Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Enhanced Removal of Methyl Violet Dye from Aqueous Solution by a Novel Co3O4@SiO2@TiO2-Ag Heterogeneous Semiconductor

Author(s): Mohammad Ali Ghasemzadeh*, Zahar Elyasi and Mohammad Reza Zand Monfared

Volume 25, Issue 5, 2022

Published on: 01 March, 2021

Page: [883 - 894] Pages: 12

DOI: 10.2174/1386207324666210301090123

Price: $65

Abstract

Background: This research proposes the application of a novel photocatalyst including Co3O4@SiO2@TiO2-Ag nanocomposite with highly photocatalytic stability and core-shell structure for the removal of toxic methyl violet from aqueous solution.

Objective: The removal of toxic dyes and organic contaminants from water is an outstanding research area among the scientists. Methyl violet is a toxic cationic pollutant that has a disruptive influence on humans. In this research, with an aim to remove methyl violet from the wastewater, we developed a new photocatalyst including Co3O4@SiO2@TiO2-Ag nanocomposite as an ecofriendly and low-cost nanostructure with high photocatalytic activity in order to reduce the risks of this pollutant from aqueous media.

Methods: The Co3O4@SiO2@TiO2-Ag nanostructure was prepared via hydrothermal and sol-gel methods and the structure elucidation of the prepared photocatalyst was analyzed by different spectroscopy techniques, including XRD, FT-IR, FE-SEM, TEM, VSM and EDX.

Results: Photodegradation of methyl violet in the presence of different structures showed that Co3O4@SiO2@TiO2-Ag possesses superior photocatalytic activity (about 98% decomposed after 40 min) compared to the previous shells and pure Co3O4 NPs. Loadings of SiO2@TiO2-Ag nanocomposite over the Co3O4 surface led to the reduction in the bandgap energy of visible light and improvement in the photocatalytic activity of Methyl Violet dye f o r the aqueous phase decomposition.

Conclusion: The remarkable benefits of this nanocomposite are high photocatalytic efficiency in the degradation of methyl violet (almost 100 % within 1 h), easy magnetic separation, low cost, and high chemical stability. The collected results demonstrated that the rate of degradation increased by increasing the irradiation time, while the rate of degradation decreased with increasing dye concentration.

Keywords: Photocatalytic activity, nanocomposite, degradation, wastewater, methyl violet, Co3O4@SiO2@TiO2-Ag.

Graphical Abstract

[1]
Djilani, C.; Zaghdoudi, R.; Djazi, F.; Bouchekima, B.; Lallam, A.; Modarressi, A.; Rogalski, M. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J. Taiwan Inst. Chem. Eng., 2015, 53, 112-121.
[http://dx.doi.org/10.1016/j.jtice.2015.02.025]
[2]
Kooh, M.R.R.; Dahri, M.K.; Lim, L.; Lim, L.H.; Malik, O.H. Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling. Environ. Earth Sci., 2016, 75, 783.
[http://dx.doi.org/10.1007/s12665-016-5582-9]
[3]
Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci., 2014, 209, 172-184.
[http://dx.doi.org/10.1016/j.cis.2014.04.002] [PMID: 24780401]
[4]
Mane, V.S.; Vijay Babu, P.V. Kinetic and equilibrium studies on the removal of Congo red from aqueous solution using Eucalyptus wood (Eucalyptus globulus) saw dust. J. Taiwan Institu. Chem. Eng, 2013, 44, 81-88.
[http://dx.doi.org/10.1016/j.jtice.2012.09.013]
[5]
Samreen, A.; Suresha, S. Comparative biosorption of acid red YG dye from aqueous solution and textile industry wastewater using syzygium cumini seeds and borassus flabellifer seeds peels. Int. J. Adv. Res. (Indore), 2015, 3, 586-597.
[6]
Altaf, A.; Noor, S.; Sharif, Q.M.; Najeebullah, M. Different techniques recently used for the treatment of textile dyeing effluents: a review. J. Chem. Soc. Pak., 2010, 32, 115-116.
[7]
Shams-Ghahfarokhi, Z.; Nezamzadeh-Ejhieh, A. As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Mater. Sci. Semicond. Process., 2015, 39, 265-275.
[http://dx.doi.org/10.1016/j.mssp.2015.05.022]
[8]
Farhadi, S.; Amini, M.; Mahmoudi, F. Phosphotungstic acid supported on aminosilica functionalized perovskite-type LaFeO3 nanoparticles: a novel recyclable and excellent visible-light photocatalyst. RSC Advances, 2016, 6, 102984-102996.
[http://dx.doi.org/10.1039/C6RA24627C]
[9]
Guy, N.; Ozacar, M. Ag/Ag2CrO4 nanoparticles modified on ZnO nanorods as an efficient plasmonic photocatalyst under visible light. J. Photochem. Photobiol. Chem., 2016, 370, 1-11.
[http://dx.doi.org/10.1016/j.jphotochem.2018.10.035]
[10]
Saravanan, R.; Joicy, S.; Gupta, V.K.; Narayanan, V.; Stephen, A. Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C, 2013, 33(8), 4725-4731.
[http://dx.doi.org/10.1016/j.msec.2013.07.034] [PMID: 24094180]
[11]
Zarepour, M.A.; Tasviri, M. Facile fabrication of Ag decorated TiO2 nanorices: Highly efficient visible-light-responsive photocatalyst in degradation of contaminants. J. Photochem. Photobiol. Chem., 2019, 371, 166-172.
[http://dx.doi.org/10.1016/j.jphotochem.2018.11.007]
[12]
Bet Moushoul, E.; Yaghoub, M.; Khosro, F.; Meysam, T. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemicalengineering processes. Chem. Eng. J., 2016, 283, 29-46.
[http://dx.doi.org/10.1016/j.cej.2015.06.124]
[13]
Saravanan, R.; Elisban, S.; Gracia, F.; Mohammad, K.M.; Mosquera, E.; Vinod, K.G. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq., 2016, 221, 1029-1033.
[http://dx.doi.org/10.1016/j.molliq.2016.06.074]
[14]
Velmurugan, R.; Sreedhar, B.; Swaminathan, M. Tailoring the electrical and dielectric properties of ZnO nanorods by substitution. Chem. Cent. J., 2011, 5, 46.
[http://dx.doi.org/10.1186/1752-153X-5-46] [PMID: 21801445]
[15]
Štengl, V.; Opluštil, F.; Němec, T. In3+-doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations. Photochem. Photobiol., 2012, 88(2), 265-276.
[http://dx.doi.org/10.1111/j.1751-1097.2011.01052.x] [PMID: 22181810]
[16]
Saeed, K.; Idrees, K.; Tamanna, G.; Mohammad, S. Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts. Appl. Water Sci., 2017, 7, 3841-3848.
[http://dx.doi.org/10.1007/s13201-017-0535-3]
[17]
Zhang, Y.; Jutao, N.W.; Qiang, Z.; Xingwang, W.; Yanqing, C. Synthesis of Co3O4/Ag/TiO2 nanotubes arrays via photo-deposition of Ag and modification of Co3O4 (311) for enhancement of visible-light photoelectrochemical performance. Appl. Surf. Sci., 2018, 427, 1009-1018.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.008]
[18]
Chen, H.; Xue, C.; Cui, D.; Liu, M.; Chen, Y.; Li, Y.; Zhang, W. Co3O4–Ag photocatalysts for the efficient degradation of methyl orange. RSC Advances, 2020, 10, 15245-15251.
[http://dx.doi.org/10.1039/C9RA10437B]
[19]
Rao, P.M.; Zheng, X. Unique magnetic properties of single crystal γ-Fe2O3 nanowires synthesized by flame vapor deposition. Nano Lett., 2011, 11(6), 2390-2395.
[http://dx.doi.org/10.1021/nl2007533] [PMID: 21563788]
[20]
Wang, C.; Longwei, Y.; Luyuan, Z.; Le, K.; Xianfen, W.; Rui, G. Magnetic (γ-Fe2O3@SiO2) n@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. J. Phys. Chem. C, 2009, 113, 4008-4011.
[http://dx.doi.org/10.1021/jp809835a]
[21]
Wu, L.; Yifeng, Z.; Wangyan, N.; Linyong, S.; Pengpeng, C. Synthesis of highly monodispersed teardrop-shaped core–shell SiO2/TiO2 nanoparticles and their photocatalytic activities. Appl. Surf. Sci., 2015, 351, 320-326.
[http://dx.doi.org/10.1016/j.apsusc.2015.05.152]
[22]
Ma, J.; Xiaohua, G.; Hongguang, G.; Guanghui, T.; Qiang, Z. Seed-mediated photodeposition route to Ag-decorated SiO2@TiO2 microspheres with ideal core-shell structure and enhanced photocatalytic activity. Appl. Surf. Sci., 2017, 434, 1007-1014.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.020]
[23]
Chen, C.C.; Dhayananthaprabu, J.; Shao-Hua, H.; Yen-Pei, F. Magnetic recyclable photocatalysts of Ni-Cu-Zn ferrite@SiO2@TiO2@Ag and their photocatalytic activities. J. Photochem. Photobiol. Chem., 2017, 334, 74-85.
[http://dx.doi.org/10.1016/j.jphotochem.2016.11.005]
[24]
Yao, H.; Maohong, F.; Yujun, W.; Guangsheng, L.; Weiyang, F. Magnetic titanium dioxide based nanomaterials: synthesis, characteristics, and photocatalytic application in pollutant degradation. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 17511-17524.
[http://dx.doi.org/10.1039/C5TA03215F]
[25]
Diak, M.; Ewelina, G.; Adriana, Z. Synthesis, characterization and photocatalytic activity of noblemetal-modified TiO2 nanosheets with exposed {0 0 1} facets. Appl. Surf. Sci., 2015, 347, 275-285.
[http://dx.doi.org/10.1016/j.apsusc.2015.04.103]
[26]
Kolobov, N.; Svintsitskiy, D.A.; Kozlova, E.A.; Selishchev, D.S.; Kozlov, D.V. UV-LED photocatalytic oxidation of carbon monoxide over TiO2 supported with noble metal nanoparticles. Chem. Eng. J., 2017, 314, 600-611.
[http://dx.doi.org/10.1016/j.cej.2016.12.018]
[27]
Zheng, Z.; Baibiao, H.; Xiaoyan, Q.; Xiaoyang, M.Z.; Ying, D.; Myung-Hwan, W. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M 1/4 Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem., 2011, 21, 9079-9087.
[http://dx.doi.org/10.1039/c1jm10983a]
[28]
Zhou, D.; Yiming, L.; Wanggang, Z.; Liang, W.L.; Fuqian, Y. Au-TiO2 nanofilms for enhanced photocatalytic activity. Thin Solid Films, 2017, 636, 490-498.
[http://dx.doi.org/10.1016/j.tsf.2017.06.051]
[29]
Safaei Ghomi, J.; Elyasi, Z.; Babaei, P. N-doped graphene quantum dots modified with CuO (0D)/ZnO (1D) heterojunctions as a new nanocatalyst for the environmentally friendly one-pot synthesis of monospiro derivatives. New J. Chem., 2021.
[http://dx.doi.org/10.1039/D0NJ04447D]
[30]
Nasrabadi, M.; Ghasemzadeh, M.A.; Zand Monfared, M.R. Preparation and Characterization of UiO-66 Metal-Organic Frameworks for the Drug Delivery of Ciprofloxacin and Evaluation of their Antibacterial Activities. New J. Chem., 2019, 43, 16033-16040.
[http://dx.doi.org/10.1039/C9NJ03216A]
[31]
Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M.H. Rapid and efficient one-pot synthesis of 3,4-dihydroquinoxalin-2-amine derivatives catalyzed by Co3O4@SiO2 core-shell nanoparticles under ultrasound irradiation. Comb. Chem. High Throughput Screen., 2016, 19(7), 592-601.
[http://dx.doi.org/10.2174/1386207319666160524141831] [PMID: 27216448]
[32]
Ghasemzadeh, M.A.; Elyasi, Z. Co3O4 nanoparticles as a robust and recoverable catalyst for one-pot synthesis of polyhydroquinolines and tetrahydrobenzopyrans. Iran J. Catal., 2017, 7, 75-83.
[33]
Lin, C.C.; Guo, Y.; Vela, J. Microstructure effects on the water oxidation activity of Co3O4/porous silica nanocomposites. ACS Catal., 2015, 5, 1037-1044.
[http://dx.doi.org/10.1021/cs501650j]
[34]
Abdel Ghafara, H.H.; Alic, G.; Fouade, O.; Makhlouf, S. Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Separ. Purif. Tech., 2011, 2, 230-236.
[35]
Harikishorea, M.; Sandhyarania, M.; Venkateswarlua, K.; Nellaippan, T.A.; Rameshbabu, N. Effect of Ag doping on Antibacterial and Photocatalytic Activity of Nanocrystalline TiO2. Procedia. Mater. Sci., 2014, 6, 557-566.
[http://dx.doi.org/10.1016/j.mspro.2014.07.071]
[36]
Li, X.; Liu, D.; Song, S.; Zhang, H. Fe3O4@SiO2@TiO2@Pt Hierarchical Core-Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle. Cryst. Growth Des., 2014, 14, 5506-5511.
[http://dx.doi.org/10.1021/cg501164c]
[37]
Zhang, Y.; Yu, X.; Jia, Y.; Jin, Z.; Liu, J.; Huang, X. A Facile Approach for the Synthesis of Ag‐Coated Fe3O4@TiO2 Core/Shell Microspheres as Highly Efficient and Recyclable Photocatalysts. Eur. J. Inorg. Chem., 2011, 33, 5096-5104.
[http://dx.doi.org/10.1002/ejic.201100707]
[38]
Eman, A. Photodegradation of Binary Azo Dyes Using Core-Shell Fe3O4/SiO2/TiO2 Nanospheres. Am. J. Anal. Chem., 2017, 8, 95-115.
[http://dx.doi.org/10.4236/ajac.2017.81008]
[39]
Wang, R.; Wang, X.; Xi, X.; Hu, R.; Jiang, G. Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites. Adv. Mater. Sci. Eng., 2012, 409379.
[40]
Shih, Y.J.; Su, C.C.; Chen, C.W.; Dong, C.D. Synthesis of magnetically recoverable ferrite (MFe2O4, M Co, Ni and Fe)supported TiO2 photocatalysts for decolorization of methylene blue. Catal. Commun., 2015, 72, 127-132.
[http://dx.doi.org/10.1016/j.catcom.2015.09.017]
[41]
Teixeira, S.; Mora, H.; Blasse, L.M.; Martins, P.M.; Carabineiro, S.; Lanceros-M’endez, S.; Kuhn, K.; Guniberti, C. Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles. Photochem. Photobiol., 2017, 317, 27-35.
[http://dx.doi.org/10.1016/j.jphotochem.2017.05.024]
[42]
Dabirvaziri, B.; Givianrad, M.H.; Sourinejad, I.; Moradi, A.M.; Mostafavi, P.G. A simple and effective synthesis of magnetic γ-Fe2O3@SiO2@TiO2-Ag microspheres as a recyclable photocatalyst: dye degradation and antibacterial potential. J. Environ. Health Sci. Eng., 2019, 17(2), 949-960.
[http://dx.doi.org/10.1007/s40201-019-00410-w] [PMID: 32030165]
[43]
Chen, D.L.; Chen, Q.Q.; Ge, L.F.; Yin, Y.; Fan, B.B.; Wang, H.L.; Lu, H.X.; Xu, H.L.; Zhang, R.; Shao, G.S. Synthesis and Ag-loading-density-dependent photocatalytic activity of Ag@TiO2 hybrid nanocrystals. Appl. Surf. Sci., 2013, 284, 921-929.
[http://dx.doi.org/10.1016/j.apsusc.2013.08.051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy