performed using Coulumbic interaction between nearby QCA cells instead of the current flow.

Results: The focus of this review paper is to study the trends which have been proposed and compare the designs of various digital circuits. The performance of different circuits such as XOR, adder, reversible gates and flip-flops is provided. Different logic circuits are compared in terms of the parameters such as cell count, area and latency. At least 10 QCA cells are used for the XOR gate with 1 clock latency. Minimum 44 QCA cells are required to make a full adder with 1.25 clock latency.

Conclusion: Designers may choose the best-fitted circuit in their logic implementation on the basis of the comparison. The comprehensive study of the QCA technology helps the researchers to learn this field fast and work to make the design of less cell count and latency.

Keywords: QCA, nanotechnology, quantum tunneling, energy well, potential barrier, coulombic repulsion

Graphical Abstract

[1]
Rosli, R.; Annuar, K.M.; Ismail, F.S. Optimal pin fin heat sink arrangement for solving thermal distribution problem. J. Adv. Res. Fluid Mech. Therm. Sci., 2015, 11, 1-8.
[2]
Al-Maliky, N.S.; Alhamdi, S.N. Polarizability and band gap of boron nitrite nanotubes for different length and diameter. J. Adv. Res. Fluid Mech. Therm. Sci., 2020, 74(2), 160-167.
[http://dx.doi.org/10.37934/arfmts.74.2.160167]
[3]
Abidin, U.; Majlis, B.Y.; Yunas, J. Efficient magnetic microbeads trapping using lab-on-chip magnetic separator. J. Adv. Res. Fluid Mech. Therm. Sci., 2019, 57(1), 1-11.
[4]
Zainal, N.; Abd Aziz, N.; Mutalib, F.A.; Buyong, M.R. Chaotic mixing of microdroplets using surface acoustic waves device. J. Adv. Res. Fluid Mech. Therm. Sci., 2020, 73(1), 13-24.
[http://dx.doi.org/10.37934/arfmts.73.1.1324]
[5]
Rahman, A.R.; Munir, F.A.; Ariffin, E.A.; Tan, N.D.; Saputro, H. External patch fillet repair for sulphur recovery unit of petroleum refinery plant. Int. J. Nanoelectronics Mat., 2020, 2, 13.
[6]
Lent, C.S.; Tougaw, P.D.; Porod, W.; Bernstein, G.H. Quantum cellular automata. Nanotechnology, 1993, 4(1), 49.
[http://dx.doi.org/10.1088/0957-4484/4/1/004] [PMID: 21727566]
[7]
Walus, K.; Jullien, G.A. Design tools for an emerging SoC techno-logy: Quantum-dot cellular automata. Proc. IEEE, 2006, 94(6), 1225-1244.
[http://dx.doi.org/10.1109/JPROC.2006.875791]
[8]
Lent, C.S.; Tougaw, P.D. Lines of interacting quantum‐dot cells: A binary wire. J. Appl. Phys., 1993, 74(10), 6227-6233.
[http://dx.doi.org/10.1063/1.355196]
[9]
Askari, M.; Taghizadeh, M.; Fardad, K. Digital design using quantum- dot cellular automata (a nanotechnology method). 2008 Inter-national Conference on Computer and Communication Enginee-ring, 2008, pp. 952-955.
[http://dx.doi.org/10.1109/ICCCE.2008.4580747]
[10]
Askari, M.; Taghizadeh, M.; Fardad, K. Design and analysis of a sequential ring counter for QCA implementation. 2008 Internatio-nal Conference on Computer and Communication Engineering, 2008, pp. 933-936.
[http://dx.doi.org/10.1109/ICCCE.2008.4580743]
[11]
Cho, H.; Swartzlander, E.E. Adder designs and analyses for quan-tum-dot cellular automata. IEEE Trans. NanoTechnol., 2007, 6(3), 374-383.
[http://dx.doi.org/10.1109/TNANO.2007.894839]
[12]
Bennett, C.H. Logical reversibility of computation. IBM J. Res. Develop., 1973, 17(6), 525-532.
[http://dx.doi.org/10.1147/rd.176.0525]
[13]
Ma, X.; Huang, J.; Metra, C.; Lombardi, F. Reversible gates and testability of one-dimensional arrays of molecular QCA. J. Electron. Test., 2008, 24(1-3), 297-311.
[http://dx.doi.org/10.1007/s10836-007-5042-2]
[14]
Moustafa, A.; Younes, A.; Hassan, Y.F. A customizable quantum-dot cellular automaton building block for the synthesis of classical and reversible circuits. Scientific World Journal, 2015, 2015705056
[http://dx.doi.org/10.1155/2015/705056] [PMID: 26345412]
[15]
Timler, J.; Lent, C.S. Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys., 2003, 94(2), 1050-1060.
[http://dx.doi.org/10.1063/1.1581350]
[16]
Lent, C.S.; Tougaw, P.D. Dynamic behavior of quantum cellular automata. J. Appl. Phys., 1996, 80(8), 4722-4736.
[http://dx.doi.org/10.1063/1.363455]
[17]
Beigh, M.R.; Mustafa, M.; Ahmad, F. Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Systems, 2013, 4(02), 147.
[http://dx.doi.org/10.4236/cs.2013.42020]
[18]
Bhattacharjee, P.K. Digital combinational circuits design by QCA gates. Int. J. Comput. Electric. Eng., 2010, 2(1), 67.
[http://dx.doi.org/10.7763/IJCEE.2010.V2.115]
[19]
Bhattacharjee, P.K. Use of symmetric functions designed by QCA gates for next generation IC. Int. J. Comput. Theory Eng., 2010, 2(2), 211.
[http://dx.doi.org/10.7763/IJCTE.2010.V2.142]
[20]
Chabi, A.M.; Sayedsalehi, S.; Angizi, S.; Navi, K. Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Notices, 2014, 2014463967
[http://dx.doi.org/10.1155/2014/463967] [PMID: 27379276]
[21]
Hashemi, S.; Farazkish, R.; Navi, K. New quantum dot cellular automata cell arrangements. J. Comput. Theor. Nanosci., 2013, 10(4), 798-809.
[http://dx.doi.org/10.1166/jctn.2013.2773]
[22]
Dehkordi, M.A.; Sadeghi, M. A new approach to design D-ff in QCA technology. Proceedings of 2012 2nd International Confe-rence on Computer Science and Network Technology, 2012, pp. 2245-2248.
[http://dx.doi.org/10.1109/ICCSNT.2012.6526365]
[23]
Hashemi, S.; Navi, K. New robust QCA D flip flop and memory structures. Microelectronics J., 2012, 43(12), 929-940.
[http://dx.doi.org/10.1016/j.mejo.2012.10.007]
[24]
Sen, B.; Goswami, M.; Some, S.; Sikdar, B.K. Design of sequential circuits in multilayer qca structure. 2013 International Symposium on Electronic System Design, 2013, pp. 21-25.
[http://dx.doi.org/10.1109/ISED.2013.11]
[25]
Karthik, K. An Efficient Design Approach of BCD to Excess-3 Code Converter Based on QCA. Int. J. Eng. Res. Technol. , 2010, 6(6), 310-316.
[http://dx.doi.org/10.17577/IJERTV6IS060199]
[26]
Iqbal, J.; Khanday, F.A.; Shah, N.A. Design of Quantum-dot Cellular Automata (QCA) based modular 2 n− 1− 2 n MUX-DEMUX.IMPACT-2013; IEEE, 2013, pp. 189-193.
[27]
Goswami, M.; Kumar, B.; Tibrewal, H.; Mazumdar, S. Efficient realization of digital logic circuit using QCA multiplexer. 2014 2nd International Conference on Business and Information Management (ICBIM), 2014, pp. 165-170.
[http://dx.doi.org/10.1109/ICBIM.2014.6970972]
[28]
Zoka, S.; Gholami, M. A novel efficient full adder–subtractor in QCA nanotechnology. Int. Nano Lett., 2019, 9(1), 51-54.
[http://dx.doi.org/10.1007/s40089-018-0256-0]
[29]
Bahar, A.N.; Waheed, S.; Habib, M.A. A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA). 2014 International Conference on Electrical Engineering and In-formation & Communication Technology, 2014, pp. 1-6.
[http://dx.doi.org/10.1109/ICEEICT.2014.6919121]
[30]
Prabakaran, M.; Singh, J.A.J. Design and analysis of digital circuits using Quantum Dot Cellular Automata (QCA). Int. J. Innov. Res. Comput. Commun. Eng., 2014, 2(11), 6973-6979.
[31]
Bhavani, K.S.; Alinvinisha, V. Utilization of QCA based T Flip flop to design Counters. 2015 International Conference on Innova-tions in Information, Embedded and Communication Systems (ICIIECS), 2015, pp. 1-6.
[http://dx.doi.org/10.1109/ICIIECS.2015.7193059]
[32]
Balakrishnan, L.; Godhavari, T.; Kesavan, S. Effective design of logic gates and circuit using quantum cellular automata (QCA). 2015 International Conference on Advances in Computing, Com-munications and Informatics (ICACCI), 2015, pp. 457-462.
[http://dx.doi.org/10.1109/ICACCI.2015.7275651]
[33]
Mahalakshmi, K.S.; Hajeri, S.; Jayashree, H.V.; Agrawal, V.K. Performance estimation of conventional and reversible logic cir-cuits using QCA implementation platform. 2016 International Con-ference on Circuit, Power and Computing Technologies; ICCPCT, 2016, pp. 1-9.
[http://dx.doi.org/10.1109/ICCPCT.2016.7530135]
[34]
Jahan, W.S.; Ahmad, P.Z.; Peer, M.A.; Khan, K.A. Circuit nano-technology: QCA adder gate layout designs. IOSR J. Comput. Eng., 2014, 16(2), 70-78.
[http://dx.doi.org/10.9790/0661-16217078]
[35]
Bilal, B.; Ahmed, S.; Kakkar, V. QCA based efficient Toffoli gate design and implementation for nanotechnology applications. Int. J. Eng. Technol, 2017, 9, 84-92.
[http://dx.doi.org/10.21817/ijet/2017/v9i3/170903S015]
[36]
a. Porod, W. Quantum-dot devices and quantum-dot cellular auto-mata. J. Franklin Institute, 334(5-6), 1147-1175. b. Tougaw, P.D.; Lent, C.S. Logical devices implemented using quantum cellular automata. J. Appl. Phys., 1997, 75(3), 1818-1825.
[37]
Devadoss, R.; Paul, K.; Balakrishnan, M. Coplanar QCA crosso-vers. Electron. Lett., 2009, 45(24), 1234-1235.
[38]
Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circuits Dev. Syst., 2012, 7(5), 263-272.
[http://dx.doi.org/10.1049/iet-cds.2012.0366]
[39]
Abedi, D.; Jaberipur, G.; Sangsefidi, M. Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. NanoTechnol., 2015, 14(3), 497-504.
[http://dx.doi.org/10.1109/TNANO.2015.2409117]
[40]
Kumar, V.; Dhawan, D. Design of Reversible Adder Subtractor Using Multifunction Reversible Logic Gate (MRLG). Int. J. Adv. Comput. Electronics Eng., 2016, 1(2), 5-11.
[41]
Neto, O.P.V.; Pacheco, M.A.C.; Barbosa, C.R.H. Neural network simulation and evolutionary synthesis of QCA circuits. IEEE Trans. Comput., 2007, 56(2), 191-201.
[http://dx.doi.org/10.1109/TC.2007.33]
[42]
Tougaw, P.D.; Lent, C.S. Logical devices implemented using quantum cellular automata. J. Appl. Phys., 1994, 75(3), 1818-1825.
[http://dx.doi.org/10.1063/1.356375]
[43]
Beigh, M.R.; Mustafa, M. Design and implementations of quan-tum-dot cellular automata base novel Parity generator and checker circuits with minimum cell complexity and cell count. Indian J. Pure Appl. Phy., 2013, 51, 60-66.
[44]
Iqbal, J.; Khanday, F.A.; Shah, N.A. Efficient quantum dot cellular automata (QCA) implementation of code converters. Commun. Inform. Sci. Management Eng., 2013, 3(10), 504.
[45]
Ahmad, F.; Bhat, G. Novel code converters based on quantum-dot cellular automata (QCA). Int. J. Sci. Res. (Ahmedabad), 2012, 3(5), 364-371.
[46]
Niemier, M.T. Designing digital systems in quantum cellular automata master’s thesis. University of Notre Dame, Notre Dame, Indiana, USA.. 2004.
[47]
Chabi, A.M.; Roohi, A.; DeMara, R.F.; Angizi, S.; Navi, K.; Kha-demolhosseini, H. Cost-efficient QCA reversible combinational circuits based on a new reversible gate. 2015 18th CSI international symposium on computer architecture and digital systems (CADS), 2015, pp. 1-6.
[http://dx.doi.org/10.1109/CADS.2015.7377779]
[48]
Laajimi, R.; Ajimi, A.; Touil, L.; Bahar, A.N. A novel design for XOR Gate used for Quantum-Dot Cellular Automata (QCA) to create a revolution in nanotechnology structure. International J. Adv. Comput. Sci. App., 2017, 8(10), 279-287.
[http://dx.doi.org/10.14569/IJACSA.2017.081036]
[49]
Chabi, A.M.; Roohi, A.; Khademolhosseini, H.; Sheikhfaal, S.; Angizi, S.; Navi, K.; DeMara, R.F. Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst., 2017, 49, 127-138.
[http://dx.doi.org/10.1016/j.micpro.2016.09.015]
[50]
Singh, G.; Sarin, R.K.; Raj, B. A novel robust exclusive-OR func-tion implementation in QCA nanotechnology with energy dissipa-tion analysis. J. Comput. Electron., 2016, 15(2), 455-465.
[http://dx.doi.org/10.1007/s10825-016-0804-7]
[51]
Santra, S.; Roy, U. Design and implementation of quantum cellular automata based novel adder circuits. Int. J. Comput. Electric. Au-tomat. Control Inform. Eng., 2014, 8(1), 178-183.
[52]
Hashemi, S.; Navi, K. A novel robust QCA full-adder. Procedia Mat. Sci., 2015, 11, 376-380.
[http://dx.doi.org/10.1016/j.mspro.2015.11.133]
[53]
Kim, S.W. Design of parallel multipliers and dividers in quantum-dot cellular automata; The University of Texas: Austin, 2011.
[54]
Moustafa, A. Efficient quantum-dot cellular automata for half adder using building block. Quantum Inform. Rev., 2019, 7(1), 1-6.
[http://dx.doi.org/10.18576/qir/070101]
[55]
Divshali, N.; Mojtaba; Abdalhossein, R. "Novel circuits design for SISO shift register in QCA technology." J. Circuits, Systems Comput., in-press 2021.
[56]
Iqbal, J.; Banday, M.T. Applications of Toffoli Gate for designing the classical gates using quantum-dot cellular automata. Int. J. Recent Sci. Res., 2015, 6(12), 7764-7769.
[57]
Choi, M. Study on a Quantum-dot Automata Based Asynchronous Circuit Design. (Doctoral dissertation, Oklahoma State University).,, 2005.
[58]
Rezaei, A. Design of optimized quantum-dot cellular automata RS flip flops. Int. J. Nanosci. Nanotechnol., 2017, 13(1), 53-58.
[59]
Vetteth, A.; Walus, K.; Dimitrov, V.S.; Jullien, G.A. Quantum-dot cellular automata of flip-flops. ATIPS Laboratory, 2003, 2500, 1-5.
[60]
Rezaei, A.; Noori, L. Novel Efficient Designs for QCA JK Flip flop Without Wire-crossing. Int. Academic J. Sci. Eng., 2016, 3(2), 93-101.
[61]
Yang, X.; Cai, L.; Zhao, X. Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. Electron. Lett., 2010, 46(12), 825-826.
[http://dx.doi.org/10.1049/el.2010.1090]
[62]
Dehkordi, M.A.; Shamsabadi, A.S.; Ghahfarokhi, B.S.; Vafaei, A. Novel RAM cell designs based on inherent capabilities of quan-tum-dot cellular automata. Microelectronics J., 2011, 42(5), 701-708.
[http://dx.doi.org/10.1016/j.mejo.2011.02.006]
[63]
Angizi, S.; Sarmadi, S.; Sayedsalehi, S.; Navi, K. Design and eva-luation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectronics J., 2015, 46(1), 43-51.
[http://dx.doi.org/10.1016/j.mejo.2014.10.003]
[64]
Reshi, J.I.; Banday, M.T. Realization of Peres gate as universal structure using quantum Dot cellular automata. J. Nanosci. Tech-nol., 2016, 115-118.
[65]
Bilal, B.; Ahmed, S.; Kakkar, V. Optimal realization of universality of peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology. Int. J. Intell. Systems Appl., 2017, 9(6), 75.
[http://dx.doi.org/10.5815/ijisa.2017.06.08]
[66]
Pal, J.; Dutta, P.; Saha, A.K. Realization of basic gates using uni-versal gates using quantum-dot cellular automata. Proceedings of the International Conference on Computing and Communication Systems, 2018, pp. 541-549.
[http://dx.doi.org/10.1007/978-981-10-6890-4_53]
[67]
Lee, J.S.; Jeon, J.C. Design of low hardware complexity multiple-xer using NAND Gates on quantum-dot cellular automata. Int. J. Multimedia Ubiquitous Eng., 2016, 11(12), 307-318.
[http://dx.doi.org/10.14257/ijmue.2016.11.12.28]
[68]
Patidar, M.; Gupta, N. Efficient design and implementation of a robust coplanar crossover and multilayer hybridfull adder-subtractor using QCA technology. J. Supercomput., 2021, 77(636), 1-23.
[69]
Rahmani, Y.; Heikalabad, S.R. andMohammad Mosleh. “Efficient structures for fault-tolerant majority gate inquantum-dot cellular automata. Opt. Quantum Electron., 2021, 53(1), 1-18.
[http://dx.doi.org/10.1007/s11082-020-02691-0]
[70]
Kavitha, S.S.; Kaulgud, N. Quantum dot cellular automata (QCA) design for the realization of basic logic gates. 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), 2017, pp. 314-317.
[http://dx.doi.org/10.1109/ICEECCOT.2017.8284519]
[71]
Poorhosseini, M.; Hejazi, A.R. A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circuits Syst. Comput., 2018, 27(07)1850115
[http://dx.doi.org/10.1142/S0218126618501153]
[72]
Das, J.C.; De, D.; Mondal, S.P.; Ahmadian, A.; Ghaemi, F.; Senu, N. QCA based error detection circuit for nano communication network. IEEE Access, 2019, 7, 67355-67366.
[http://dx.doi.org/10.1109/ACCESS.2019.2918025]
[73]
Deng, F.; Xie, G.; Zhang, Y.; Peng, F.; Lv, H. A novel design and analysis of comparator with XNOR gate for QCA. Microprocess. Microsyst., 2017, 55, 131-135.
[http://dx.doi.org/10.1016/j.micpro.2017.10.009]
[74]
Dalui, M.; Sen, B.; Sikdar, B.K. Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Appl., 2010, 1(29), 81-87.
[75]
Sharma, V.K. Optimal design for digital comparator using QCA nanotechnology with energy estimation. Int. J. Numerical Model-ling: Electron. Networks. Devices Fields, 2020, 34(2)e2822

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy